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Abstract

Within a simple model of homogeneous oligopoly, we show that

the traditional ranking between Bertrand and Cournot equilibria may

be reversed. For price setting entails a continuum of price equilibria

under convex variable costs, departure from marginal cost pricing may

be observed. As a consequence, Bertrand-Nash equilibrium pro�ts

(welfare) may be higher (lower) than Cournot-Nash ones. The reversal

of the standard rankings occurs when pricing strategies mimic collusive

behaviour.

JEL Codes: D43, L13

Keywords: oligopoly, pricing strategy, multiple equilibria

1



1 Introduction

A classical issue in modern industrial organization deals with ranking Nash

equilibria generated by price or quantity competition. Absent externalities,

the standard conclusion emerging from such comparison states the social su-

periority of Bertrand competition w.r.t. Cournot competition. This has been

proved in a broad class of static games.1 However, in a homogeneous product

oligopoly, the comparison between the two types of equilibria has been long

limited by the strict assumptions about technology needed to ensure the exis-

tence of a pure strategy equilibrium under Bertrand rules. Such a limitation

has been bypassed by Dastidar (1995), proving that, under concave demand

and convex costs, price competition in a homogeneous oligopoly yields a

continuum of Bertrand-Nash equilibria in pure strategies. This result may

then allow one to challenge the alleged greater e¢ ciency of Bertrand-Nash

equilibria w.r.t. the Cournot-Nash equilibrium. As long as Bertrand-Nash

behaviour doesn�t need to coincide with marginal cost pricing, the standard

ranking between Bertrand-Nash and Cournot-Nash pro�ts and social welfare

may be reversed. In this note, indeed, we show that, in the continuum of

price equilibria under convex variable costs, departure from marginal cost

pricing may be observed. As a result, in a broad range of the parameter con-

stellation, Bertrand-Nash equilibrium pro�ts (welfare) may be higher (lower)

than Cournot-Nash ones. It�s worth noting that the reversal of the standard

rankings occurs when pricing strategies mimic collusive behaviour.

The remainder of the paper is organised as follows. In section 2 we set

up the model and solve the two games. In section 3, we perform some

comparative statics, instrumental to our main results illustrated in section

4. Section 5 concludes.
1See, fon instance, Singh and Vives (1984), Vives (1985), Okuguchi (1987) and Dastidar

(1997). With cost asymmetry and a small degree of product di¤erentiation, Zanchettin

(2006) shows that the opposite can occur.
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2 Setup and Nash equilibria

Consider a market supplied by a set N = 1; 2; 3; :::; n of identical �rms pro-

ducing a homogeneous good whose demand function is p = 1 � Q; where
Q = �ni=1qi is aggregate output and p is price. All �rms share the same tech-

nology, summarised by the convex cost function Ci = cq2i =2. Accordingly,

the pro�t function of �rm i is

�i =
�
p� cqi

2

�
qi =

�
1� qi �Q�i �

cqi
2

�
qi (1)

where Q�i = �j 6=iqj.

Firms play simultaneously a non-cooperative one-shot game under com-

plete, symmetric and imperfect information. The solution concept is the

Nash equilibrium.

2.1 The quantity-setting game

If �rms are Cournot players, the relevant �rst order condition for �rm i is:

@�i
@qi

= 1� 2qi �Q�i � cqi = 0 (2)

which, under the symmetry condition qj = qi = q for all i and j, yields the

Cournot-Nash (CN) equilibrium output

qCN =
1

n+ 1 + c
(3)

for each individual �rm. The resulting equilibrium pro�ts are

�CN =
2 + c

2 (n+ 1 + c)2
(4)

and social welfare is

SWCN = n�CN + CSCN =
n (n+ 2 + c)

2 (n+ 1 + c)2
(5)

where CSCN =
�
nqCN

�2
=2 is consumer surplus.
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2.2 The price-setting game

Here, we follow Dastidar (1995), where it is shown that, if costs are strictly

convex in output levels, Bertrand competition yields a continuum of Nash

equilibria. The Nash equilibrium in pure strategies involves indeed all �rms

setting the same price p� 2 [pavc; pu] : At the lower bound pavc; equilibrium
price equals average variable costs, so that �rms would be indi¤erent between

producing or not. At the upper bound pu; the equilibrium price is such that

�rms would be indi¤erent between playing pu or marginally undercutting it

in order to capture the entire market demand.

The range of equilibrium prices is identi�ed by:2

pBN =
c

c+ 2 (n� �) (6)

where BN mnemonics for Bertrand-Nash, and � is a non-negative parameter

whose range, to be speci�ed below, determines the continuum of equilibrium

prices. The associated individual output and pro�ts are

qBN =
2 (n� �)

n [c+ 2 (n� �)] (7)

�BN =
2�c (n� �)

n2 [c+ 2 (n� �)]2
(8)

and social welfare is

SWBN = n�BN + CSBN =
2 (n� �) [n (n� �) + c�]

n [2 (n� �) + c]2
(9)

The admissible range is � 2 [0; n2= (1 + n)] : This is because

� in � = 0; the equilibrium price equals average variable cost;

� at � = n=2; marginal cost pricing obtains;

� if � = n2= (1 + n) ; pBN reaches the highest level above which under-

cutting takes place.
2See Dastidar (1995, pp. 27-28); and Gori et al. (2014, pp. 373-75).
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3 Comparative statics

The very fact of the existence of a continuum of price equilibria ranging

well above marginal cost pricing raises two related questions. The �rst deals

with the monotonicity (or the lack thereof) of equilibrium pro�ts w.r.t. the

number of �rms under Bertrand competition. The second issue is whether

the pro�t ranking across the two regimes is robust to variations in industry

structure as measured by the number of �rms, and/or the price mark-up

determined by the value of �. In this section we tackle the �rst question,

while the second is postponed to the next section.

For completeness, we set out by summarising the e¤ect of an increase in

n on Cournot-Nash equilibrium pro�ts. This is captured by the following

derivative:3
@�CN

@n
= � c+ 2

(n+ 1 + c)3
< 0 (10)

everywhere. This is the standard result we are well accustomed with, telling

that individual pro�ts are monotonically decreasing in the number of quantity-

setting �rms.

Now we examine the behaviour of Bertrand pro�ts w.r.t. n in our setting,

where there exists a continuum of equilibria. We are going to prove the

following:

Lemma 1 @�BN=@n > 0 for all n 2
�
nB�; n

B
+

�
and negative elsewhere, with

nB� =
10�� c�

p
c2 + 28c� + 4�2

12

Proof. The partial derivative of Bertrand-Nash pro�ts w.r.t. n is:

@�BN

@n
=
2c� [2� (5n� 2�)� 6n2 � c (n� 2�)]

n3 [c+ 2 (n� �)]3
(11)

3As usual, we are treating n as a continuous magnitude when performing comparative

statics. As soon as we will be looking at numerical examples, we will con�ne our attention

to integers.

5



Since n > n2= (n+ 1) ; which is the upper bound of the admissible interval for

�, the denominator of (11) is strictly positive. Hence, the sign of @�BN=@n

is the sign of the numerator. The roots of

2� (5n� 2�)� 6n2 � c (n� 2�) = 0 (12)

are

nB� =
10�� c�

p
c2 + 28c� + 4�2

12
(13)

and, given the concavity of the numerator w.r.t. n, this implies that @�BN=@n >

0 for all n 2
�
nB�; n

B
+

�
: Outside this range, @�BN=@n < 0:

Notice that, in order for the interval
�
nB�; n

B
+

�
to be economically mean-

ingful, it must be that at least nB+ � 2; i.e.,

nB+ � 2 =
10�� 24� c+

p
c2 + 28c� + 4�2

12
� 0 (14)

The existence of a range of industry structures wherein an increase in the

number of �rms yields an increase in the Bertrand-Nash pro�ts suggests that

Bertand-Nash pro�ts might overcome those generated by those associated to

the Cournot-Nash equilibrium. In the next section we show that this can

indeed happen in an admissible portion of the parameter space.

4 Ranking equilibrium pro�ts and welfare

Under marginal cost pricing, it would be true that �CN > �BN for all n �
2. However, since we follow Dastidar�s (1995) approach to model Bertrand

competition, we have to admit the possibility for �BN to increase in n due

to the presence of a mark-up exceeding its competitive level as � increases

above n=2:

To investigate whether this brings about a reversal of fortune across equi-

libria, it is appropriate to rede�ne the upper bound of � in terms of a lower
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bound to n: This trivially requires solving the following inequality:

� (n+ 1) � n2 (15)

w.r.t. n, which delivers the equivalent condition

n � �+
p
� (�+ 4)

2
� n (16)

If one compares n against nB�; it turns out that

n� nB� =
c� 4�+ 6

p
� (�+ 4) +

p
c2 + 28c� + 4�2

12
> 0 (17)

everywhere, because 3
p
� (�+ 4) > 2�. Therefore, n > nB� always.

The comparison between n and nB� involves evaluating the sign of the

following expression:

n� nB+ =
c� 4�+ 6

p
� (�+ 4)�

p
c2 + 28c� + 4�2

12
(18)

Again, c � 4� + 6
p
� (�+ 4) > 0 since 3

p
� (�+ 4) > 2�. Consequently,

the sign of n� nB+ is the sign ofh
c� 4�+ 6

p
� (�+ 4)

i2
�
�
c2 + 28c� + 4�2

�
(19)

which can be usefully rewritten as

48�
�
3 + ��

p
� (�+ 4)

�
+ 12c

�p
� (�+ 4)� 3�

�
(20)

where 48�
�
3 + ��

p
� (�+ 4)

�
> 0 for all admissible values of �; whilep

� (�+ 4)� 3� R 0 for all � S 1=2. Thus,

� if � 2 [0; 1=2] ; n > nB+ everywhere;

� if � > 1=2; (i) n > nB+ for all c 2 (0;ec); (ii) n � nB+ for all c � ec; with
ec � � (2�+ 5)� (2�� 3)

p
� (�+ 4)

2�� 1 : (21)

7



When � > 1=2; @ec=@� < 0 and @2ec=@�2 > 0; as illustrated in Figure 1.
Figure 1 The critical theshold of c.

6

-

c

�

R1

R2

R3

n > nB+

n � nB+

(0; 0) 1=2

ec

Accordingly, we may identify three regions: R1 � f� 2 [0; 1=2] ; c > 0g ;
R2 � f� > 1=2; c 2 (0;ec)g ; R3 � f� > 1=2; c > ecg : By inspecting the rank-
ing between n and nB+ in these three regions, we draw the following:

Lemma 2 In bR � R1 [R2, n > nB+: In R3; n � nB+:

In the space (c; n) ; Lemma 2 gives rise to Figures 2-3, where n is a �at line

because it is independent of c. In Figure 2, � 2 [0; 1=2] ; so that n > nB+ > nB�.
Since n must be at least as high as n; in this case @�BN=@n < 0 for all

admissible n.
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Figure 2 The sign of @�BN=@n in the space (c; n), � < 1=2.

6

-

n

c

nB�

nB+

n

@�BN=@n < 0

0

In Figure 3, � > 1=2 and therefore n R nB+ for all c Q ec; and n; nB+ > nB�
for all c > 0. In this case, as soon as nB+ > n; we have a region wherein

@�BN=@n > 0:
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Figure 3 The sign of @�BN=@n in the space (c; n), � > 1=2.

6

-

n

c

nB�

nB+

n

@�BN=@n < 0

@�BN=@n > 0

0 ec

-

Since it must be n � n; then Lemma 2 delivers, without further proof,

the following result:

Proposition 3 If � 2 [0; 1=2] ; @�BN=@n < 0 for all c > 0 and all n � n: If
� > 1=2; @�BN=@n > 0 for all c > ec and all n 2 �n; nB+� ; while it is negative
in the remainder of the admissible parameter range.

Now we are ready to characterise the ranking of equilibrium pro�ts and

welfare between Bertrand and Cournot equilibria. To perform this task, we

produce the necessary and su¢ cient condition for �BN > �CN :
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Proposition 4 Take � 2
�
n

2
;
n2

n+ 1

�
: De�ne

c1 �
2 (n� �)
2�� n

c2 �
2n (n� �)� �+

p
� [4n3 + �+ 4n (�� n (�+ 1))]
2�� n

For all c 2 (min fec; c1g ; c2) ; �BN > �CN and SWCN > SWBN :

Proof. The di¤erence between �BN and �CN can be written as

�BN��CN = [c (2�� n)� 2 (n� �)] [4n2 (n� �) + 2c (2n (n� �)� �)� c2 (2�� n)]
2n2 (n+ 1 + c)2 [2 (n� �) + c]2

(22)

The denominator of the r.h.s. of (22) is always positive. The numerator is

nil at

c1 �
2 (n� �)
2�� n

c2 �
2n (n� �)� �+

p
� [4n3 + �+ 4n (�� n (�+ 1))]
2�� n

c3 �
2n (n� �)� ��

p
� [4n3 + �+ 4n (�� n (�+ 1))]
2�� n

(23)

with c2 > c1 > c3 for all � 2
�
n

2
;
n2

n+ 1

�
and n � 2.

Given that c (2�� n)� 2 (n� �) > 0 for all c > c1 and

4n2 (n� �) + 2c (2n (n� �)� �)� c2 (2�� n) > 0 (24)

for all c 2 (c3; c2) ; �
BN > �CN for all c 2 (0; c3) and all c 2 (c1; c2) :

However, from Proposition 3, we have to account for the lower bound to c

for @�BN=@n > 0; i.e., c > ec; with ec 2 (c3; c2) everywhere, although ec may be
11



higher or lower than c1 in the admissible range of n and �. Hence, we may

disregard all c 2 (0; c3) ; and we are left with the interval c 2 (min fec; c1g ; c2) ;
where indeed �BN > �CN holds.

The di¤erence between welfare levels writes:

SWCN�SWBN =
[2 (n� �)� c (2�� n)] [c (n2 � 2� (n+ 1))� 2n (n� �)� c2 (2�� n)]

2n (n+ 1 + c)2 [2 (n� �) + c]2
(25)

Solving SWCN � SWBN = 0 w.r.t. c; one obtains the following roots:

c1 �
2 (n� �)
2�� n

c4 �
n (n� 2�)� 2�+

q
8 (n� 2�) (n� �) + [n (n� 2�)� 2�]2

2 (2�� n)

c5 �
n (n� 2�)� 2��

q
8 (n� 2�) (n� �) + [n (n� 2�)� 2�]2

2 (2�� n)

(26)

Notice that solution c1 is the same root solving �CN = �BN :4 Moreover, the

remaining two roots might not be real because � > n=2 as price becomes

larger than marginal cost in the Bertrand case. If c4; c5 2 R, then c1 > c4 >
c5:Then, observe that c4 and c5 are generated by the expression appearing in

the second square bracket at the numerator of (25), which is parabolic and

concave in c: Therefore, two cases may arise:

� c4; c5 2 R: if so, then c1 > c4 > c5 and consequently SWCN > SWBN

for all c > c1;

� c4; c5 =2 R: if so, then c (n2 � 2� (n+)) � 2n (n� �) � c2 (2�� n) < 0
because the coe¢ cient of c2 is negative above marginal cost pricing.

Hence, again, SWCN > SWBN for all c > c1:
4Incidentally, it is worth noting that c1 also solves pCN = pBN ; with pCN < pBN for

all c > c1: By the same token, qCN > qBN for all c > c1:
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This completes the proof.

The intuition behind Proposition 4 can be explained as follows. First,

notice that the Bertrand-Nash equilibrium pro�ts outperform pro�ts in the

Cournot setting when @�BN=@n > 0; as from Proposition 3. This anti-

competitive e¤ect of expanding the population of �rms on Bertrand pro�ts

occurs when both � and the parameter scaling marginal cost, c, are suf-

�ciently high. As one can see from (6), pBN is increasing in both para-

meters. Hence, @�BN=@n > 0 when the Bertrand equilibrium price sig-

ni�cantly departs from marginal cost pricing to mimic collusive behaviour.

Another way of grasping the result consists in observing that, in the region

� 2 (n=2; n2= (n+ 1)] ; pBN > pCN and qCN < qBN for all c > c1; which

amounts to saying that if the Bertrand equilibrium price departs from mar-

ginal cost and the latter is su¢ ciently high, then the Cournot output becomes

lower than the Bertrand one, causing the pro�t and welfare ranking to �ip

over.

4.1 An example

In order to construct an example where @�BN=@n > 0, �BN > �CN and

SWCN > SWBN ; we have to take a triple f�; c; ng satisfying all of the
aforementioned constraints, i.e.:

� � 2
�
n

2
;
n2

n+ 1

�
� c 2 (min fec; c1g ; c2)
� n 2

�
min f2; ng ; nB+

�
One such triple is f� = 4; c = 6; n = 5g ; at which

@�BN

@n
=

3

1000
; �BN =

3

100
; �CN =

1

36
; SWCN =

65

288
; SWBN =

29

160
(27)
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�BN � �CN = 1

450
; SWCN � SWBN =

2

45
(28)

ec = 4
�
13� 5

p
2
�

7
= 3:38; c1 =

2

3
; c2 = 2

 
1 + 2

r
7

3

!
= 8:11 (29)

nB+ =
17 +

p
193

6
= 5:14; n = 2

�
1 +

p
2
�
= 4:83 (30)

5 Concluding remarks

In this paper we have proved that the traditional ranking between Bertrand

and Cournot equilibria may be reversed under convex variable costs. The

presence of a continuum of price equilibria allows for departures from mar-

ginal cost pricing, to such an extent that Bertrand-Nash equilibrium pro�ts

become higher than Cournot-Nash ones. In the same region of parameters

where this happens, the opposite occurs to the sequence of social welfare

levels. These reversals are driven by the fact that equilibrium pricing mimics

collusion.
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