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We study a mechanism for the amplification of the inflationary scalar perturbation when the inflaton 
field action is non-canonical, i.e. the inflaton kinetic term has a non-standard form. For such a case 
the speed of sound of the perturbations generated during inflation is less than one and in general 
changes with time. Furthermore in such models, even when the scalar field potential is negligible, diverse 
inflationary attractors may exist. The possible effects of a speed of sound approaching zero during some 
stage of inflation may lead to a large amplification for the amplitude of the scalar spectrum which, on 
horizon re-entry during the radiation dominated phase, can collapse and form primordial black holes 
(PBH) of a mass MBH ∼ 10−15 M� which may constitute a large fraction of the total Dark Matter (DM) 
today.

© 2019 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.
1. Introduction

LIGO’s direct observations of black holes (BHs) through the 
gravitational waves emitted during their merging has started a 
new exciting era for high energy physics and astronomy. Growing 
interest in BH physics rapidly led, among the various alternatives, 
to the proposal of reconsidering light BHs as candidates for much 
of the total DM in the Universe. In order to explain their abun-
dance and mass spectra an intriguing possibility is that their seeds 
may have originated during the very early stages of our Universe 
and, in particular, in the inflationary era or during the subsequent 
reheating. Only later, during the radiation dominated era, the over-
densities generated during inflation larger than some critical value 
may collapse and form BHs [1]. If this were the case more infor-
mation about the physics at the Planck scale is expected in the 
next decade, besides the data coming from CMB anisotropies and, 
eventually, the detection of primordial gravitational waves.

It is widely accepted that some dynamical mechanism has 
driven an inflationary phase [2] at the very beginning of our Uni-
verse. The exact features of such a mechanism are still unclear 
but nowadays any viable hypothesis about the mechanism of in-
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flation must satisfy a list of stringent constraints coming from 
the observational data. Many of such constraints derive from CMB 
observations [3,4] and are restricted to a quite narrow energy win-
dow of the primordial inflationary spectra. Within the slow-roll 
(SR) paradigm many models compatible with data have been put 
forward.

In the last few years the ideas behind the renormalization 
group approach, which have been successfully applied to many 
areas of physics at low, testable, energies, have been employed 
in gravity and the physics of the early universe [5]. At the en-
ergy scale of inflation one should also consider different operators, 
which have no effect at long distance/low energy, since they may 
have an important role before the Big Bang. In particular, in this 
article we shall study the possible consequences of a modification 
of the kinetic term of a minimally coupled inflaton. Such a mod-
ification has relevant consequences on the inflationary evolution, 
as pointed out in [6], where the authors show that a nearly de 
Sitter stage can be achieved by simply modifying the inflaton ki-
netic term, without the need of any potential. Subsequently the 
corresponding evolution of inflationary perturbations was calcu-
lated, showing an amplification of the scalar spectrum w.r.t. the 
tensor one due to the negligible speed of sound cs during the 
evolution. Later, observations severely ruled out such small values 
of cs since they lead to large non-gaussian features in the CMB 
incompatible with the observational constraints. Nonetheless the 
possibility of a non-canonical kinetic term for the inflaton, with 
a non-negligible potential, have been studied in the literature [7]
le under the CC BY license (http://creativecommons.org/licenses/by/4.0/). Funded by 

https://doi.org/10.1016/j.physletb.2019.02.036
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/physletb
http://creativecommons.org/licenses/by/4.0/
mailto:Alexander.Kamenshchik@bo.infn.it
mailto:Alessandro.Tronconi@bo.infn.it
mailto:tereza.vardanyan@bo.infn.it
mailto:Giovanni.Venturi@bo.infn.it
https://doi.org/10.1016/j.physletb.2019.02.036
http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1016/j.physletb.2019.02.036&domain=pdf


202 A.Y. Kamenshchik et al. / Physics Letters B 791 (2019) 201–205
leading to a slow rolling phase driven by the potential and en-
hanced by the modified kinetic term. Such models can be made 
compatibile with observations.

In this article we shall restrict our attention to the possible ad-
dition of a potential to the original k-inflation model proposed in 
[6]. In the presence of a non-negligible potential, the system can 
have 2 quasi de Sitter attractors. The inflationary phase can then 
interpolate between them. When the potential is leading w.r.t. the 
modified kinetic term, inflation occurs close to the “standard” at-
tractor and when potential becomes negligible w.r.t the kinetic 
term, inflation may continue close to the k-inflationary attractor. 
This twofold evolution may have important consequences since the 
latter phase may amplify the inflatonic fluctuations which are out-
side the CMB observational window and, if certain conditions are 
met, these over-densities may collapse to form PBHs.

The paper is organised as follows. In Sec. 2 the basic formu-
lae are introduced and some dynamical features are illustrated. In 
the Sec. 3 the phase of potential domination is studied and the 
mechanism of amplification is discussed. In the Section 4 some 
toy models are presented and finally the conclusions are presented 
in Section 5.

2. Formalism

We consider an homogeneous inflaton-gravity system with a 
generic kinetic term for the inflaton field. Let its total action be

S =
∫

d4x
√−g

[
MP

2

2
R + p(φ, X)

]
(1)

where p(φ, X) is the pressure of the scalar field, X ≡ 1
2 gμν∂μφ∂νφ

and gμν is the metric tensor. The energy density associated with 
the inflaton field is ρ = 2X∂ p/∂ X − p and the equations governing 
the evolution of the system can be cast in the usual form:

H2 = ρ

3MP
2

, ρ̇ = −3H (ρ + p) . (2)

We consider the pressure and energy density which take the fol-
lowing forms

p = 1

2
k(φ)φ̇2 + 1

4
L(φ)φ̇4 − V (φ),

ρ = 1

2
k(φ)φ̇2 + 3

4
L(φ)φ̇4 + V (φ). (3)

The KG equation then is

φ̈ + 3Hφ̇
k + Lφ̇2

k + 3Lφ̇2
+

V ′ + φ̇2
(

k′
2 + 3

4 L′φ̇2
)

k + 3Lφ̇2
= 0 (4)

where the speed of sound is given by

c2
s ≡ ∂ p/∂ X

∂ p/∂ X + 2X∂2 p/∂ X2
= k + Lφ̇2

k + 3Lφ̇2
. (5)

For constant V the system (2) has a de Sitter/flat space solution 
φ̇ = 0. On the other hand a non-trivial de Sitter solution with φ̇2 =
− k

L exists if k and L have opposite signs and

d

dφ

(
V + k2

4L

)
= 0 → V = −1

4

k2

L
+ � (6)

with � arbitrary constant. Correspondingly one has ρ = �.
A slight deformation of this last constraint could lead to a SR 

(nearly de Sitter) evolution which, in the limit for k → 1 and 
L → 0, does not reproduce the usual SR condition since the Eq. (6)
is peculiar to the non-canonical framework. On the other hand a 
suitable potential can also drive a SR phase.

Let us consider from here on L(φ) > 0 and k = −1 (k can be 
set to −1 without loss of generality by a suitable field redefinition 
and provided k(φ) < 0). If the condition (6) is not satisfied exactly 
then

d

dφ

(
1

L
− 4V

)
= ε f (φ) (7)

where ε is a small parameter. The exact solution φ̇2 = 1
L is then 

slightly modified and becomes φ̇2 = 1
L + εD(φ). Then Eq. (4), to 

the first order in ε , takes the following form

2MP D ′ + σ
√

3D = MP f

2
(8)

where σ ≡ sgn
[

H/φ̇
]

and, in particular, σ ≡ sgnφ̇ when the Uni-
verse is expanding. Eq. (8) then has the following general solution

D(φ) = exp

(
−σ

√
3φ

2MP

)⎡
⎢⎣D0 +

φ∫
φ0

exp

(
σ

√
3φ̄

2MP

)
f

4
dφ̄

⎤
⎥⎦ (9)

where the decreasing contribution, proportional to the integration 
constant D0, rapidly disappears. Such a contribution, in the pres-
ence of a non-negligible f (φ), describes the (transient) approach 
to the SR attractor. Correspondingly one can calculate the SR pa-
rameters ε1 and ε2. To the first order in ε we have

ε1 = 6LD, ε2 =
√

3

3
σ

f

D
MP

(
1 − 2

3
ε1 − σ

2
√

3

MP

D

f

)
. (10)

On integration by parts (9) and neglecting the non-rapidly decay-
ing part of D one finds

D 	
√

3

6
σMP

×
⎡
⎢⎣ f (φ) − exp

(
−σ

√
3φ

2MP

) φ∫
φ0

d f

dφ̄
.exp

(
σ

√
3φ̄

2MP

)
dφ̄

⎤
⎥⎦ .

(11)

Then ε2 ∼ O (ε1) 
 1 if the second contribution of the square 
bracket in Eq. (11) is negligible w.r.t. the non-decaying part of D
i.e. if

2
√

3

3

MP

f

d f

dφ

 1 (12)

which is a generalised SR condition for f (φ). The speed of sound 
is also small and to the first order is

c2
s 	 ε1

12
. (13)

We observe that a singularity at φ̇2 = 1
3L is present in the modified 

KG equation. It can be removed by a suitable choice for the poten-
tial namely V = 1/ (12L). Otherwise one must choose a suitable 
form for L and V so as to not to cross the singularity.

If f is negligible, D only consists of the decaying part and one 
finds

ε1 = 6L0 D0 exp

(
−σ

√
3φ

2MP

)
, ε2 = −3 (14)
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that is ε1 is not slowly varying but still remains very close to zero 
and inflation continues until some other effect enters the dynam-
ics.

Let us finally consider L = L0 and V = V 0 exp (αφ/MP). Eq. (8)
has an attractor which can be algebraically obtained from the 
ansatz D = D0 exp (αφ/MP) leading to

2αD0 + σ
√

3D0 = −2αV 0 ⇒ D0 = −2αV 0

2α + σ
√

3
(15)

and correspondingly one finds

ε1 = 6DL, ε2 = 2
√

3σ α. (16)

3. Potential driven slow roll

The SR evolution is the consequence of the smallness of the SR 
parameters ε1 ≡ −Ḣ/H2 and ε2 ≡ ε̇1/ (Hε1). In the non-canonical 
context the smallness of ε1 is equivalent to

G 
 Lφ̇2 or V /φ̇2 � max(1, Lφ̇2), (17)

with G(φ, φ̇) = L(φ)φ̇2 − 1, and that of ε2 leads to

φ̈

Hφ̇

 1 and

Ġ

HG

 1. (18)

The addition of a potential to k-inflation can generate a slow 
rolling phase similar to the canonical one, provided the potential 
is leading w.r.t. the non-canonical kinetic term and this latter term 
is “slowly” varying in Hubble time units. Given (17) and (18) the 
modified KG equation can be approximated by

3Hφ̇ G + V ′ 	 0 ⇒ φ̇ G 	 −2MP√
3

d
√

V

dφ
(19)

and H 	
√

V /3MP
2. Moreover one finds

ε1 	 MP
2

2G

(
V ′

V

)2

≡ ε
(c)
1

G
(20)

where ε(c)
1 is the SR parameter in the canonical case. The derivative 

of Eq. (19) w.r.t. time divided by Hφ̇ G gives

φ̈

Hφ̇
+ Ġ

HG
	 −MP

2

G

(
V ′′

V

)
+ ε1 ≡ −η(c)

G
+ ε

(c)
1

G
. (21)

Let us note that (20) and (21) are straightforward generalisations 
of the canonical SR relations for ε1 and φ̈/(Hφ̇) where the factor 
G now appears (G = 1 in the canonical case). The presence of G
can amplify or reduce the SR parameter w.r.t. the corresponding 
ones obtained for the same potential in the canonical framework.

3.1. The importance of potential driven SR (PDSR)

K-inflation can lead to an inflationary phase close to φ̇2 = 1/L
which is ruled out given the present observational constraints 
on the non-gaussian features ( f N L ) of the temperature fluctua-
tions in CMB. The Planck constraints on primordial NG in general 
single-field models of inflation provide the following most strin-
gent bound [3] on the inflaton sound speed:

cs ≥ cs,max (95% CL) (22)

where cs,max = 0.024 in the case ċs = 0 and cs,max a bit larger (and 
model dependent) for the case of ċs/(Hcs) is of the order of the SR 
parameters. The presence of a suitable potential may alleviate such 
serious problems, possibly giving rise to an inflationary expansion 
which is divided into two phases. During the early stages, the 
potential of the scalar field dominates and the modes which im-
printed their features in the observable part of the CMB spectrum 
exit the horizon. For these modes the speed of sound is compatible 
with observations. In the second phase the field evolves close to 
attractor φ̇2 	 1/L and cs 
 1. The modes which exit the horizon 
during this latter phase are unconstrained by CMB observations. 
Their evolution is crucially determined by the speed of sound at 
horizon crossing which amplifies non-gaussianities (in a frequency 
window which cannot be tested by CMB) and the amplitude of the 
scalar perturbation as well. Through a mechanism which resembles 
that of ultra slow roll [8] inflation with an inflection point in the 
potential, for our model the amplitude of the scalar fluctuations 
can be so amplified that the possibility of generating primordial 
black holes must be seriously considered.

Current CMB observations indicate that the amplitude of pri-
mordial curvature perturbations is about 10−9 (often called the 
COBE normalization) that of CMB observable scales. In order for 
the PBH formation after inflation to be effective enough to be 
observationally interesting, curvature perturbations for the scales 
involved in the process must be O(10−2 − 10−1), that is at least 7 
order of magnitude larger. The amplitude of the scalar fluctuations 
when a generic sound speed is considered is given by

Ps = 1

8π2MP
2

H2

ε1cs

∣∣∣∣
csk=aH

(23)

with, for the case we are discussing, c2
s = G/ 

(
3Lφ̇2 − 1

)
. An am-

plification of Ps of 7 orders of magnitude requires extremely fine 
tuning within the framework of canonical inflation with an inflec-
tion point. If a non-canonical kinetic term is taken into account the 
amplification comes about simply as the result of the twofold in-
flationary phase. Let us note that the emergence of non-gaussian 
features, possibly enhanced by a small cs , can modify the estimates 
regarding the amount of amplification needed for PBHs formation 
[9]. Such an enhancement has been estimated in the context of SR 
inflation with a non canonical kinetic term and has been proven 
to be large. To our knowledge the estimate of the amplification of 
non-gaussianities in the regime we are considering (without SR) 
has never been studied before. In [10], for example, the effects on 
non-gaussianities originated by the departure from both scale in-
variance and SR have been studied for a class of non canonical 
models. The authors show that a non trivial background evolution 
can mitigate the amplification expected for these models in the 
SR regime. To conclude, the possibility of the existence of a non-
gaussian spectrum for the modes responsible for PBHs formation 
deserves caution and further studies. In the present analysis such 
a possible effect is neglected.

Close to de Sitter attractor φ̇ 	 σ/
√

L0, one always has H 	
1/ 

(
2MP

√
3L0

) ≡ H0 and then φ(a) ∼ 2
√

3σMP ln (a/a0). The re-
sulting speed of sound evolves as cs = C0a−γs/2 where C0 is an in-
tegration constant and γs is a model dependent parameter. Eq. (23)
then takes the form

Ps = 1

96π2C3
0

H2
0

MP
2

(
C0k

H0

) 3γs
2+γs ∝ H

4−γs
2+γs
0

C
6

2+γs
0 MP

2
k

3γs
2+γs (24)

where a spectral index different from one is present (ns − 1 =
3γs

2+γs
). If such an index is larger than one the scalar spectrum is 

amplified for modes which exit the horizon well after those im-
printed in the CMB. One may roughly estimate the number of 
e-folds, 
Namp, necessary in order to obtain a desired value of 
amplification through the ratio
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Fig. 1. In the above figures the logarithm of the amplitude of the scalar spectrum is plotted as a function of N for the potentials (27) on the left and (29) on the right. We 
set N = 0 at the horizon exit of the CMB modes. The dotted line represents the observed amplitude of the scalar spectrum and the dashed line represents the critical value 
10−2 for PBH formation.
Ps,bh

Ps,∗
= H2

bh

H2∗
ε1,∗cs,∗
12 c3

s,bh

∼ exp

(
3

2
γs
Namp

)
. (25)

Let us finally note that, if the speed of sound and H vary signifi-
cantly during inflation, the following relation holds


N(M) 	 18.4 − 1

12
ln

(
g∗k

g∗0

)
− 1

2
ln

M

M�
+ ln

cs,bh

cs,∗
+ ln

H∗
Hbh

(26)

where 
N(M) is the number of e-folds between the horizon exit 
of CMB modes and that of the modes amplified and finally col-
lapsing into PBHs with a mass M , M� is the solar mass, g∗k , g∗0
indicates the number of relativistic degrees of freedom at the BHs 
formation and at present. Finally cs,∗ and H∗ are evaluated at hori-
zon exit for CMB modes and cs,bh and Hbh must be evaluated 
when the spectrum reaches the critical threshold ∼ 10−2.

Let us note that the above result is qualitatively different from 
that generally obtained from an ultra SR phase which generates a 
flat spectrum and an amplification of curvature perturbations.

4. Toy models

In order to illustrate how such an amplification may occur we 
consider the following toy models where the potential has a mono-
tonic behaviour in order that the evolution is non-singular. Let 
us note that the models listed below are tuned in order to give 
ns ∼ 0.965 and Ps = 2.4 · 10−9.

An exponential potential can accommodate many of the re-
quired features. Let us consider the following setup (Model I)

V = V 0 exp

(
αφ

MP

)
, L = L0

[
1 + δ exp

(
− αφ

2MP

)]
(27)

with V 0 = 10−8MP
4, α ≡ α0 = 1.2 · 10−1, L0 = 1.15 · 108MP

−4 and 
δ = 2 · 10−9. For such a model V 0 and L0 are tuned to reproduce 
the correct ns and Ps . The value of δ and the exponential in L are 
chosen in order to interrupt the amplification of Ps at the right 
time and not overproduce PBHs. Their form is not really impor-
tant provided the variation of L w.r.t φ is not too large compared 
to that of V . Let us note that the magnitude of α is crucial in 
determining both the magnitude of the slow roll parameters dur-
ing PDSR and the amplification in the subsequent phase when the 
field approaches the attractor φ̇ 	 σ/

√
L. It can be related to vari-

ation of the speed of sound during the amplification phase and in 
particular γs = 2α

√
3. One then finds
107 	 Ps,bh

Ps,∗
∼ exp

(
3α

√
3
N

)
⇒ 
N ∼ 26 (28)

and correspondingly M ∼ 10−13 M� . The analytical approximation 
under-estimates 
N which results in about 30 e-folds by nu-
merical simulations. Let us note that the 20% deviation from the 
standard (ultra SR) case is due to the varying H and cs is well 
predicted by analytical approximation. Let us further note that the 
analytical estimate (25) well approximates 
N if CMB modes leave 
the horizon at t∗ which almost coincides with the beginning of 
the amplification stage. This is almost true for the potential (27)
(see Fig. 1) but in general 
N is the sum of two contributions 

N ≡ 
NI + 
NI I where 
NI is the e-fold interval between t∗
and the beginning of the amplification period while 
NI I is the 
duration of this latter period.

Values of α smaller that α0 (see for example Model II with 
α = 5 · 10−2 in Table 1) lead to a very flat spectrum and a very 
small tensor to scalar ratio, within the 68% confidence level re-
gion estimated by the Planck data but correspondingly the required 
amplification of 7 orders of magnitude of Ps would need many e-
folds (
N > 40). On the other hand larger α’s would lead to a fast 
amplification, large values of the spectral indices and, thus, of the 
corresponding running and of the tensor to scalar ratio (see Model 
III for an example with α = 3 · 10−1). In particular for this latter 
case an amplification of 8 orders of magnitude is needed in order 
to have a non-negligible production of PBHs.

We finally consider the following setup (Model IV) having a po-
tential

V = V 0 exp

(
αφ

15MP

)[
tanh

(
αφ

MP

)
+ 1

]
,

L = L0

[
1 + δ exp

(
−αφ

MP

)]
(29)

with V 0 = 1.85 · 10−10MP
4, α = 5 · 10−1, L0 = 2.7 · 109 MP

−4 and 
δ = 2 ·10−12. For such a case the first phase of inflation takes place 
for φ > 0 and a nearly flat potential with a small αeff ≡ α/15. This 
guarantees small SR parameters, running and tensor to scalar ratio. 
At φ < 0 the potential becomes negligible in (8) and there is a fast 
approach to the attractor φ̇ = −L−1/2 described by the transient 
solution (14). It then takes few e-folds to amplify the scalar spec-
trum (∼ 6). The remaining 22 e-folds (see Fig. 1) are essentially 
the duration of PDSR from t∗ until the amplification begins.

The amplitude of the scalar spectrum as a function of N is plot-
ted in Fig. 1 for the models I and IV. The corresponding observables 
are presented in Table 1.
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Table 1
Models I–IV predictions.

cs,∗ r dns/d ln k 
N MBH/M�
Model I 0.12 0.15 0.043 30 10−16

Model II 0.09 0.04 −0.005 75 10−55

Model III 0.17 0.51 0.285 14 10−2

Model IV 0.11 0.03 −0.0003 28 10−14

5. Conclusions

We studied the possible consequences of a specific, non-
canonical, kinetic term for the inflaton field on the spectrum of 
scalar perturbations generated by the inflationary expansion. The 
presence of a kinetic term, similar to that which is responsible 
for the accelerated expansion in k-inflation model, and the addi-
tion of a potential term can lead to an inflationary phase which 
consists of two distinct dynamical regimes. When the potential 
dominates, the evolution of primordial perturbations leads to a 
nearly flat spectrum. When the potential becomes negligible in-
flation can proceed close to another inflationary attractor. In this 
second phase the speed of sound associated with primordial fluc-
tuations may be very small and thus amplify the amplitude of the 
scalar spectrum.

In particular our goal was to suggest such a mechanism for the 
amplification of the scalar spectrum as a source for large inhomo-
geneities at the end of inflation which, on horizon re-entry, could 
lead to the production of PBHs. To some extent the mechanism 
we analyse resembles that of ultra slow-roll and is based on the 
inverse proportionality between the amplitude of the scalar per-
turbations Ps and the product between the SR parameter ε1 and 
the speed of sound cs . In contrast with ultra SR, it is the varying 
speed of sound in our framework that can lead to a much efficient 
amplification of primordial inhomogeneities.

We finally exhibit four examples where such an amplification 
does occur. These four examples are toy models chosen in order 
to illustrate how the suggested mechanism works, even without 
adopting particularly complicated potentials. The simplest model 
(with an exponential potential) can fit CMB data for α ∼ 10−1

leading to a production of PBHs in the desired mass range, around 
10−16M� . Different values of α either generate too light PBHs or 
are incompatible with CMB observations. An alternative model is 
also studied with a slightly more complicated potential. In this 
latter case all the ingredients necessary in order to obtain a fast 
amplification of the primordial spectrum, a very good fit to the 
Planck data and the production of PBHs with a mass ∼ 10−14 M�
were introduced.
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