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Section S1. Site characteristics. 

A multiple-site PM2.5 sampling campaign was carried out from April 2012 to March 2013 in 6 major 

cities of the Veneto region: Belluno (BL), Conegliano (TV), Vicenza (VI), Venice-Mestre (VE), 

Padua (PD) and Rovigo (RO) (Figure S1a). Stations are managed by the Environmental Protection 

Agency for the Veneto Region (ARPAV, Agenzia Regionale per la Prevenzione e Protezione 

Ambientale del Veneto, http://www.arpa.veneto.it/). Sites are placed in high density residential areas 

and can be considered as representative of city-wide background PM2.5 concentrations.  

Up today, the literature offers only three air quality studies extended to the whole Veneto region:  

(1) a trend analysis of major air pollutants (nitrogen oxides, ozone, sulfur dioxide, carbon monoxide 

and bulk PM10 and PM2.5) during 2008-2014 and measured at 43 sites (including all the sites used in 

this study) (Masiol et al., 2017);  

(2) the analysis of PM10-bound PAHs over 21 sites (including BL, VE, PD and RO) (Masiol et al., 

2013);  

(3) the analysis of a large folk fire event occurring on 5th-6th January and measured at 32 sites 

(including all the sites used in this study) (Masiol et al. 2014a),  

On the contrary, mass closure and source apportionment studies were only performed at the Veneto 

capital city, Venice-Mestre for PM2.5 (Masiol et al., 2014b; Squizzato et al., 2014) or PM1 (Squizzato 

et al., 2016), but never using VE as a sampling site. Instead, VE site was previously used for other 

studies on PM10 elemental composition (Rampazzo et al., 2008) or long-term trends (2000-2013) of 

air pollutants (Masiol et al., 2014c). Another source apportionment study (Squizzato et al., 2017), 

limited to wintertime, was performed in Treviso (a city roughly between the VE and TV sites of this 

study). 

Site characteristics are listed in Table S1. Figure S2 reports the results of a buffer analysis (circular 

buffers of 5 km radii centered on each site) performed on the 2012 land cover data (EEA CORINE 

CLC2012; EEA, 2019). Demographic data refer to Italian National Census 2011 and to the whole 

municipalities (ISTAT, 2019). Table S2 summarizes the emissions at Municipality level for 2013. 

 BL (36,600 inhabitants) is located in an Alpine valley (height ~390 m) surrounded by 

mountains (height ranging from ~700 to ~2500 m), with no large industries or heavy traffic. 

Biomass burning emissions are intense in winter, as wood is largely used for domestic heating.  

 TV (35,700 inhabitants) is located in a foothill region and is therefore representative of the 

transition between the mountain and lowland. Industrial plants include factories to process 

stainless steel, appliances and electrical equipment. A large part of the land use is dedicated 

to agriculture, especially for vineyards (Prosecco wine).  

 VI (115,900 inhabitants) is a large city with intense traffic and small to medium-sized 

mechanical, textile, tanning, jewelry manufactures, and steelworks (steel recycling).  

 VE (271,000 inhabitants) represents a large conurbation extending from the coastal lagoon of 

Venice to the mainland. It is often referred as the “metropolitan area of Venice”, 

encompassing several municipalities. The emissive scenario includes heavy road, maritime 

and airport traffic, an industrial zone hosting chemical and steel plants, an oil-refinery, 

incineration facilities, thermoelectric power plants (coal+waste), large shipping yards, and 

other factories.  

 PD (214,200 inhabitants) is the most densely populated municipality of the region, with many 

medium-sized factories mainly in the engineering, technological and building sectors, but it 

also suffers from intense traffic due to the presence of a large intermodal and logistics hub. A 

large waste incinerator is also present in the city. 

 RO (52,800 inhabitants) is located in a flat lowland midway between the Alps and the 

Apennines and is the biggest processing center of Veneto for agricultural products.  
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Section S2. CWT details. 

Single-site CWT. Essentially, the geographic region around the receptor site is divided into an array 

of equally-spaced grid cells of longitude i and latitude j, with a domain defined by the extension of 

all trajectories. Then, a weighted concentration CWTi,j is assigned to each i,j-th cell as: 

𝐶𝑊𝑇𝑖,𝑗 =
∑ 𝐶𝑡𝜏𝑖,𝑗,𝑡
𝑇
𝑡=1

∑ 𝜏𝑖,𝑗,𝑡
𝑇
𝑡=1

∙ 𝑊𝑖,𝑗 

where T is the total number of back-trajectories, t [1, T] is the index of each trajectory, Ct is the 

concentration measured at one receptor site on the arrival (starting time) of the back-trajectory t, 

and τi,j,t is the endpoint number for the trajectory t in the i,j–th cell, i.e. it represents time spent in the 

grid cell by that trajectory. 𝑊𝑖,𝑗 represents weighting functions applied to the results. In facts, CWT 

may be affected by the “trailing effect,” i.e., grid points covered by high numbers of endpoints 

return statistically stable CWT values, while the values for cells covered by few endpoints may be 

misestimated. Weighting functions W1i,j and W2i,j were therefore used to downgrade CWT values of 

PMF source contributions or pH and ΔpH. 

Weighting functions for PMF source contributions. A weighting function W1i,j was used to 

downgrade CWT values in cells where the number of endpoints 𝑁𝑖,𝑗 is within the 4 quartiles of the 

distribution of all 𝑁𝑖,𝑗 over the domain: 

𝑊1𝑖,𝑗 =

{
 
 

 
 𝐶𝑊𝑇 ∙ 1 𝑁𝑖,𝑗 ≥ 75th percentile

𝐶𝑊𝑇 ∙ 0.75 50th ≤ 𝑁𝑖,𝑗  < 75 th percentile

𝐶𝑊𝑇 ∙ 015 25th ≤ 𝑁𝑖,𝑗  < 50 th percentile

𝐶𝑊𝑇 ∙ 0.05 𝑁𝑖,𝑗 < 25th percentile

 

The multiplicative values used in W1 were selected after many tests and according to previous 

published literature (Masiol et al., 2019). Maps showing 𝑁𝑖,𝑗 for the sites are reported in Figure S15. 

Weighting functions for pH and ΔpH. A simpler weighting function W2i,j was used to remove 

endpoints with 𝑁𝑖,𝑗<75th percentile for pH and ΔpH: 

𝑊2𝑖,𝑗 = {
𝐶𝑊𝑇 𝑁𝑖,𝑗 ≥ 75th percentile

𝑁/𝐴 𝑁𝑖,𝑗 < 75th percentile
 

Final combined (multiple-site) CWT (MS-CWT). CWT were separately calculated for 5 sites (all 

sites except BL). The single CWT calculated at all the sites were averaged to obtain a mean value, 

𝐶𝑊𝑇𝑖,𝑗̅̅ ̅̅ ̅̅ ̅̅ ̅, i.e.: 

𝐶𝑊𝑇𝑖,𝑗̅̅ ̅̅ ̅̅ ̅̅ ̅ = [∑(
∑ 𝐶𝑡,𝑛𝜏𝑖,𝑗,𝑡,𝑛
𝑇
𝑡=1

∑ 𝜏𝑖,𝑗,𝑡,𝑛
𝑇
𝑡=1

∙ 𝑊𝑖,𝑗,𝑛) 𝑁⁄

𝑁

𝑛=1

] 

 

Due to the relative closeness of the 5 sites in the lower end of the Po Valley (max distance TV-RO  

~100 km), the domain covered by single CWTs is very similar at all the sites (Figure S15). 

However, a few endpoints on the edges of single CWT domains may not present CWT values 
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calculated at all the sites. Therefore, weighting functions Z1i,j and Z2i,j were used to downgrade 

CWT̅̅ ̅̅ ̅̅  in cells with values not calculated at all the single sites for PMF source contributions (Z1i,j) 

and pH-ΔpH (Z2i,j), respectively: 

𝑍1𝑖,𝑗 = {

𝐶𝑊𝑇̅̅ ̅̅ ̅̅ ̅ ∙ 1        5 sites

𝐶𝑊𝑇̅̅ ̅̅ ̅̅ ̅ ∙ 0.75  4 sites

𝐶𝑊𝑇̅̅ ̅̅ ̅̅ ̅ ∙ 0.5     3 sites

𝐶𝑊𝑇̅̅ ̅̅ ̅̅ ̅ ∙ 0    < 3 sites

 

𝑍2𝑖,𝑗 = {
𝐶𝑊𝑇̅̅ ̅̅ ̅̅ ̅ ≥ 3 sites
𝑁/𝐴 < 3 sites

 

These weighting functions were arbitrarily chosen and aim to increase the robustness of the MS-

CWT by removing endpoints where less than 3 single CWT have been calculated. In addition, the 

function  Z1i, (applied to the PMF factors) also downgrades the CWT̅̅ ̅̅ ̅̅  in cells with values calculated 

only in 3 or 4 sites.  

A further smoothing of the MS-CWT was also performed using an isotropic Gaussian kernel with 

standard deviation 0.75 for obtaining a better rendering and to partially account for the noise and 

uncertainty associated with trajectory models.  
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Table  S1. Site characteristics and analyzed air pollutants (other than PM2.5 samples collected for this study). Coordinates: WGS84. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Site 

 

Municipality – Site full name Lat. (N) Long. (E) 

Altitude 

(m a.s.l.) Site characteristic Analyzed air pollutants 

BL  Belluno – BL città 46.143 12.218 401 Public park in residential/commercial area CO, NOx, O3, SO2, PM10 

TV  Conegliano - Conegliano 45.89 12.307 72 Residential area CO, NOx, O3, SO2, PM10 

VI  Vicenza – Quartiere Italia 45.56 11.539 36 Residential area CO, NOx, O3, PM10 

VE  Venice – Mestre Parco Bissuola 45.498 12.261 1 Public park, residential area CO, NOx, O3, SO2, PM10 

PD  Padova - Mandria 45.371 11.841 13 Residential area CO, NOx, O3, SO2, PM10 

RO  Rovigo – RO Centro 45.074 11.782 7 Residential-commercial area CO, NOx, O3, SO2, PM10 



6 
 

Table S2. Emission inventories for 2013 (INEMAR; ARPAV, 2019) at Municipality level. VOCs= volatile organic compounds. SNAP macro-

sectors: SNAP1= combustion in energy and transformation industries; SNAP3= combustion in manufacturing industry; SNAP4= production 

processes; SNAP7= road transport; SNAP8= other mobile sources and machinery; SNAP9= waste treatment and disposal. 

    PM2.5 Ni As Cd Pb BaP SO2 NOx NH3 VOCs 

    ton/y kg/y kg/y kg/y kg/y kg/y ton/y ton/y ton/y ton/y 

All macro-sectors           

 Belluno 110.0 1.1 0.3 3.1 11.4 37.0 11.5 252.1 93.6 766.1 

 Conegliano 62.9 1.0 0.4 1.8 10.3 18.2 4.5 275.7 37.7 496.2 

 Vicenza 118.5 19.1 94.1 9.8 293.7 21.8 210.0 1334.0 155.2 1483.9 

 Venezia 405.1 530.8 49.6 9.4 115.3 27.1 3358.0 9862.5 194.8 3043.6 

 Padova 180.5 78.0 99.8 21.6 266.2 26.6 95.6 1930.5 227.7 2397.7 

  Rovigo 59.6 11.9 1.4 2.7 19.8 12.4 11.7 480.4 199.5 1147.8 

Industrial sectors (SNAP1+3+4+9)          

 Belluno 0.2 0.0 0.0 0.0 0.0 0.0 0.0 5.9 0.0 10.6 

 Conegliano 0.3 0.0 0.0 0.0 0.0 0.0 0.1 9.6 0.0 31.4 

 Vicenza 6.4 16.2 92.9 6.7 268.3 0.9 202.1 286.2 0.0 111.5 

 Venezia 47.6 327.1 42.2 3.8 59.6 0.1 2977.9 4872.0 13.4 166.0 

 Padova 33.2 72.9 97.5 16.8 219.0 0.6 82.9 352.0 1.0 152.4 

  Rovigo 1.4 10.4 0.8 1.0 6.4 0.2 9.2 19.2 4.5 18.4 

Transports (SNAP7+8)           

 Belluno 14.7 0.4 0.1 0.1 3.6 0.2 1.2 179.8 1.3 69.8 

 Conegliano 11.3 0.5 0.2 0.2 5.4 0.3 0.3 217.4 3.4 73.8 

 Vicenza 48.7 1.6 0.8 0.6 15.2 1.0 2.0 907.7 12.7 243.7 

 Venezia 266.8 201.1 6.2 1.6 35.7 2.0 364.5 4639.0 20.7 1029.5 

 Padova 62.3 2.9 1.3 1.2 29.1 1.6 1.7 1279.2 21.6 428.2 

  Rovigo 20.3 0.9 0.4 0.3 8.2 0.5 0.5 397.9 7.1 115.8 
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Table S3. Conversion factors and equations used in the mass closure. 

MC 

component Acronym Conversion factors References Note 

Organic 

matter 
OM 1.6·OC Marcazzan et al. (2001); Perrone et 

al. (2012); Squizzato et al. (2016) 

̶̶ 

Elemental 

carbon 
EC EC ̶̶ ̶̶ 

Crustal 

material 

(aka dust or 

geological 

material) 

CRU (1.89·Al)+(2.14·Si)+(1.4·Ins.Ca)+

(1.2·Ins.K)+(1.43·Fe)+(1.67·Ti) 

Andrews et al (2000), but only 

accounting for insoluble K and Ca, 

instead of total K and Ca 

Si (not analyzed) is derived from the Si/Al 

ratio (2.17) in PM10 sampled  in Veneto 

(Masiol et al., 2012). Insoluble Ca and K 

are calculated as total Ca-Ca2+ and total 

K-K+, respectively 

Secondary 

inorganic 

aerosol 

SIA SO4
2-+NO3

-+NH4
+ E.g., Chow et al. (1994); Maenhaut 

et al. (2002) 

̶̶ 

Other ions OI Cl-+Na++Mg2++K++Ca2+ ̶̶ Sum of major inorganic ions not used for 

SIA 

Trace 

elements 
TRACE V+Mn+Co+Ni+Cu+Zn+As+Cd+ 

Sb+Ba+Pb 

̶̶ Sum of all analyzed elements not used for 

CRU 
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Table S4. Chemical species as inputted to the final PMF model. 
 

Species Category % Modeled Samples 

PM2.5 Weak 99 

OC Strong 99 

EC Strong 98 

F- Bad 0 

Cl- Weak 99 

NO3
- Strong 99 

SO4
2- Strong 99 

Na+ Weak 94 

NH4
+ Strong 99 

K+ Strong 99 

Mg2+ Bad 0 

Ca2+ Bad 0 

Mg Weak 97 

Al Strong 99 

S Bad 0 

K Bad 0 

Ins. K Bad 0 

Ca Strong 96 

Ins. Ca Bad 0 

Ti Strong 99 

V Strong 99 

Mn Strong 98 

Fe Strong 98 

Co Bad 0 

Ni Strong 98 

Cu Strong 98 

Zn Strong 96 

As Bad 0 

Cd Bad 0 

Sb Strong 99 

Ba Weak 98 

Pb Strong 99 

BaA Weak 99 

Chry Weak 99 

BbF Weak 99 

BkF Weak 99 

BaP Weak 99 

DBahA Weak 99 

IP Weak 99 

BghiP Weak 99 

Total PAH Bad 0 
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Figure S1. Maps of the Veneto region and sampling sites. From top-left to bottom-right: (a) 

administrative borders (ISTAT, 2019); (b) terrain relief from digital elevation model; (c) land-cover 

from EEA CORINE land-cover database (EEA, 2019); (d) major road systems from 

OpenStreet.org; (e) population density from 2011 census (ISTAT, 2019); (f) satellite image from 

GoogleEarth. 
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Figure S2. Pie charts reporting the percent land cover (PLC) in a buffer circle of 5 km radius from 

each sampling site. Land cover data are taken from the EEA CORINE land-cover database (EEA, 

2019). The bar-chart (bottom-right) represents the average population density within buffer circles 

of 5 km radius for each sampling site. Data are taken from the National Census 2011 (ISTAT, 

2019). 
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Figure S3. Location of the weather stations and PM2.5 sites used in this study.  
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Figure S4. Boxplots of the analyzed compounds and elements in PM2.5 at the six sampling sites in 

each season. For each species and site, the boxplots are clustered to show the distributions in the 

three seasons (boxplots: line=median, box=inter-quartile range, whiskers=±1.5*inter-quartile range; 

outliers and extremes are not shown). 
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Figure S5a. Results of the hyb-MS- MC with the ISORROPIA-II solutions for the “base” 

simulations showing the multiple linear regressions between the reconstructed PM2.5 mass 

concentrations (dependent variable) and measured PM2.5 mass concentrations (independent 

variable) at each site and combined (Veneto: all sites). The 95% confidence intervals (c.i.) of linear 

regressions are also reported. 
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Figure S5b. Results of the hyb-MS- MC with the ISORROPIA-II solutions for the “average” 

results showing the multiple linear regressions between the reconstructed PM2.5 mass concentrations 

(dependent variable) and measured PM2.5 mass concentrations (independent variable) at each site 

and combined (Veneto: all sites). The 95% confidence intervals (c.i.) of linear regressions are also 

reported. 
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Figure S5c. Results of the hyb-MS- MC with the ISORROPIA-II solutions for the “sensitivity” 

tests showing the multiple linear regressions between the reconstructed PM2.5 mass concentrations 

(dependent variable) and measured PM2.5 mass concentrations (independent variable) at each site 

and combined (Veneto: all sites). The 95% confidence intervals (c.i.) of linear regressions are also 

reported. 
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Figure S6. Seasonal averaged concentrations of major chemical components derived from the hyb-

MS-MC with the “average” ISORROPIA-II model. 

 

 

 

Figure S7. Scatterplots showing the relationship between pH (modelled by ISORROPIA-II, 

“average”) and neutralization ratio, AEq and measured solar irradiation. Other relationships are 

provided in Figure 3. The neutralization ratio (Bencs et al., 2008; Engelhart et al., 2011), a proxy to 

estimate the degree of neutralization of sulfate and nitrate by ammonium (expressed as equivalent), 

was calculated as: 𝑁𝑅 = [𝑁𝐻4
+]/([𝑆𝑂4

2−] + [𝑁𝑂3
−]).               
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Figure S8. (a) Solid-phase CaSO4 and (b) S-CaSO4 to S-SO4
2- ratios derived from ISORROPIA-II. 

Data refer to the “average” results. The boxplots show the distribution of estimated values at all the 

single sites and combined (6 cities= Veneto); W=winter, T= transition, S= summer.  
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Figure S9. Scatterplots of the solid-phase fraction of sulfate (as solid CaSO4) against pH modeled 

by ISORROPIA-II by season and their regression lines. The color of points shows the AWC (upper) 

and RH (bottom). Regression lines (black line) and their 95th confidence intervals (grey) are shown. 

 

 

Figure S10. Scatterplots of the solid-phase fraction of sulfate (as solid CaSO4) against AWC 

modeled by ISORROPIA-II by season and their regression lines. The color of points shows the pH 

(upper) and RH (bottom). Regression lines (black line) and their 95th confidence intervals (grey) are 

shown. 
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Figure S11. Results of the MS-PMF. Regression between measured and modeled PM2.5 

concentrations (left) and combined (5 sites) cumulative source contributions over all the study 

period. 

 

 

Figure S12. Boxplots of MS-PMF source contributions categorized by month and site/combined (5 

sites). A J A O D F= April – June – August – October – December – February. 
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Figure S13. Time series of the MS-PMF source contributions categorized by month and 

site/combined (5 sites). 

 

 

 

 

Figure S14. Scatterplot of V and Ni concentrations. 
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Figure S15. 𝑁𝑖,𝑗 (percentile of the number of endpoints) used for the weighting functions. Details in 

Section S2. 
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