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Summary Intramuscular fat (IMF) is one of the main meat quality traits for breeding programmes in

livestock species. The main objective of this study was to identify genomic regions associated

with IMF content comparing two rabbit populations divergently selected for this trait, and to

generate a list of putative candidate genes. Animals were genotyped using the Affymetrix

Axiom OrcunSNP Array (200k). After quality control, the data involved 477 animals and

93 540 SNPs. Two methods were used in this research: single marker regressions with the

data adjusted by genomic relatedness, and a Bayesian multiple marker regression.

Associated genomic regions were located on the rabbit chromosomes (OCU) OCU1, OCU8

and OCU13. The highest value for the percentage of the genomic variance explained by a

genomic region was found in two consecutive genomic windows on OCU8 (7.34%). Genes

in the associated regions of OCU1 and OCU8 presented biological functions related to the

control of adipose cell function, lipid binding, transportation and localisation (APOLD1,

PLBD1, PDE6H, GPRC5D and GPRC5A) and lipid metabolic processes (MTMR2). The

EWSR1 gene, underlying the OCU13 region, is linked to the development of brown

adipocytes. The findings suggest that there is a large component of polygenic effect behind

the differences in IMF content in these two lines, as the variance explained by most of the

windows was low. The genomic regions of OCU1, OCU8 and OCU13 revealed novel

candidate genes. Further studies would be needed to validate the associations and explore

their possible application in selection programmes.

Keywords divergent selection, genome-wide association study, intramuscular fat, meat

quality, rabbits

Introduction

Intramuscular fat (IMF) contributes to improve organoleptic

properties and sensory attributes of the meat, as demanded

by consumers (Hocquette et al. 2010). Hence, a large

number of studies have investigated the genetic factors

controlling IMF content in meat and their implications for

several species, e.g. in beef cattle (Sapp et al. 2002; Garrick

2011; Ochsner et al. 2017), swine (McLaren & Schultz

1992; Gao et al. 2007), sheep (Hopkins et al. 2011;

Mortimer et al. 2014) and goats (Pe~na et al. 2011).

Following these studies, IMF has emerged as one of the

most important meat quality parameters and in a few cases

it has been included in breeding programmes (Gotoh et al.

2018; Pannier et al. 2018).

Moderate-to-high heritability and large variability have

been reported for livestock IMF traits, which argue for a

good potential for improving meat quality through genetic

selection. IMF heritability is around 0.53 in swine (Ros-

Freixedes et al. 2016), 0.38 in cattle (Mateescu et al. 2015),

0.48 in sheep (Mortimer et al. 2014) and 0.54 in rabbit

(Mart�ınez-�Alvaro et al. 2016). Important limitations to IMF
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selection are the IMF being recorded mainly at slaughter

and the phenotyping process being costly. In this context,

genetic marker selection based on quantitative trait locus

(QTL) with high or moderate effect size could overcome

some of these limitations.

At genomic level, studies carried out in beef cattle suggest

that IMF could be influenced by a large number of genes

(Strucken et al.2017).Nevertheless, studies in Japanese Black

cattle have reported genomic markers with large effects on

IMF or marbling score around the SCD, FASN, AKIRIN2,

EDG1 and RPL27A genes (Gotoh et al. 2014; Sukegawa et al.

2014). Genomic markers on the genes SCD and FASN have

been incorporated into a breeding programme for this breed

to select elite sires (Gotoh et al. 2018). In swine, similarly to

beef cattle, the results of experiments associating genetic

markers with IMF are hardly conclusive with regard to the

magnitude and importance of discovered associations (Pena

et al. 2016). However, traits correlated to IMF such as fatty

acid profiles have shown a noteworthy QTL on chromosome

14 in a Duroc commercial line (Uemoto et al. 2012; Ros-

Freixedes et al. 2016). So far, IMF appears as a troublesome

trait for mapping studies in livestock species, owing to either

the lack of validation in the results or insufficient power to

detect genetic causal variants. Thus, genomic studies to

understand the genetic control of IMF are still needed.

The rabbit has been shown to be an excellent animal

model for other livestock species (Miller et al. 2014).

Further, the recent availability of a high-density SNP array

has facilitated the performance of genomic studies. At the

Universitat Polit�ecnica de Val�encia, a successful divergent

selection experiment for IMF has been carried out

(Mart�ınez-�Alvaro et al. 2016). The developed rabbit lines

were kept in the same environment and selection criteria

only differ for the IMF selection objective. Selection could

have modified SNP frequencies in opposite directions,

leading to intermediate allelic frequencies when both lines

are jointly considered. This could increase the detec-

tion power of associated loci in a genome-wide association

study (GWAS) based on this experimental design.

The aim of this study was to carry out GWASs using these

divergently selected rabbit lines to identify genomic regions

associated with IMF and generate a list of putative

candidate genes affecting this trait. Two different methods

(single marker regression, SMR, and Bayesian multiple

marker regression, BMMR) were applied to confirm the

identified relevant genomic regions.

Materials and methods

Ethical statement

All experimental procedures were approved by the Ethical

Committee of the Universitat Polit�ecnica de Val�encia,

according to Council Directives 98/58/EC (European

Economic Community, 1998).

Animals and phenotypes

The animals of this study came from two rabbit lines

divergently selected for IMF during nine generations at the

Universitat Polit�ecnica de Val�encia. The base population was

composed of 83 does and 13males from a synthetic rabbit line

(Zome~no et al. 2013). The selection criterion was IMF content

collected in two full siblings of the first parity. The selection of

themaleswaswithin the sire family, avoidingmating between

cousins to control inbreeding. At the ninth generation, the

high-IMF line consisted of 55 does and 10males, and the low-

IMF line consisted of 61 does and 10 males. Over all animals,

themeanwas1.09 gof IMFper 100 gofLongissimus thoracis et

lumborum (LTH) muscle, after adjusting data for systematic

effects (parity order, line, month-season and sex) and a

common litter random effect. The high-IMF line had a mean

of 1.27 g/100 g of LTHwith0.21 standard deviations, and the

low-IMF line had a mean of 0.83 g/100 g of LTH with 0.07

standard deviations. Details about the IMF divergent selection

experiment can be found inMart�ınez-�Alvaro et al. (2016). The

selection response was around 3.1 standard deviations at the

ninth generation, calculated as the difference between lines.

The phenotypic difference between lines was 41% of themean

of the base population.

The rabbits were brought up jointly from 33 days at

weaning until slaughter under the same handling and

feeding conditions. At 9 weeks from birth, the rabbits were

slaughtered following a fasting period of 4 h. Carcasses were

chilled 24 h at 2.5 °C after slaughter and dissected to obtain a

sample of the left LTHmuscle for each animal. These samples

were minced, frozen, lyophilised and milled. The IMF data

were obtained using near-infrared spectroscopy (model

5000; FOSS NIRSystems Inc., Hilleroed, Denmark; Zome~no

et al. 2013; Mart�ınez-�Alvaro et al. 2016). In the last

generation, 729 samples of the left LTH muscle of each

animal were collected and IMFmeasured to compute the IMF

selection response, and 480 rabbits were chosen from groups

of an average size of four siblings per doe (dam) for the GWAS.

Genotyping and quality control

Obliquus abdominis muscle specimens (~50 g), obtained after

slaughter of the animals, were used for DNA extraction

using a standard protocol (Green et al. 2012). A total of 480

individuals were genotyped using the Affymetrix Axiom

OrcunSNP Array (Affymetrix Inc., Santa Clara, CA, USA) at

the ‘Centro Nacional de Genotipado’ (CeGen), Universidad

de Santiago de Compostela. The SNP array contains

199 692 genetic molecular markers. The quality control

was performed using AXIOM ANALYSIS SUITE version 3.0.1.4

and ZANARDI (Marras et al. 2017). SNPs with a call rate of at

least 0.95, MAF of at least 0.03 and a known autosomal

chromosome position according to OryCun2.0 assembly

(Carneiro et al. 2014) were used in the analyses. Further-

more, animals missing more than 3% of marker genotypes,

or failing a Mendelian inheritance test, were excluded. The
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remaining missing genotypes were imputed by the software

BEAGLE version 4.0 (Browning & Browning 2016). The SNPs

with an imputation quality score R2> 0.75 were included.

After filtering, the data included 477 animals (240 from the

high-IMF line and 237 from the low-IMF line) and 93 540

SNPs. In addition, the SNP density was described in this

research because the rabbit SNP array is new (Blasco &

Pena 2018).

Genome-wide association study

Prior to performing the GWAS, we performed a multidi-

mensional scaling analysis to evaluate the population

structure in our genomic data. The method treats the

distances as Euclidean distances and preserves the original

distance metric, between points, as well as possible (Borg &

Groenen 2005). The command cmdscale() from the R

package stats was used to implement this analysis (R Core

Team 2013).

Two methods were employed in this study: a frequentist

and a Bayesian. Both methods included the mean and the

systematic effects in the model: month-season (five levels),

sex (two levels), order-parity (three levels) and line (two

levels). The inclusion of a common litter random effect in

the model was evaluated owing to the importance of this

effect in previous studies of IMF in rabbits (Mart�ınez-�Alvaro

et al. 2016). Inclusion of this effect did not affect GWAS

results (not shown), hence for simplicity we excluded this

effect in the GWAS.

Single marker regression (SMR) with the data adjusted by

genomic relatedness. The analysis was implemented using a

family-based score test for association (FASTA). The SNP

effects were evaluated with FASTA based on a polygenic-

lineal mixed model that included the genomic kinship

matrix to explain relatedness in the sampled population

(Chen & Abecasis 2007). The model equation was:

y ¼ 1lþ Xbþ bgþ Zuþ e

where y is the vector of IMF phenotypes, 1 is a vector of

ones, l is the trait mean, X is the design matrix for the

systematic effects, b is the vector of systematic effects, b is

the substitution effect for a particular SNP, g is the vector of

genotypes for each SNP denoted as the number of reference

alleles for a particular SNP (0, 1 or 2), Z is the design matrix

for random polygenetic effects, u is the vector of random

polygenic effects with a normal distribution Nð0;G � r2uÞ
and e is the vector of random residual effects with a normal

distributionNð0; I � r2e Þ; r2u is the genomic variance and G is

the genomic kinship matrix computed using the genomic

data by the method of Astle & Balding (2009). The identity

matrix was denoted as I and r2e is the residual variance. The
implementation of the association analysis was performed

using R software package GENABEL (Aulchenko et al. 2007).

Furthermore, we utilised a genomic control method to avoid

inflation in the statistic test. We calculated the lambda

parameter that indicates the excess of false positives in the

results. When its application is needed, the regression factor

k corrects the observed P-values leading to new P-values for

every assessed SNP (Aulchenko et al. 2007). In this

research, we used two thresholds: an LD-adjusted Bonfer-

roni (8.12 9 10�6) calculated for 10 Mb LD blocks accord-

ing to LD analysis implemented in PLINK (Purcell et al.

2007), and also, a suggestive threshold of 1 9 10�4 owing

to the high relatedness of the samples (Lander & Kruglyak

1995; Sahana et al. 2011; Do et al. 2018). As Bonferroni is

a conservative method, we also implemented the suggestive

threshold because it is less stringent as the samples from

animals with high relatedness would have genomic seg-

ments of LD larger than those in humans (Wang et al.

2016c; Schmid & Bennewitz 2017). Therefore, the number

of independent sites could be overestimated causing false-

negative results if SNP density is not large enough to adjust

Bonferroni by LD (Spencer et al. 2009; Do et al. 2014).

Bayesian multiple marker regression (BMMR). This method

is more robust to population structure than SMR approaches

(Toosi et al. 2018). However, the line effect would correct for

potential biases that might be derived by the family-data

structures in the investigated rabbit populations. Thus, the

line effect remained in the BMMR model. The parameters

were estimated with the following Bayes B model (Cesar et al.

2014; Ros-Freixedes et al. 2016):

y ¼ 1lþ Xbþ
Xk

j¼1

zjajdj þ e

where y, 1; X, b and e are the same as in the frequentist

method shown above, zj is the vector including the

genotypic covariate for each SNP or locus j (0, 1 or 2), aj
is the random substitution effect for SNPj and dj is the

random 0/1 variable that represents the presence (dj = 1

with probability 1 � p) or absence (dj = 0 with probability

p) of SNPs in the model for a given iteration. The value of p
is defined as the proportion of SNPs with zero effects in the

model. The value of p in our study was 0.9988, which

means that between 100 and 200 SNP markers have non-

zero effects for every iteration. The parameters of the model

were estimated with marginal posterior distributions using

Markov chain Monte Carlo. After some exploratory analy-

sis, a total of 825 000 iterations were performed, with a

burn-in period of 225 000 iterations. Only one sample

every 60 iterations was saved to avoid the high correlation

between consecutive samples. GENSEL� version 4.90 soft-

ware (Garrick & Fernando 2013) was used for the GWAS

analysis. The relevance of the association was assessed

using two criteria, the Bayes factor (Stephens & Balding

2009; Ros-Freixedes et al. 2016) and the percentage of the

genomic variance explained for non-overlapping genomic

windows of 1 Mb, calculated by marginal posterior density.

The genomic windows were defined for each chromosome

and according to the OryCun2.0 rabbit genome assembly

© 2019 The Authors. Animal Genetics published by
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(Carneiro et al. 2014). In our study, 1999 genomic

windows were defined. Those windows accounting for at

least 1.0% of the total genomic variance were considerate as

important to continue with the subsequent analysis (Cesar

et al. 2014). This threshold was 20 times greater than the

average genomic variance explained by a window (0.05%).

We also considered the consecutive windows that explained

at least 0.5% of genomic variance having a strong LD

between them (Ros-Freixedes et al. 2016) as SNPs associ-

ated with a causal variant can be located between consec-

utive windows and the estimated effect of association could

be divided among these windows, hindering the detection of

a genomic region (Beissinger et al. 2015).

In this study, we integrated the results from both

frequentist and Bayesian methods to define the relevance

of associations. This was established by the following

procedure: first, we drew all genomic windows that over-

came the condition expressed in the above paragraph.

Then, the genomic windows harbouring SNPs above or

around a Bayes factor of 20 (Kass & Raftery 1995) were

extracted and considered as relevant genomic windows.

These SNPs reaching at least one of thresholds, either

suggestive or Bayes factor thresholds, were denoted as

relevant polymorphisms. Finally, the genomic regions

having relevant associations were chosen for functional

gene analysis.

In addition, the three main important polymorphisms

within relevant genomic regions were tested according to

genotypes using contrasts by frequentist statistic. This test

was carried out within the IMF line in order to evaluate the

statistical differences amongst genotypes of SNPs. To do

that, a general linear model was implemented using R

software (R Core Team 2013).

Linkage disequilibrium and functional gene analysis

To evaluate the number of independent sites across the

rabbit genome, a computation of LD for blocks was

performed. The PLINK software was utilised to identify LD

blocks (Purcell et al. 2007). The number of independent

sites was calculated every 0.5, 1, 5, 10 and 20 Mb

(genomic physical distance) across the whole rabbit gen-

ome. The LD-adjusted Bonferroni threshold used in this

study was calculated using the number of independent sites

for 10 Mb as the number of independent sites barely

changed between 10 and 20 Mb. LD blocks were examined

in the associated genomic regions through the Haploview

software (Barrett et al. 2005). In order to visualise the genes

into the relevant genomic regions (�500 kb of associated

SNP), we initially used the programme UCSC Genome

Browser (https://genome.ucsc.edu/cgi-bin/hgGateway).

The gene annotations were determined using Ensembl

Genes 96 Database in BIOMART (Aken et al. 2016). The

functional enrichment and metabolic pathways analysis

were finally performed using the Database for Annotation,

Visualization and Integrated Discovery (DAVID) version 6.8

(Jiao et al. 2012) and ENRICHR (Kuleshov et al. 2016). The

computation for the functional analyses was carried out

using the parameters recommended by the authors. In

addition, the search for annotated functions for each gene

was performed individually using the database of all

annotated functions from Ensembl and DAVID.

Results

Genomic data

A total of 93 540 autosomal SNPs with known chromoso-

mal positions were retained after filtering for MAF and call

rate (see details in Materials and Methods). The number of

retained SNPs on each of the 21 rabbit autosomes is shown

in Table 1. The average physical distance between these

SNPs was 22.61 kb. The average SNP number within 1 Mb

windows was 46. One extended genomic region on OCU14

(54–65 Mb) did not contain any SNPs.

GWAS for IMF

Figure 1 reports a multidimensional scaling plot obtained

using the genotyped SNPs on the rabbits of the two

divergent IMF lines. A strong structure separating the high-

and low-IMF lines is evident. Therefore, a line effect was

included in the models. In addition, a polygenic effect was

Table 1 Allocation of SNPs after quality control and average distance

amongst contiguous SNPs on every chromosome.

OCU

Number of

SNPs

Percentage

of SNPs in OCU1

Average

distance (kb)

Chromosome

size (Mb)

1 9288 63 20.98 194.85

2 7856 58 22.19 174.33

3 7006 59 22.22 155.69

4 3895 58 23.47 91.39

5 1721 67 21.84 37.99

6 1222 63 22.48 27.50

7 7626 57 22.78 176.68

8 5075 57 22.03 111.80

9 5136 57 22.58 116.25

10 2318 61 19.38 48.00

11 3827 56 22.81 87.55

12 7116 60 21.83 155.35

13 5945 56 24.11 143.36

14 5687 45 28.81 163.90

15 4657 55 22.71 109.05

16 3962 62 21.32 84.48

17 3836 59 21.94 85.01

18 3102 64 21.45 69.80

19 2574 64 21.00 57.28

20 1224 51 24.66 33.19

21 467 55 26.56 15.58

Total 93 540 47

1The proportion of SNPs after quality control divided by number total of

SNPs into OCU (rabbit chromosome) from the rabbit SNP array.
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also included in the SMR to adjust this model owing to the

plausible effects derived from family-data structures, con-

sidering a genomic kinship matrix. After this correction, the

calculated lambda parameter was 1.065, indicating that the

correction of bias derived from the population structure was

not enough. Hence, we also implemented the correction by

the lambda parameter in the SMR analysis. Note that the

first and second components of multidimensional scaling

accounted for 29.26% and 3.26% of genomic variance,

respectively (Fig. 1).

Two methods were used in this research: SMR with the

data adjusted by genomic relatedness and a BMMR (Bayes B

method). We employed the term of "relevant" in order to

denote those SNPs and genomic windows that we consid-

ered as true positive associations. In this research, we

understand the GWAS as an exploratory analysis, which

works as a mechanism for deriving promising genomic

regions associated with IMF, and retrieving annotated

rabbit genes. Table 2 shows the SNPs and genomic windows

associated with IMF according to the procedure for defining

the relevant associations (see details in Materials and Meth-

ods). For both methods, the associated SNPs and genomic

windows were located on OCU8 and OCU13. The two

genomic windows on OCU13 (2 Mb), containing 10

relevant SNPs for both methods, accounted together for

1.30% of the total genomic variance. On OCU8, 10 relevant

polymorphisms showed the lowest P-values for the SMR

method, and had high Bayes factors for the BMMR method

(Fig. 2). The two genomic windows containing these

relevant polymorphisms accounted for 7.34% of the

genomic variance. In addition, a genomic window on

OCU1 was found to be associated with IMF by BMMR,

explaining 2.03% of the genomic variance. The associated

SNPs in this latter genomic window presented values close

to the Bayes factor threshold, but these SNPs were distant

from the P-value (suggestive) threshold for SMR method.

Regarding the LD analysis, we found that in our data the

rabbit genome could be divided into 2338 LD blocks and

6158 independent sites, with the longest LD blocks having a

maximum length of 10 Mb. The associated SNPs on OCU13

and on OCU8 displayed a high LD within the chromosomal

region (Fig. 3). The associated genomic region on OCU13

(window 1380 and 1381) holds two LD blocks. The second

LD block (of 1506 kb) included almost all of the two

associated windows (Fig. S1). The associated genomic

region on OCU8 (window 841 and 842) presented just

one block of 1945 kb, containing both windows (Fig. S2).

After the previous analysis (GWAS and LD), four relevant

genomic regions were used to continue searching for

putative candidate genes based on the functional annota-

tion analysis (Table 3). In these regions, we also tested the

IMF differences between genotypes within lines. Most of the

SNPs tested presented statistical differences between one of

the homozygous genotypes and the other genotypes within

the high-IMF line. In the low-IMF line, except in region

located 14.01–15.47 Mb in OCU8, these SNPs were not

segregating (Fig. S3).

Functional annotation analysis and putative candidate
genes

The final objective of our study was to generate a list of

putative candidate genes, in order to guide further research

for investigating the genetic determination of IMF content.

Overall, 46 genes were annotated to the four relevant

genomic regions (Table S1).

Figure 1 Multidimensional scaling plot of

genomic data. The first component (MDS1)

explained 29.26% of the genomic variance

and the second component (MDS2) explained

3.26% of the genomic variance.

© 2019 The Authors. Animal Genetics published by
John Wiley & Sons Ltd on behalf of Stichting International Foundation for Animal Genetics, 51, 58–69

Sosa-Madrid et al.62



Only three genes (two non-coding-protein genes and one

protein-coding gene) mapped to the genomic region on

OCU13 (Table 3). Among them stands out a novel

annotated gene with Ensembl gene ID: ENSO-

CUG00000027270 (84.56 Mb), which is linked to metal

ion binding in rabbits. The genes located on the genomic

region on OCU8 were those showing a clearer relationship

to lipid metabolism pathways. The ‘apolipoprotein L domain

containing 1’ gene (APOLD1) shows functions related to

lipid binding, transportation and localisation. The ‘phos-

pholipase B domain containing 1’ (PLBD1) and ‘phospho-

diesterase 6H’ (PDE6H) genes show functions linked to

hydrolase activity (phospholipases) and lipid metabolic

processes. In humans, several functional annotations,

including the sphingolipid signalling pathway, have been

found for the ‘K-RAS proto-oncogene, GTPase’ (KRAS)

gene. Moreover, two members of the retinol-induced G

protein-coupled protein receptors also stand out in OCU8: ‘G

protein-coupled receptor class C group 5 member D’

(GPRC5D) and ‘G protein-coupled receptor class C group 5

member A’ (GPRC5A; Table 3). On OCU1, the ‘myotubu-

larin-related protein 2’ (MTMR2) gene displays biological

functions linked to lipid metabolic processes. In addition to

the biological and molecular functional annotations, a list of

pathways that include these genes was generated from

DAVID, the KEGG and Wiki pathways databases (Table S2).

Discussion

Knowledge and understanding of control mechanisms of IMF

content would be useful in the meat industry. Thus, a GWAS

was performed in order to identify genomic regions associated

with IMF content in rabbits owing to the increasing impor-

tance of meat quality in livestock for consumers (Hocquette

et al. 2010; Pena et al. 2016; Strucken et al. 2017).

Following GWAS detection power studies (Spencer et al.

2009; Visscher et al. 2017), the distribution of SNPs (after

quality control) across the rabbit genome in our data was

suitable for GWAS analysis in livestock, given the LD and

SNP density (Fan et al. 2010; Zhang et al. 2012). For

instance, LD blocks having distance of 98 kb show r2 = 0.5

as a measure of LD within rabbit breeds (Carneiro et al.

2011). This would indicate that the 93 540 SNP having an

average distance of 22.61 kb between SNPs can be useful

for discovering true associations amongst SNPs and the

causal variants of IMF.

Table 2 Relevant polymorphisms (SNPs) and genomic windows associated with intramuscular fat.

SNP name OCU Position (bp) P-Value Bayes factor

Window

MAFName

Percentage

of variance

Affx-151793092 1 121151928 1.10 9 10�3 15.95 118 2.03 0.24

Affx-151803947 1 121280205 1.10 9 10�3 19.59 0.24

Affx-151888965 1 121308004 1.10 9 10�3 16.03 0.25

Affx-151956200 8 14893810 3.51 9 10�4 19.51 831 1.21 0.31

Affx-151962168 8 14913105 3.51 9 10�4 24.86 0.32

Affx-151945237 8 14939285 3.51 9 10�4 28.58 0.31

Affx-151973204 8 14972879 1.83 9 10�4 18.38 0.31

Affx-151800097 8 25087426 2.13 9 10�6 21.78 841 6.20 0.16

Affx-151900210 8 25227502 3.33 9 10�6 44.73 0.16

Affx-151917268 8 25262821 2.13 9 10�6 20.64 0.16

Affx-151813008 8 25268392 2.13 9 10�6 22.57 0.16

Affx-151795704 8 25467177 3.12 9 10�6 20.99 0.16

Affx-151972842 8 25643667 2.06 9 10�6 24.15 0.16

Affx-151964185 8 25732369 2.06 9 10�6 21.78 0.16

Affx-152000638 8 25751303 2.06 9 10�6 21.17 0.16

Affx-151808634 8 25863739 2.06 9 10�6 23.27 0.16

Affx-151853378 8 25874631 2.12 9 10�6 21.25 0.16

Affx-151824236 8 26115758 2.66 9 10�3 21.87 842 1.14 0.16

Affx-151867012 13 84307591 7.14 9 10�5 11.73 1380 0.79 0.09

Affx-151824373 13 84431723 7.14 9 10�5 10.62 0.09

Affx-151874466 13 84447172 8.45 9 10�5 11.90 0.09

Affx-151883028 13 84453332 7.14 9 10�5 11.73 0.09

Affx-151801561 13 84537466 7.14 9 10�5 25.39 0.09

Affx-151841215 13 84723427 2.20 9 10�5 25.39 0.09

Affx-151846540 13 84738337 2.20 9 10�5 26.98 0.09

Affx-151790364 13 84751504 2.23 9 10�5 25.30 0.09

Affx-151939801 13 85316544 3.40 9 10�4 43.81 1381 0.51 0.08

Affx-151937959 13 85333053 6.31 9 10�6 15.69 0.09

Percentage of variance: percentage of genomic variance explained by window. OCU, rabbit chromosome; bp, base pair.
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A challenge in GWAS analysis is the impact of confound-

ing factors in the results. To avoid problems owing to

population structure, we fit the genomic kinship matrix (Sul

et al. 2018). The obtained k value of 1.065 shows that this

was almost enough to correct the population stratification

effect. The purpose of implementing two methods was to

corroborate the presence of associations between genomic

windows or SNPs with IMF. The causal variants of

moderate to high effect size can be detected by both

methods in GWAS analyses when polymorphisms present

high LD with these causal variants (L�opez de Maturana et al.

2014). SNPs on OCU13 and OCU8 were found to be

associated with IMF for both frequentist and Bayesian

methods. However, the two associated windows on OCU13

Figure 2 Manhattan plot for each model. (a)

Single marker regression adjusted by genomic

relationship. The � log (P-value) thresholds

are 5.09 (LD-Bonferroni – red dashed line) and

4.0 (suggestive – black dashed line). (b) The

Bayes factor for each SNP for the Bayesian

multimarker regression model. The black

dashed line indicates the Bayes factor thresh-

old of 20. (c) The percentage genomic vari-

ance explained by each non-overlapping 1 Mb

window for the Bayesian multimarker regres-

sion model (threshold of 1% – red dashed

line).
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(window 1380 and 1381) explained the low percentage of

genomic variance (<1%). In addition, the LD block con-

taining the most important SNPs on OCU13 covered a short

physical distance and was uneven with regard to LD within

this block (Fig. S1). This indicates that in this area of the

genome a selective sweep process might not have been

produced by divergent selection, since short-term selection

increases LD and the expected length of the LD block that

contains an important causal variant (Vitti et al. 2013). In

addition, the reference alleles of these associated SNPs

presented low allelic frequencies (close to zero) for the low-

IMF line. The MAF value of the reference SNPs was also low

(<0.09) in both low- and high-IMF lines (Table 2). All SNPs

were fixed or near fixation in the low-IMF line, therefore the

associations of these SNPs with IMF were uncovered given

their segregation in the high-IMF line. This could affect the

association detection power even when the sample size is

large (L�opez de Maturana et al. 2014). For instance, if SNPs

associated with the causal variants present a low MAF, the

effects and association can be underestimated, generating

false-negative results.

In contrast, the associated region on OCU8 in 24.59–
26.95 Mb explained a larger percentage of genomic

variance between both associated windows (7.34%).

Moreover, this region presented a strong and long LD

block between windows 841 and 842, which could imply

a selective sweep process owing to divergent selection

(Fig. S2). The MAF values of the SNPs in this region were

higher than on OCU13, reaching a maximum value of

0.16 (Table 2). Most SNPs in OCU8 were fixed or near

fixation in the low-IMF line. It seem that the causative

variants and their surrounding SNPs would be at low

frequency in the base population. This might explain the

fixation of SNPs in the low-IMF line and their segregation

in the high-IMF line of the ninth generation. Therefore,

this genomic region showed more evidence than the

region on OCU13 for considering it as an important

association driving the control mechanism for IMF.

Finally, another potentially interesting genomic region

was identified on OCU1. This region explained 2.03% of

the IMF genomic variance, although the SNPs show � log

(P-values) or Bayes factors below thresholds (Fig. 2). This

suggests that the association of these SNPs could be better

captured by a method that considers the percentage of

variance explained by the windows instead of evaluating

each SNP individually. In addition, these SNPs present

MAF values around 0.24 (0.48 for the high-IMF line and

close to zero for the low-IMF line), which might suggest

that the differences might be a consequence of the

divergent selection process.

Figure 3 LD blocks from main relevant asso-

ciated polymorphisms. Block 1 includes SNPs

1–10 on chromosome 8 in 24.59–26.95
Mb and block 2 includes SNPs 11–20 on

chromosome 13 in 83.81–86.00 Mb.

Table 3 Summary of relevant genomic regions associated with intramuscular fat and annotated rabbit genes.

Cluster OCU

Position (bp)
Number of

genes Annotated rabbit geneStart End

1 1 120,651,928 121,986,803 9 MAML2, MTMR2, CEP57, FAM76B, ENSOCUG000000256321, SESN3,

ENDOD1, KDM4D, CWC15

2 8 14,014,437 15,472,879 9 RASSF8, LMNTD1, RF00001, KRAS, ETFRF1, CASC1, LRMP, BCAT1,

ENSOCUG000000210671

3 8 24,587,426 26,948,204 25 PDE6H, ARHGDIB, ERP27, MGP, ART4, SMCO3, ENSOCUG000000171771,

H2AFJ, HIST4H4, GUCY2C, PLBD1, ATF7IP, ENSOCUG000000170951,

ENSOCUG000000217651, GRIN2B, RF00411, ENSOCUG000000218821,

EMP1, GSG1, FAM234B, HEBP1, GPRC5D, GPRC5A, DDX47, APOLD1

4 13 83,807,591 85,998,108 3 RF00026, ENSOCUG000000272701, RF00001

CLUSTER, denotes the genomic region; OCU, rabbit chromosome; bp, base pair.
1Novel genes are named according to their Ensembl gene ID.
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This is the first GWAS study for IMF in rabbits. Therefore,

comparisons within rabbits are limited to previous candi-

date gene studies. In this sense, as in Migdał et al. (2018),

we did not find an association between the FABP4 (OCU3)

candidate gene and IMF. Our results are not in agreement

with the studies for FTO (OCU5) (Zhang et al. 2013), CAST

(OCU11) (Wang et al. 2016b) and MYPN (OCU18) (Wang

et al. 2017), which found associations in two, one and one

SNP within genes, respectively (P-values between 0.032

and 0.044). However, these associations should be taken

with caution as the significance threshold was more liberal

(P-value < 0.05, without applying correction for multiple

testing) than in our GWAS (P-value < 1 9 10�4). In agree-

ment with GWAS studies for IMF in swine, our results

suggest that there is a large polygenic component influenc-

ing the trait (Pena et al. 2016; Ros-Freixedes et al. 2016;

Won et al. 2017). However, our results also showed

important genomic regions associated with IMF. Especially

in OCU8, a region of 2 Mb explains a notable percentage of

the genomic variance (7.34%) in comparison with other

GWAS studies for IMF (Cesar et al. 2014; Pena et al. 2016).

Several genes related to lipid metabolism (on OCU1,

OCU8 and OCU13) were found in the associated regions. In

OCU13, orthologues of a novel gene (Ensembl gene ID:

ENSOCUG00000027270) have been reported in other

species. In rabbits, there are no functional annotations

related to lipid metabolism or IMF linked to this gene.

However, in humans and mice this gene is known as EWS

or EWSR1, and regulates the genetic expression of the

transcription factor ‘Y-Box Binding Protein 1’ gene (YBX1).

This transcription factor activates the expression of the gene

BMP7 (‘Bone Morphogenetic protein 7’), which in turn

promotes the development of brown adipocytes (Wang &

Seale 2016).

The genomic regions on OCU8 contained the genes with

the most important biological functions. Hence, the genes

on this region can be considered as candidates for further

research, given that this window explains a large percent-

age of the IMF genomic variance (7.34%). In particular,

APOLD1, PLBD1, PDE6H and GPRC5A were involved in

functions of lipid transport, localisation and binding or in

the control of adipose cell function. Two of these genes

(PLBD1 and PDE6H) participated in the catabolism of

phospholipids, which are the major components of cell

membranes and have important implications in adipocyte

hypertrophy (Chaves et al. 2011; Aloulou et al. 2012). As a

result, PLBD1 has been related to lipid catabolic processes,

skeletal muscle weight and body mass index in mice

(Lionikas et al. 2012; Nyima et al. 2016) and humans

(Wahl et al. 2017). In addition, KRAS (OCU8) was associ-

ated with the control of fat deposition in chickens (Claire

D’Andre et al. 2013) and was involved in the sphingolipid

signalling pathway. In humans, this gene was related to

abnormal lipid metabolism in therapy for pancreatic cancer

(Swierczynski et al. 2014). Another promising gene is

GPRC5A, also known as RAI3, which is a key factor in

repressing the differentiation of adipocytes in humans (Jin

et al. 2017). This gene encodes for a member of the G-

coupled proteins, a large family including over 800 recep-

tors, amongst them the olfactory receptors. GRPC5A

belongs to a small subfamily of four members that are

activated by retinol, the bioactive version of vitamin A.

Although the role of GPRC5A is not well characterised at

present, initial investigation reports a link with lung cancer,

and also as a negative regulator or with adipogenesis (Song

et al. 2019). Given the dual role of retinol during the

adipogenesis (a positive regulator of pre-adipocyte hyper-

plasia but a negative regulator of final maturation; see

Wang et al. 2016a), GRPC5A rises as an interesting gene to

mediate the inhibitory effect of retinoids in adipogenesis

(Amisten et al. 2017).

In addition, MTMR2 (OCU1) was linked to the metabolic

process of lipids. This gene has been proposed as a

functional candidate gene for IMF in GWAS and signatures

of selection studies in a Duroc pig population selected for

IMF (Kim et al. 2015).

Conclusions and implications

This is the first GWAS study for IMF in rabbits and hence

provides a benchmark for continuing research in the field.

Our findings support the hypothesis that four genomic

regions (on OCU1, OCU8 and OCU13) influence IMF content.

The genomic variance explained by these associated regions

is important although no major causal variants seem to

segregate in the analysed rabbit populations. Therefore,

according to what we observed in these divergently selected

lines, it seems that IMF content is mainly driven by a

polygenetic effect. In addition, we identified some candidate

genes on the associated genomic regions of OCU13 (EWSR1),

OCU8 (APOLD1, PLBD1, PDE6H, GPRC5A and KRAS) and

OCU1 (MTMR2) related to IMF. Nevertheless, further

research would be necessary in order to corroborate these

results; for instance, a genotype refinement or sequencing of

promoter and exonic regions of the candidate genes and its

validation in independent populations of rabbits. Our results

could be important for further studies to discover polymor-

phisms that can assist in IMF genetic improvement.
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