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Abstract

Background: Tuberculosis (TB) represents a worldwide cause of mortality (it infects one third of the world’s
population) affecting mostly developing countries, including India, and recently also developed ones due to the
increased mobility of the world population and the evolution of different new bacterial strains capable to provoke multi-
drug resistance phenomena. Currently, antitubercular drugs are unable to eradicate subpopulations of Mycobacterium
tuberculosis (MTB) bacilli and therapeutic vaccinations have been postulated to overcome some of the critical issues
related to the increase of drug-resistant forms and the difficult clinical and public health management of tuberculosis
patients. The Horizon 2020 EC funded project “In Silico Trial for Tuberculosis Vaccine Development” (STriTuVaD) to support
the identification of new therapeutic interventions against tuberculosis through novel in silico modelling of human
immune responses to disease and vaccines, thereby drastically reduce the cost of clinical trials in this critical sector of
public healthcare.

Results: We present the application of the Universal Immune System Simulator (UISS) computational modeling
infrastructure as a disease model for TB. The model is capable to simulate the main features and dynamics of
the immune system activities i.e., the artificial immunity induced by RUTI® vaccine, a polyantigenic liposomal
therapeutic vaccine made of fragments of Mycobacterium tuberculosis cells (FCMtb). Based on the available
data coming from phase II Clinical Trial in subjects with latent tuberculosis infection treated with RUTI® and
isoniazid, we generated simulation scenarios through validated data in order to tune UISS accordingly to
STriTuVaD objectives. The first case simulates the establishment of MTB latent chronic infection with some typical
granuloma formation; the second scenario deals with a reactivation phase during latent chronic infection; the third
represents the latent chronic disease infection scenario during RUTI® vaccine administration.
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Conclusions: The application of this computational modeling strategy helpfully contributes to simulate those
mechanisms involved in the early stages and in the progression of tuberculosis infection and to predict how
specific therapeutical strategies will act in this scenario. In view of these results, UISS owns the capacity to
open the door for a prompt integration of in silico methods within the pipeline of clinical trials, supporting
and guiding the testing of treatments in patients affected by tuberculosis.

Keywords: Computational modeling framework, In silico clinical trials, Tuberculosis, Vaccine, Immunity,
Therapeutic strategies

Background
Tuberculosis (TB) is a transmissible airborne disease trig-
gered by the Mycobacterium tuberculosis (MTB) acid-fast
bacillus that most often affect the lungs [1, 2]. Even
though TB has existed for millennia, it still represents a
worldwide health problem and one of the major causes of
morbidity and mortality in developing and developed
countries. In 2016, 10.4 million of new cases and 1.6 mil-
lion of TB-causing deaths were globally estimated; of
these, 2.79 million were new cases in India and 435,000
cases dead for TB [3]. For these reasons, India is the coun-
try with the highest burden of TB and leads the world in
deaths from tuberculosis in terms of absolute number of
cases [4]. TB is spread through the air from person to per-
son, in particular when people with lung TB cough, sneeze
or spit. The lifetime risk of falling ill with TB for people
previously infected with TB bacilli is about 5–15%. How-
ever, compromised immune systems subjects, such as
people living with diabetes, HIV or malnutrition condi-
tions have a much higher risk of falling ill with TB [5–9].
For an organism encountering M. tuberculosis bacilli

there are different possible outcomes: firstly, the bacillus
can be instantly killed by the host’s innate immune re-
sponse [10, 11]. Secondly, of every 10 people infected
with M. tuberculosis, one may develop an active infec-
tion in their lifetime within a finite time frame, from 1
to 3 years. This category probably lacks the capability
to both control the early infection and develop a pro-
tective response in time in order to prevent the dis-
ease. Cough with sputum and blood at times, fever,
weakness, chest pains, weight loss and night sweats
are the major common symptoms of active pulmonary
TB [12]. Finally, we observe latent tuberculosis infec-
tion (LTBI) when a persistent immune response to
stimulation by Mycobacterium tuberculosis antigens
occurs without evidence of clinically manifested active
tuberculosis. One-quarter of the global population is
infected with LTBI and individuals with LTBI repre-
sent a reservoir for active TB cases [13, 14].
In order to manage the disease, antibiotic treatment re-

duces the bacterial load in the lungs and can be helpful to

reduce the probability of transmission, along with other
public health measures [15]. The anti-tuberculosis
drugs can be classified as drugs with bactericidal and
sterilizing effect. The first one is fundamental in the
early phase giving a significant reduction of the bac-
terial load; the second one is more efficient in the
continuation phase, because it is directed to kill
latent mycobacteria. The secondary consequence of this
activity is the decrease of the probability of selecting drug-
resistant strains [16].
The mainstay of TB antibiotics consists on a first-line

therapy for active tuberculosis. The standard treatment
for people at low risk for drug-resistance is isoniazid
(INH), rifampicin (RMP), pyrazinamide (PZA) and eth-
ambutol (EMB) or streptomycin (SM) for the initial two-
month phase followed by isoniazid and rifampin for 4
months to 7. The main properties of these anti-tubercu-
losis drugs are the bactericidal and sterilizing activity
along with a reduction in the development of drug re-
sistance [17, 18].
Second line drugs are used for the treatment of drug

resistant TB patients (i.e., for single or multidrug-re-
sistant tuberculosis (MDR-TB) as well as extensively
drug-resistant tuberculosis (XDR-TB)) or and the
World Health Organization (WHO) has divided them
in 2, 3 and 4 group [19]. Aminoglycosides and poly-
peptides belong to WHO group 2 (i.e., amikacin
(AMK) and capreomycin); fluoroquinolones are attrib-
uted to WHO group 3 such as ciprofloxacin (CIP),
levofloxacin (LVX), moxifloxacin (MXF) while thioa-
mides and cycloserine are representative drugs of
WHO group 4 for example with ethionamide [20, 21].
Currently treatment regimens vary in duration be-
tween 6 months in drug susceptible TB to 24 months
in drug resistant TB [22].
Rifamycin-based regimens for LTBI have been success-

ful in preventing progression to TB disease [23]. However,
treatment of LTBI needs a long period of chemotherapy,
approximately 9months, leading to an extremely difficulty
in terms of management and treatment-compliance
therapy [24].
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The lengthy TB chemotherapy regimen likely reflects
the inability of current chemotherapy drugs to eradicate
subpopulations of Mycobacterium bacilli, allowing these
population bacteria to persist in infected individuals,
surviving in granulomas with a central necrotic core and
an external layer of foamy macrophages (FM) as the
main immunosuppressive barrier [25].
Moreover, the dramatic changes from an epidemio-

logical point of view during the last two decades and the
increase of drug-resistant forms of tuberculosis consider-
ably complicate the clinical and public health manage-
ment of the patients and of their relative contacts [26].
Therapeutic vaccinations have been suggested to overcome

these critical issues and several candidates are already in clin-
ical phases of development [27]. In this regard, efforts to
shorten treatment duration have been successful, as shown
in recent clinical trials, evaluating the role of several immu-
notherapeutic vaccines, such as RUTI® [28, 29]. The safety
and immunogenicity of RUTI® vaccine have been already
tested in Phase I and II studies in healthy volunteers and
LTBI infected patients and it was observed its capacity to
stimulate host immune effectors against bacilli improving
outcomes under chemotherapy treatment [30].
Inside the “In Silico Trial for Tuberculosis Vaccine

Development” (STriTuVaD) project, the anti-TB vaccine
RUTI® is under evaluation in under evaluation in studies
reducing the time to negativity of Sputum Culture Con-
version (SCC) [31] in TB drug sensitive patients and TB
multidrug resistance patients, favorably responding to
standard TB treatment, with the aim to shorten treat-
ment and reduce the frequency of recurrence. In this
context, the application of in silico computational mod-
eling strategies in the pipeline of standard clinical trials
can helpfully increase the high likelihood chance of suc-
cess of promising vaccine through the simulation of each
individual of the reference population and the in silico
predictions in terms of vaccine efficacy, recurrence and
reactivation of the disease [32–34].
Within the STriTuVaD consortium, the Universal Im-

mune System Simulator (UISS) platform (previously suc-
cessfully applied to a large number of disease modeling
scenarios [35–42]) simulates the MTB infection dynam-
ics and its interactions with the host immune system.
Hence, the in silico trial platform will be delivered to the
STriTuVaD multidisciplinary consortium in order to
simulate the relevant individual human physiology and
physiopathology in patients affected by Mycobacterium
tuberculosis and to predict how specific vaccinations
strategies will be effective or not.
Here, we present the current advances of UISS devel-

opment and its extension in the context of tuberculosis
[43], focusing on specific scenarios that show the cap-
ability of UISS in simulating the intrinsic immune sys-
tem behavior against MTB infection (eliciting or not

eliciting the complete clearance of the infection or, even-
tually, allowing the chronic establishment of MTB reser-
voir inside the host due to both MTB characteristics and
genetic features of the host).
Based on the available data coming from phase II Clin-

ical Trial in subjects with latent tuberculosis infection
treated with RUTI® [29] and then with 1 month of iso-
niazid treatment, we analyzed three simulation scenarios
in order to tune UISS through previous validated data
and accordingly to STriTuVaD objectives.
The first scenario simulates the establishment of MTB

latent chronic infection with some typical granuloma
formation as a reservoir of MTB infection; the second
scenario deals with a reactivation phase during latent
chronic infection; the third represents the latent chronic
disease infection scenario during RUTI® vaccine adminis-
tration in order to enhance antibiotic therapy.

Implementation
The simulation framework
UISS has a long history of development. It branches from C-
IMMSIM [44] to specialize the simulation framework to deal
with tumor immunology. Then it held different stages of im-
mune system features development and was applied to a
wide disease modeling scenarios. Nowadays, a lot of compu-
tational efforts are leading to an incredible boost in biomedi-
cine research [45, 46]. Technically speaking, UISS is an agent
based model (ABM) [47]. It can be thought as a two-compo-
nent software. The first one is represented by a core that
implements all the immune system features that is
continuously updated to take into account all the state-of-
the-art advancements in immunology. It owns anatomical
compartments, cells and molecules, immune system reper-
toire, molecular affinity, haematopoiesis with generation of
cells, cell maturation and thymus selection, Hayflick limit in
the number of duplications [48], aging and memory of past
infections, hyper-mutation of antibodies [49], bystander ef-
fect [50], cell activation and anergy, cell interaction and co-
operation, antigen digestion and presentation. From the
point of the view of physical representation, UISS maps bio-
logical tissues, lymphatic system and peripheral blood into a
mathematical structure called cartesian lattice (two or three
dimensional). Thymus and bone marrow are taken into ac-
count in an implicit way. This means that positive and nega-
tive selection (that are the main features of thymus) are
implemented to educate T cells. A procedure that generates
mature B cells, instead, models the bone morrow cells pro-
duction. UISS playground is then only populated by im-
munocompetent entities. An important working assumption
that allows UISS to deal with the incredible and fascinating
variability of the immune system repertoire (including its
capacity to adapt and consequently mount immune re-
sponse) is the stochastic bitstring polyclonality. This means
that epitopes and paratopes are modeled using binary
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calculus. Each of them is represented by a set of binary
strings. So, having N bits allow a potential immune system
repertoire diversity of 2N. Stochasticity is implemented as
probabilistic rules that produces a logical causal/effect se-
quence of events culminating in the immune response and
development of immunological memory.
The second part consists on the disease model. It en-

capsulates all the characteristics that are needed to re-
produce the biological scenario one would like to
simulate. In this specific case, the disease model takes
into account the entities, the interactions and the dy-
namics of MTB against its natural target and with the
immune system of the host.
To simulate the effects of RUTI® vaccination strategy,

we put into the model the liposome dynamics and how
it interacts with the immune system. In particular we ex-
tended UISS framework to include: activation of PRRs
that triggers the initiation of the innate immune re-
sponse; activated CTLs that recognize peptides bound to
the major histocompatibility complex class I and II mol-
ecules (MHC-I, MHC-II), which express antigenic pep-
tides on APCs and bind to T cells via the T-cell
receptor. TH cells provide help to antigen-specific B
cells, resulting in antibody production.

The disease conceptual model
To model the entire dynamics of MTB and interactions with
the immune system machinery, we selected all the players
that have a role in TB in order to include the disease model
into the simulation framework. The starting point was the
implementation of all the biological entities involved into the
dynamics of MTB, both at cellular and molecular scale. To
analyze the behavior of a possible therapeutic intervention,
we selected one of the vaccines we are going to test inside
the STriTuVaD project i.e., RUTI® vaccine. To this end, we
implemented inside UISS the main mechanism of action
(MoA) of this immunotherapeutic vaccine.
Our model takes into account both innate and adaptive

immunity (both cellular and humoral) and immune memory.
Figure 1 depicts all the entities implemented within the
simulation framework, especially immune cells, cytokines
and specific biological processes along with their peculiar
properties in TB dynamics. We used Unified Modeling Lan-
guage (UML) to design the conceptual model. UML is a gen-
eral-purpose modeling language that is extensively used in
the field of software engineering to provide a standard way
to visualize the design of a system. All the entities of the TB
disease model interact each other, and are appropriately lo-
cated in two specific compartments: the lung (pulmonary al-
veoli) and the peripheral lymph nodes.
The starting point of our TB disease model consists on the

aerosol droplets of MTB that reach lung alveolar macro-
phages (AMs) on one side and neutrophils (N) on the other
one. The initial challenge of MTB is implemented simulating

a virtual injection of MTB bacilli into a lattice point in the
lung compartment. Then the bacilli are free to move and dis-
seminate randomly. When an AM becomes infected, it se-
cretes IL-1, TNF-α, IL-12, IL-6 and chemokines. Depending
on MTB strains and their virulence, infected AM can play a
different role in determining the downstream pathways lead-
ing to the induction of either apoptosis or necrosis and to
the final outcome of the infection. In this context, lipoxin A4
(LXA4) promotes necrosis, while prostaglandin E2 (PGE2)
is a proapoptotic factor. When necrosis process is favored,
the AM becomes necrotic and contributes to the MTB
spread. Otherwise, when the AM becomes apoptotic, sim-
ultaneously three specific scenarios can occur. Firstly, AM
apoptotic can interact with a lung resting macrophage (M)
and lead to efferocytosis of macrophages, in other words
an engulfment of AM apoptotic by M, essential for tissue
homeostasis and immunity. This means switches from
“resting” to “active” status.
Secondly, AM apoptotic cells can encounter a lung den-

dritic cell (DC). AM apoptotic can be taken up by DC that
capture antigens (Ag) through a process called nibbling;
then, DC will process and present the resulting fragments to
antigen-specific T lymphocytes in the context of molecules
of the major histocompatibility complex of class I (MHC-I)
or related proteins. From this point forward, MTB–antigen
processing DCs, migrate to the local lung-draining lymph
nodes (by 8–12 days post infection) driving naïve T cell
polarization. This migration is influenced by IL-2 release and
other chemokines, except when IL-10 is present and is able
to block this moving. A third interaction dealt with the secre-
tion of MTB debris from AM apoptotic: MTB debris will
interact with DCs, in status resting, that will process and
present the resulting fragments to antigen-specific T lym-
phocytes in the context of molecules of the major histocom-
patibility complex class II (MHC-II) or related proteins.
When MTB infects a lung N, N produces and secretes

IL-1 and other chemokines. Just like AM, also for N the
MTB strain can lead to a different role in the induction
of either apoptosis or necrosis and to the final outcome
of the infection.
Both AM and N effector functions, can be negatively mod-

ulated by IL-10 induction during MTB infection. Respect-
ively, IL-10 can lead to the inhibition of macrophage and
neutrophil effector functions, with reduction of bacterial kill-
ing and impairing of secretion of cytokines and chemokines.
As previously said, IL-10 can also block chemotactic

factors that control DC moving to the lung-draining
lymph nodes.
The scenario inside the lymph node depicts the DC

cells in antigen presenting cell status secreting IL-12,
Type 1 IFN, IL-6 and IL-23 and driving naïve T cell dif-
ferentiation toward a Th1, Th2 or Th17 phenotype. Th
cell population differentiation can be negatively modu-
lated by IL-10 and regulatory T cells (TReg). Protective
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antigen-specific Th1 cells migrate back to the lungs
about 14–17 days after the initial exposure and infection
to MTB and under a chemokine gradient (except when
IL-10 blocks this process). In the lung, activated Th1 cell
population, produce and secrete IFN-γ, causing macro-
phage activation, relative cytokine production (IL-12 and
TNF-α) and bacterial control. It is worth to mention that
in this context, IL-10 can block macrophage activation
and consequent cytokine secretion. Also TReg negatively
modulate Th1 population effector functions.
For the sake of completeness, the Th1 cell population in-

teracts also with B cells leading to three specific processes at
the same time: after a successful interaction, B cells duplicate,
differentiate in memory B and secrete immunoglobulins type
G (IgG).
Similarly, Th2 cell migration and interaction with B cells

leads to B cells duplication, differentiation in memory B cells
and secretion of immunoglobulins type A (IgA). For what
concern Th17 cell population, their migration and inter-
action with B cells will finally lead to cell duplication and se-
cretion of immunoglobulins type E (IgE). Inside the lymph

node, B cells interact also with MTB; after that B cells be-
come active and secrete immunoglobulins type M (IgM).

Results and discussion
With the aim to obtain accurate in silico predictions about
the efficacy of therapeutical interventions directed against
MTB, we run different simulations to evaluate the degree
of precision of UISS when applied to a specific interven-
tional vaccine scenario based on a promising vaccine i.e.,
RUTI® vaccine. We used publicly available data coming from
phase II Clinical Trial in subjects with latent tuberculosis in-
fection treated with RUTI® [29], to evaluate the immunogen-
icity. We analyzed three simulation scenarios. The first one
is represented by the establishment of MTB latent chronic
infection with some typical granuloma formation as a reser-
voir of MTB infection. The second one deals with a reactiva-
tion phase during latent chronic infection where a possible
breakdown of the granuloma may lead to the spread of the
bacilli and to the reactivation of the disease, with an in-
creased necrotic burden. The third consists on the latent
chronic disease infection scenario during RUTI® vaccine

Fig. 1 The pulmonary tuberculosis – immune system interaction disease model. Conceptual description of the main entities and interactions of
MTB – immune system. The main two compartments are represented: the lung and the peripheral lymph nodes. The representation depicts both
cellular and humoral response when MTB droplets infect alveolar macrophages resident in the lung. The cascade of cytokines and chemokines is
also represented with possible different behaviors depending on the virulence of the MTB strain
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administration: here we show the evolution in time of M and
CD4 T cell populations, in conjunction with the temporal
evolution of IFN-γ that owns an important role as a bio-
marker of protection.
In Fig. 2 panel A, an initial infection of a virulent strain of

MTB is supposed to happen at day 40. MTB rapidly infects
both AM and M that become infected (blue lines). A similar
behavior (not shown here) also occurs for N. Then, MTB
grows inside them eventually leading to either apoptosis or
necrosis of the infected cell, accordingly to the levels of
LXA4 and PGE2 in the site of infection. In particular, the
virulent strain will drive towards the production of the pro
necrotic LXA4 (panel D) and thus to higher percentages of
necrotic cells that will become part of the granuloma mass

(red lines). After the formation of the granuloma that repre-
sents a reservoir of MTB infection, the infection remains
mostly latent, and also the CD4 T response that is recruited
at the initial stages of infection (panel B) tends towards base-
line levels. This is also present in the Interferon-gamma plots
(panel C) where after an initial peak, its level drastically
drops.
In Fig. 3 a breakdown of about the 50% of the total

granulomatous burden is supposed to happen approxi-
mately after 400 days after primary infection. This trans-
lates in a rapid drop in the number of entities that are
part of the granuloma (yellow lines) and in a reactivation
of the disease with a final worsening of the total granu-
loma burden, even if an immune response is present

A B

C D

Fig. 2 In silico latent tuberculosis infection scenario. Panel A depicts AM population dynamics. In particular, it is simulated the time course of the
MTB-alveolar macrophages infected levels, the apoptotic ones and those forming granuloma. One can appreciate the typical granuloma behavior
in LTBI as a potential protective immune system instrument from one side and the MTB reservoir of infection from the other one. Panel B shows
Helper T cells dynamics. Subtypes (TH-1, TH-2 and TH- 17) are reported. LTBI induces a TH-2 switch instead of TH-1. This leads to a lesser immune
system activation that could overcome the MTB spread. Panel C describes IFN-γ dynamics. After the first spike (representing the initial
inflammatory response soon after the MTB infection), IFN-γ levels are kept almost at low level, indicating a latent typical scenario of immune
system tolerance. In panel D LXA4 and PGE2 detailed dynamics are reported. The simulator correctly predicts a predominant LXA4 level
indicating a pro-necrotic induction commonly observed in virulent strain of MTB causing a LTBI scenario. For all the simulated scenarios, time has
been set to 720 days (2 years) and the virtual patient has been challenged with MTB at day 40
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(see panels B and C), that is however unable to deal with
the spread of the bacteria.
Finally, in Fig. 4 we show the effects of the vaccination

with the RUTI® vaccine in an individual with latent TB
infection. Even if the vaccine seems to be mostly inef-
fective against the existing granuloma burden (panel A),
a strong Th1 induced response is elicited with the induc-
tion of immunological memory (panel B). High levels of
IFN-γ are present, in good agreement with the results
presented in [29] for a 25μg dosage of the RUTI® vaccine
in latent patients.
Overall, the simulations results are in very good agree-

ment with available data coming from clinical trials. In
particular, the in silico framework shows reliability in
capturing the main landmarks of both induced immune

response mirroring the IFN-γ, CD4 T cells, LXA4 and
PGE2 dynamics. Moreover, form the spatial point of
view, the granuloma dynamics with MTB spread were
appropriately reproduced during the two most wide-
spread scenarios characterizing pulmonary tuberculosis
i.e., latent and latent with reactivation.

Conclusions
Computational models are important for the under-
standing of biological systems. Such models can be ap-
plied to enhance or predict therapeutic effects at the
organism level. The pharmaceutical companies suggest
that computational biology can play an excellent role in
this field. In silico models can afford answers to the gen-
eral behaviour of the immune system, the analysis of

A B

C D

Fig. 3 In silico latent tuberculosis infection with reactivation event scenario. Panel A depicts AM population dynamics. In particular, it is simulated
the time course of the MTB-alveolar macrophages infected levels, the apoptotic ones and those forming granuloma. One can appreciate the
breakdown of the granuloma leading to a successive reactivation at day 450. Moreover, granuloma increases in dimension indicating a worsening
of the disease. Panel B shows Helper T cells dynamics. Subtypes (TH-1, TH-2 and TH-17) are reported. At the reactivation time, it is reported an
evident TH-2 switch. However also a TH-1 driven response is present. Panel C describes IFN-γ dynamics. The peak of IFN- γ indicates an attempt
of immune system to contain the MTB spreading. In panel D LXA4 and PGE2 detailed dynamics are reported. The simulator correctly predicts a
predominant second peak of LXA4 indicating a pro-necrotic induction commonly observed in virulent strain of MTB. For all the simulated
scenarios, time has been set to 720 days (2 years) and the virtual patient has been challenged with MTB at day 40
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cellular and molecular interactions, the effects of treat-
ments, and the course of diseases. The main goal of the
STriTuVaD project is to create a computational infra-
structure able to predict the general outcome of two dif-
ferent vaccination strategies against M. tuberculosis. In
this work, we presented UISS framework implementa-
tion able to simulate the artificial immune response elic-
ited by the vaccines. In particular we implemented the
components of RUTI® vaccine.
Further steps deal with the creation of a set of virtual

subjects with the aim to reproduce biological diversity of
the subjects we will simulate.
Through a “vector of features” that combines both bio-

logical and pathophysiological parameters we will obtain

a personalization of the virtual patient to reproduce the
physiology and the pathophysiology of the subject.
This UISS simulation platform will be able, when com-

pared to the experimental results of the clinical trial
phase II, to predict with the necessary accuracy the bac-
terial load in the sputum smear.

Availability and requirements
Project name: UISS for TB.
Project home page: https://www.combine-group.org/software
Operating system(s): Platform independent.
Programming language: C and Python.
Other requirements: none.
Any restrictions to use by non-academics: not applicable.

A B

C D

Fig. 4 In silico latent tuberculosis infection with RUTI vaccine administration. Panel A depicts AM population dynamics. In particular, it is
simulated the time course of the MTB-alveolar macrophages infected levels, the apoptotic ones and those forming granuloma. Panel B shows
Helper T cells dynamics. Subtypes (TH-1, TH-2 and TH-17) are reported. The RUTI vaccine has been administered at day 450 and at day 478 (two
inoculations, 28 days interval). CD4 T cells (TH-1 subtype) are the predominant one, indicating a strong immune system response induced by the
therapeutical intervention. Panel C describes IFN-γ dynamics. Here one can appreciate the presence of two peaks of IFN-γ indicating the vaccine
activity in stimulating pro-inflammatory and TH-1 mediated immune system response. Moreover, the level of IFN-γ dynamics prediction mirrors
the one observed in the RUTI phase II clinical trial. In panel D LXA4 and PGE2 detailed dynamics are reported. The simulator correctly predicts a
predominant peak of LXA4 indicating a pro-necrotic induction commonly observed in virulent strain of MTB. For all the simulated scenarios, time
has been set to 720 days (2 years) and the virtual patient has been challenged with MTB at day 40
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