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Abstract

Objective: Postmortem studies reported significant microglia activation in

association with neuronal apoptosis in Fatal Familial Insomnia (FFI), indicating

a specific glial response, but negative evidence also exists. An in vivo study of

local immune responses over FFI natural course may contribute to the under-

standing of the underlying pathogenesis. Methods: We included eight presymp-

tomatic subjects (mean � SD age:44.13 � 3.83 years) carrying the pathogenic

D178N-129met FFI mutation, one symptomatic patient (male, 45 yrs. old), and

nine healthy controls (HC) (mean � SD age: 44.00 � 11.10 years.) for com-

parisons. 11C-(R)-PK11195 PET allowed the measurement of Translocator Pro-

tein (TSPO) overexpression, indexing microglia activation. A clustering

algorithm was adopted to define subject-specific reference regions. Voxel-wise

statistical analyses were performed on 11C-(R)-PK11195 binding potential (BP)

images both at the group and individual level. Results: The D178N-129met/val

FFI patient showed significant 11C-(R)-PK11195 BP increases in the midbrain,

cerebellum, anterior thalamus, anterior cingulate cortex, orbitofrontal cortex,

and anterior insula, bilaterally. Similar TSPO increases, but limited to limbic

structures, were observed in four out of eight presymptomatic carriers. The

only carrier with the codon 129met/val polymorphism was the only one showing

an additional TSPO increase in the anterior thalamus. Interpretation: In com-

parison to nonprion neurodegenerative diseases, the observed lack of a diffuse

brain TSPO overexpression in preclinical and the clinical FFI cases suggests the

presence of a different microglia response. The involvement of limbic structures

might indicate a role for microglia activation in these key pathologic regions,

known to show the most significant neuronal loss and functional

deafferentation in FFI.

Introduction

Prion Diseases (PrDs) or transmissible spongiform ence-

phalopathies (TSEs) are a group of rapidly progressive

conditions characterized by the accumulation of mis-

folded prion protein (scrapie PrP - PrPSc).1 Human prion

diseases include conditions such as Creutzfeldt–Jakob Dis-

ease (CJD) and Fatal Familial Insomnia (FFI) and include

sporadic, genetic, and acquired forms.2,3

The net majority of the fatal insomnia cases are famil-

ial, with FFI qualifying as one of the most common

inherited prion disease worldwide.3 FFI is a rare disease4

linked to a missense mutation in the prion protein gene

(PRNP) at codon-178, with aspartate-asparagine replace-

ment (Asp?Asn) (D178N mutation),5,6 which has a high,

almost complete, penetrance.5–7 The D178N mutation can

trigger different clinico-pathological syndromes, either

thalamic-dominant FFI or CJD, depending on a
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methionine-valine polymorphism at PRNP codon-129.8–10

FFI syndrome is almost exclusively associated with

methionine in the mutated allele (D178N-129M),9 but

not all the carriers of the D178N-129M mutation develop

an FFI phenotype.11,12 Additionally, methionine/valine

polymorphism in the normal allele appears relevant for

disease progression and severity, with FFI D178N-129M/M

patients presenting with a more rapid decline compared

to D178N-129M/V cases.9 FFI presents with disrupted

sleep (loss of sleep spindles and slow-wave sleep and

enacted dreams), autonomic hyperactivation and motor

abnormalities (myoclonus, ataxia, dysarthria, dysphagia,

and pyramidal signs).13,14

Postmortem tissue evaluation consistently reveals neu-

ronal death due to apoptosis and gliosis, largely confined to

the ventral anterior and dorso-medial thalamic nuclei and

inferior olivary nuclei, not correlating with the amount of

PrPSc deposition.10,13,15–17 Previous studies have reported

only mild PrPSc accumulation in FFI, particularly in

patients with the shortest disease duration.16,18 Significant

microglia activation has been described in association with

neuronal apoptosis in FFI, both in terms of topography

and magnitude,17 but negative evidence also exists.19,20

Structural Magnetic Resonance Imaging (MRI) studies

have provided negative/heterogeneous evidence for vol-

ume loss,21 whereas novel approaches with diffusion ten-

sor imaging (DTI) revealed significant alterations in the

thalamus, cerebellum, and medulla oblongata.22,23

With regard to molecular Positron Emission Tomogra-

phy (PET) imaging, several18F-FDG-PET studies revealed

focal thalamic hypometabolism in FFI, variably reaching

limbic and frontotemporal cortical regions possibly due

to thalamic functional deafferentation.18,21,24,25 Limbic

and cortical involvement is also supported by pathology

studies showing a spread of PrPSc deposition, neurode-

generation, and gliosis in these areas, depending on dis-

ease duration.8,18

To date, the relationships between PrPSc, neuronal

apoptosis, spongiform change, and brain immune activa-

tion are not yet fully understood.17 In contrast to some

in vivo26 and postmortem evidence in CJD,27 the in vivo

dynamics of microglia responses in FFI are currently

unknown.17,20

PET with specific radioligands, such as the carbon-11

labeled (R)-PK11195, allows the in vivo investigation of

microglia activation in humans.28 These techniques detect

overexpression of the 18 kDa Translocator Protein

(TSPO), an outer mitochondrial membrane protein

whose levels rise during microglia activation29 but also, to

a lesser extent, during astrocytes and macrophage activa-

tion.29,30 This technique has been previously adopted in

several neurodegenerative conditions,28,31 including prion

diseases.26

Here, we employed 11C-(R)-PK11195-PET to evaluate

presence and temporal course of microglia activation,

in vivo, in both presymptomatic carriers of the FFI

D178N-129M mutation and in a single symptomatic

patient.

Methods

Participants

We enrolled eight presymptomatic carriers of the D178N

PRNP mutation (age mean � SD 44.13 � 3.83 years),

belonging to three Italian families. Seven of them (FFI

Carriers 1-7) were homozygous, 129M/M, whereas only

one (FFI Carrier 8) was heterozygous, 129M/V, at PRNP

codon 129. All the 11C-(R)-PK11195 scans were per-

formed at the Nuclear Medicine Unit of the San Raffaele

Hospital (Milan, Italy) between 2006 and 2008. Of note,

all the carriers are currently still asymptomatic (June

2017). The only FFI patient was a male, 45 years old,

who carried a 129met/val polymorphism. He was evaluated

6 months after symptom onset and was still autonomous

at the time of PET. He died 8 months after PET, thus

presenting with a total 14 months of disease duration

(see Table 1, sensitive data, such as sex and age, is not

revealed for confidentiality reasons).
11C-(R)-PK11195 PET scans of nine healthy volunteers

were included for comparison (mean age � SD:

44.00 � 11.10). The controls were external volunteers

(N = 6) or relatives of the presymptomatic carriers with-

out the mutation (N = 3).

All the procedures involving human participants per-

formed in this study were in accordance with the ethical

standards of the institutional and/or national research

committee and with the 1964 Helsinki declaration and its

later amendments or comparable ethical standards. All

Table 1. Summary of the FFI cohort.

ID PRNP codon 129 Follow-up (years) PET–Study time

FFI Patient met/val –

FFI Carrier 1 met/met 11

FFI Carrier 2 met/met 10

FFI Carrier 3 met/met 11

FFI Carrier 4 met/met 10

FFI Carrier 5 met/met 10

FFI Carrier 6 met/met 11

FFI Carrier 7 met/met 11

FFI Carrier 8 met/val 9

FFI, Fatal Familial Insomnia; PRNP, Prion Protein Gene; met, methion-

ine; val, valine.

Sensitive data, such as sex and age, is not revealed for confidentiality

reasons.
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the subjects involved personally gave their informed

consent.

11C-(R)-PK11195 PET acquisition

11C-(R)-PK11195 PET scans were performed at the

Nuclear Medicine Unit of San Raffaele Hospital (Milan,

Italy), with multi-ring PET tomographs, either PET-CT

system “Discovery LS” or “Discovery 690” General Elec-

tric Medical Systems. 11C-(R)-PK11195 injected dose was

of approximately 370 � 37 MBq, with optimal radio-

chemical and chemical purity >95%.32

The acquisition protocol consisted of a dynamic scan of

15 frames with a total duration of 58 min, that is,

6 x 30 sec/ 2 x 1 m/1 x 3 m/3 x 5 m/2 x 10 m/1 x 15 m.

PET data were corrected for attenuation artifacts, radioac-

tive decay, and scatter. Transaxial images were recon-

structed using a Shepp-Logan filter (cut-off 5 mm filter

width) in the transaxial plane, and a Shepp-Logan filter

(cut-off 8.5 mm) in the axial direction. For each scan, the

individual frames were realigned over time with statistical

parametric mapping (SPM5) software to account for move-

ment during acquisition.

11C-(R)-PK11195 PET data processing

11C-(R)-PK11195 nondisplaceable binding potential

(BPND) images were estimated with a Receptor Parametric

Mapping (RPM) (0.04 min�1 lower bound, 1.0 min�1

upper bound, 30 basis functions)33 procedure, a basis

function implementation of the Simplified Reference Tis-

sue Modeling (SRTM) method.34 The SRTM analysis gen-

erates BPs by modeling the time activity curve (TAC) of

a preset reference region and comparing it voxel-wise in

the whole scan.34 The identification of a reference region

with 11C-(R)-PK11195-PET can be particularly challeng-

ing, since the delivery of the tracer is homogeneous across

the whole-brain, hindering the delineation of an anatomi-

cally defined region.35,36 This methodological caveat led

to the development of automated clustering algorithms

able to select pseudo-reference regions, that is, clusters of

voxels sharing a specific TAC.35,37 Here, we employed the

Curve Distance Clustering Algorithm (CDCA),38 which is

an adaptation of the well-validated SuperVised Clustering

Algorithm.35

The CDCA algorithm estimates the similarity of the

TACs of each voxel with four predefined TACs, represent-

ing reference tracer delivery in four compartments, that

is, blood, white matter, gray matter with nonspecific

binding and high-specific binding.38 The voxels with a

TAC most resembling of the gray matter with nonspecific

binding compartment were then used as reference region

for the parametric BP analysis.

The clustering maps obtained with the CDCA procedure

were also used to spatially normalize 11C-(R)-PK11195 BP

images to the standard Montreal Neurological Institute

(MNI) space. The probability maps of the gray and white

matter were entered into the unified segmentation module

of SPM12. The resulting spatial transformations were used

for the warping to MNI space and to subsequently deform

a standardized MNI mask to native space in order to mask

extracranial uptake. This pipeline resulted in masked and

warped 11C-(R)-PK11195 BP images.

11C-(R)-PK11195 PET analysis

Voxel-wise statistical comparisons in the FFI carriers were

performed at group and single-subject levels. Analyses were

run with SPM12 software, covarying for age as a nuisance

factor. Statistical significance was set at P < 0.001 (uncor-

rected for multiple comparisons), with minimum cluster

extent k:100 voxels. Single-subject analysis was performed

by estimating individual voxel-wise z-score maps for the

symptomatic patient and FFI mutation carriers using the

mean and standard deviation of 11C-(R)-PK11195 values in

the healthy controls. Consistent with the group compar-

ison, statistical significance was set at z > 3.29 (two-sided,

P < 0.001).

Results

FFI presymptomatic carriers

The group analysis showed no statistically significant dif-

ferences with the healthy controls. At single- subject eval-

uation, clusters of significant activation were present in

limbic regions in four FFI presymptomatic carriers (carri-

ers 1,3,6,8), namely the insula and the cingulate cortex in

all the subjects; other than in the putamen and pallidum

in carriers 1 and 3, respectively (see Fig. 1). Of note, car-

rier 8 was the only D178N-129M/V and also the only

showing significant focal 11C-(R)-PK11195 BP increases

in the left anterior thalamus, comparable to the FFI

D178N-129M/V patient pattern (see below and Fig. 1).

The lack of thalamic involvement was confirmed in all

the other carriers also adopting more liberal statistical

thresholds, that is, z > 2.58 (two-sided, P < 0.01).

FFI symptomatic patient

The single-subject analysis revealed significant cortical

TSPO overexpression, peaking in the anterior cingulate

cortex, in the medial orbitofrontal cortex and in the ante-

rior insula. At the subcortical level, the FFI patient

showed confined and significant BP increases in the ante-

rior thalamus (MNI �14,�4,8), with a remarkable
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colocalization observed in FFI carrier 8. The closest fit to

atlas-based subnuclei was with the ventral thalamic ante-

rior nuclei. Of note, the FFI patient additionally showed

significant focal 11C-(R)-PK11195 increases in the left

midbrain (MNI �10, �20, �5) and cerebellum (MNI 14,

�52, �32; �38, �66, �48; 12, �51, �56) (see Fig. 1).

Discussion

FFI is a fatal monogenic disease characterized by a speci-

fic combination of a missense mutation and an in cis sin-

gle-nucleotide polymorphism in the PRNP gene.39 The

D178N-129M combination predominantly yields a unique

clinical and neuropathological signature, with selective

thalamic and brainstem nuclei degeneration leading to a

fatal disease characterized by severe sleep alterations with

autonomic hyperactivity and myoclonus.15,39 Here, we

present the first in vivo 11C-(R)-PK11195 PET study of

microglia activation in presymptomatic carriers of the

Fatal Familial Insomnia PRNP D178N-129M pathogenic

mutation, and an evaluation in a single symptomatic

patient.

Ever since its characterization,5,6,13 FFI has consistently

shown remarkably distinct clinical and pathological fea-

tures, defining a unique entity within prionopathies.8 One

cardinal difference with other prionopathies relates to the

Figure 1. 11C-(R)-PK11195 BP increases in single subjects. Figure shows significant (z > 2.58, P < 0.01 two-tailed) 11C-(R)-PK11195 BP elevation

in four carriers, three D178N-129met/met and one D178N-129met/val, together with the symptomatic patient (D178N-129met/val). Red circles

highlight BP increases in the anterior thalamic nuclei in Carrier 8 and the patient. Voxels with significant increases are overlaid on a standard

anatomical template with MRIcron software on multiple axial and sagittal slices (http://www.mccauslandcenter.sc.edu/crnl/tools). BP, binding

potential.
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generally low accumulation of PrPSc aggregates, reaching

significant levels only in the cerebral cortex of the cases

with the longest disease duration.3,8

The association between microglial activation and the

neuropathological changes in FFI remains elusive, high-

lighted by the discordant results provided by autopsy stud-

ies.17,19,20 Postmortem evidence indeed showed significant

microglia activation in FFI, with a remarkable concordance

with neuronal apoptosis, both in terms of topography and

magnitude.17,20 It was then suggested that in FFI, microglia

cells could reactively migrate to apoptotic sites to digest

debris or, conversely, could somehow fuel neuronal apop-

tosis through the activation of pro-inflammatory signaling

cascades.17,40 Still, there is evidence for a lack of association

between microglia activation in FFI and interleukin-1b
levels, thus not supporting the latter hypothesis.17

The present unique in vivo PET findings in D178N-

129M/M pre-symptomatic mutation carriers crucially show

a lack of significant in vivo TSPO overexpression (i.e.,

microglia activation) in key FFI pathology regions, that is,

ventral anterior and medial dorsal thalamic nuclei and infe-

rior olivary nuclei. The here included presymptomatic car-

riers were on average about 44 years old and were still

asymptomatic (June 2017), after an average 10 years of fol-

low-up after PET scan. Considering that FFI has been

shown to harbor almost complete penetrance,7 with risk of

clinical onset peaking around 50–55 years of age,41 our

cohort was studied about 6–11 years before the expected

clinical onset. These negative 11C-(R)-PK11195-PET find-

ings are in accordance with a previous 18F-FDG-PET study

in FFI presymptomatic mutation carriers, showing the only

dysfunctional marker being significant thalamic hypometa-

bolism.42 More specifically, the latter was evident only

shortly before the clinical onset (about 13–21 months)42

and was considered related to underlying fast and abrupt

pathology processes. Four out of eight presymptomatic car-

riers showed spatially consistent and significant 11C-(R)-

PK11195 BP increases in the limbic structures, such as

anterior/middle/posterior cingulate cortices and insula;

with two of them showing an additional involvement of

basal ganglia. Unraveling the biological meaning of these

brain 11C-(R)-PK11195 BP increases in presymptomatic

carriers is challenging. All the carriers were neurologically

normal and did not have any clinical complaint. Consider-

ing the asymptomatic phase and the previous in vivo evi-

dence, both the presence of PrPSc pathology and

neurodegeneration are unlikely. This is confirmed by the

lack of significant increases in regions where the pathogenic

process is expected to begin, that is, medulla oblongata and

anterior ventral/dorso-medial thalamic nuclei, in all carri-

ers but one (see below). The observed pattern of microglia

activation could be due to molecular mechanisms that are

in need of further studies. Therefore, while the present data

provide some evidence for limbic microglial activation in

presymptomatic FFI, these results should be interpreted

with caution.

Notably, the symptomatic FFI patient showed signifi-

cant 11C-(R)-PK11195 BP increases in key FFI pathology

regions, such as the ventral anterior thalamic nuclei, the

midbrain and the cerebellum. It is of particular interest

that the only presymptomatic carrier with a codon 129M/V

polymorphism showed a rather limited but significant

TSPO overexpression in anterior thalamus, orbitofrontal

cortex, and right anterior insula, all topographically con-

sistent with the pattern seen in the affected patient.

While it is tempting to speculate that the codon 129

polymorphism could be associated with differential

dynamics of microglia responses in FFI, the present find-

ings cannot unequivocally confirm this claim and further

studies are needed.

These findings suggest that, although confined, FFI in

the symptomatic phase may be associated with a selective

and focal microglia activation in key pathologic subcorti-

cal regions, extending to limbic cortical regions perhaps

bearing functional deafferentation effects. At the cortical

levels, previously reported FFI patients with longer disease

durations (i.e., D178N-129M/V) showed both marked

in vivo 18F-FDG-PET hypometabolism and significant

postmortem spongiosis and gliosis, with a milder neu-

ronal loss especially evident in frontal and cingulate

regions.18,24,39

We have recently described significant 11C-(R)-

PK11195 BP increases in CJD, with magnitude and

topography varying according to the clinical subtype.26 In

particular, more significant increases were observed at the

subcortical levels in variant CJD and cortical levels in typ-

ical sporadic CJD, whereas the only genetic CJD patient

(PRNP V210I mutation) showed the most confined and

least significant increases.26 Both the genetic V210I CJD

and the D178N-129M/V FFI showed an overall lower mag-

nitude of in vivo 11C-(R)-PK11195 BP increases, in com-

parison to the sporadic and the variant CJD cases.26 It is

tempting to speculate that these genetic prion disease

cases could have been characterized by a slowly progres-

sive incubation period, reflecting in a distinctive temporal

dynamic of microglia activation. This would imply that,

in preclinical and earliest clinical phases of genetic prion

diseases, microglia cells could be not activated or, alterna-

tively, activated in a neuroprotective phenotype. With dis-

ease progression and chronicity of pathology

accumulation, microglia cells could progressively activate

and switch to a more aggressive functional phenotype,

possibly detected by 11C-(R)-PK11195-PET (see below).

Genetic prion diseases have been classified as “fast” or

“slow” based on the usual clinical course, ranging from

very rapid (<3 years of disease duration) to slower
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courses (>3 years), witnessing a pronounced variability

concerning survival time.4 Therefore, this hypothesis is

more likely to hold true in slower, less fulminant, genetic

cases.

Very few previous studies have evaluated in vivo TSPO

overexpression in presymptomatic mutation carriers of

neurodegenerative proteinopathies, and crucially none of

them in prion diseases. Significant striatal and cortical
11C-(R)-PK11195 binding increases have been described

in premanifest Huntington Disease (HD) mutation carri-

ers, also correlating with the short-time probability of dis-

ease onset.43 Another study employing 11C-DAA1006-PET

found significant TSPO overexpression in presymptomatic

genetic carriers of microtubule-associated protein tau

(MAPT) mutation.44

Neuroinflammation has been evaluated also by means

of 11C-deuterium-L-deprenyl, indexing brain astrocytosis,

in a study addressing presymptomatic carriers of inherited

autosomal dominant AD (ADAD).45 Of note, brain astro-

cytosis in ADAD is higher in the presymptomatic phases

of disease, and steadily declines approaching clinical

onset.45 It is reasonable to consider that neurodegenera-

tive conditions with long-lasting pathology accumulation,

progressive insidious clinical onset, and longer survival

time, such as genetic AD, are characterized by different

microglial characteristics and temporal dynamics when

compared to conditions with an abrupt clinical onset and

short survival times, for example, in prion disease.

The present findings should also be considered in light

of the lacking consensus on whether TSPO-based PET

radioligands preferentially detect specific microglia func-

tional states. Microglia are extremely versatile cells, which

can acquire diverse phenotypes in response to specific

trigger insults.46 In postmortem evidence in pri-

onopathies, microglia cells seem to be able to clear apop-

totic material but not PrPSc, even after priming with

lipopolysaccharide stimulation.47 Apoptosis is the leading

neuronal death mechanism in FFI17 and is known to trig-

ger a specific neuroprotective microglial response, ori-

ented toward phagocytosis of debris and restoration of

tissue homeostasis through anti-inflammatory signal-

ing.47,48 It is conceivable that at some point, the unremit-

ting accumulation of PrPSc pathology, together with

increased neuronal loss, ultimately triggers a microglial

functional switch, that is, from neuroprotective to neuro-

toxic, which has already been suggested in prion dis-

eases.27 In FFI, thalamus, midbrain, brainstem, and

cerebellum bear the brunt of pathology8,15 and here we

showed focal and significant in vivo TSPO overexpression

in the symptomatic patient. FFI patients with longest dis-

ease course have shown cortical pathology and dysfunc-

tion18,24 and we here consistently detected TSPO

overexpression in cortical regions in vivo.

Thus, microglia activation seems to be part of the FFI

pathology, in a peculiar and/or limited amount. Whether

specific microglia functional states are present early in the

FFI course, switching to the harmful aggressive phenotype

in later phases, is a crucial issue in need of further stud-

ies, also considering the development of possible

immunomodulatory interventions.
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