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Abstract: In this paper, we deal with large-scale nonconvex optimization problems, typically
arising in distributed nonlinear optimal control, that must be solved by agents in a network.
Each agent is equipped with a local cost function, depending only on a local variable. The
variables must satisfy private nonconvex constraints and global coupling constraints. We propose
a distributed algorithm for the fast computation of a feasible solution of the nonconvex problem
in finite time, through a distributed primal decomposition framework. The method exploits the
solution of a convexified version of the problem, with restricted coupling constraints, to compute
a feasible solution of the original problem. Numerical computations corroborate the results.
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1. INTRODUCTION

In distributed systems, several estimation, learning and
control tasks can be formulated as optimization problems
that must be solved by a network of processors without
any central coordinator. A relevant scenario arises in
distributed optimal control, where independent systems
must be controlled, while satisfying coupling constraints.
If the systems are nonlinear, the resulting optimal control
problem is a nonconvex optimization problem, which is
mainly an open research area.

We split the relevant references in two groups, namely dis-
tributed nonlinear optimal control and general distributed
nonconvex optimization. As for the first group, in Necoara
et al. (2009) a decentralized optimal control algorithm,
based on linearized dynamics and dual decomposition, is
proposed, whereas in Spedicato and Notarstefano (2018) a
cloud-assisted distributed optimal control algorithm based
on the projection operator for systems with coupled dy-
namics is considered. In Raimondo et al. (2009), an itera-
tive decentralized Model Predictive Control (MPC) algo-
rithm with local tube-based MPC controllers is considered.
A suboptimal approach for distributed MPC of coupled
systems, with linearization of the dynamics, is investigated
in Grancharova and Johansen (2011), while Lucia et al.
(2015) proposes a so-called contract-based distributed
MPC for coupled systems. In Müller et al. (2012), a se-
quential distributed MPC algorithm for decoupled systems
with coupling constraints is discussed.

Regarding general distributed nonconvex optimization, we
first consider the case in which nonconvexity is in the cost
function. In Bianchi and Jakubowicz (2013) a distributed
stochastic gradient method with gossip communication
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is analyzed. A distributed Frank-Wolfe algorithm with
convergence rate analysis is provided in Wai et al. (2017),
while Di Lorenzo and Scutari (2016) and Scutari and Sun
(2019) propose distributed gradient tracking algorithms,
based on successive convex approximations, for undirected
and directed networks (respectively). A more general set-
up occurs when nonconvexity is also in the feasible set.
In Zhu and Mart́ınez (2013), a distributed dual subgradi-
ent method to obtain a an approximate solution is consid-
ered, whereas Dinh et al. (2013) proposes a parallel sequen-
tial quadratic programming algorithm when nonconvexity
is in the feasible set only. Most works on distributed non-
convex optimization deal with problems that are coupled
in the cost function, while only few references (e.g., Dinh
et al. (2013)) consider the set-up of distributed control, in
which the coupling among the systems is in the constraints.

The contributions of this paper are as follows. Motivated
by distributed nonlinear optimal control, in this paper
we focus on large-scale nonconvex optimization problems,
where each variable has individual nonconvex constraints,
and all the variables must satisfy coupling constraints.
This set-up, with many optimization variables, subject
to local and coupling constraints, is very challenging in
a distributed framework, and nonconvexity makes it even
more difficult to solve. Because of the problem complexity,
the exact computation of an optimal solution is typically
not affordable, and it is not always necessary when im-
plemented in MPC schemes. We propose a distributed
method that allows for the fast computation of a fea-
sible (suboptimal) solution in finite time. To this end,
we extend a primal decomposition framework, introduced
in Camisa et al. (2018) for mixed-integer linear programs,
to the general nonconvex set-up. The framework exploits a
convexified version of the original problem, with tightened
coupling constraints, to compute a solution satisfying both
the nonconvex constraints and the coupling constraints
of the original problem. Our distributed algorithm enjoys
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we focus on large-scale nonconvex optimization problems,
where each variable has individual nonconvex constraints,
and all the variables must satisfy coupling constraints.
This set-up, with many optimization variables, subject
to local and coupling constraints, is very challenging in
a distributed framework, and nonconvexity makes it even
more difficult to solve. Because of the problem complexity,
the exact computation of an optimal solution is typically
not affordable, and it is not always necessary when im-
plemented in MPC schemes. We propose a distributed
method that allows for the fast computation of a fea-
sible (suboptimal) solution in finite time. To this end,
we extend a primal decomposition framework, introduced
in Camisa et al. (2018) for mixed-integer linear programs,
to the general nonconvex set-up. The framework exploits a
convexified version of the original problem, with tightened
coupling constraints, to compute a solution satisfying both
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systems, with linearization of the dynamics, is investigated
in Grancharova and Johansen (2011), while Lucia et al.
(2015) proposes a so-called contract-based distributed
MPC for coupled systems. In Müller et al. (2012), a se-
quential distributed MPC algorithm for decoupled systems
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In Zhu and Mart́ınez (2013), a distributed dual subgradi-
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ered, whereas Dinh et al. (2013) proposes a parallel sequen-
tial quadratic programming algorithm when nonconvexity
is in the feasible set only. Most works on distributed non-
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finite-time feasibility of the solution, and opens the way to
new distributed nonlinear optimal control frameworks. A
major feature of our algorithm is that a globally feasible
solution is obtained from small local nonconvex problems,
that however do not need to be solved exactly: any feasible
solution is sufficient. The theoretical discussion is followed
by a numerical example to show its validity.

The paper is organized as follows. In Section 2, we formal-
ize the optimization set-up and recall some preliminaries.
In Section 3, we formalize our method to compute a
feasible solution of the nonconvex optimization problem.
The distributed algorithm is then formalized in Section 4,
while Section 5 provides numerical computations to high-
light the main features of the algorithm. For the sake of
space, all the proofs are omitted and will be provided in a
forthcoming document.

2. OPTIMIZATION SET-UP AND PRELIMINARIES

In this section we introduce the set-up considered in
the paper. First, we formalize a motivating distributed
control scenario. The general optimization set-up is then
formalized and a relaxation of the optimization problem
is considered. Finally, a decomposition method for the
relaxed problem is reviewed.

2.1 Motivation: Distributed Nonlinear Optimal Control

Let us consider a network of N dynamical systems. Each
system i is assumed to have its own nonlinear dynamics
zi(k+1) = hi(zi(k), ui(k)), where zi(k) ∈ Rzi denotes the
system’s state at time k ∈ N, ui(k) ∈ Rui denotes the
input fed to the system at time k and hi : Rzi+ui → Rui

is a continuous function. We assume that each system i
initially has state equal to zi(0) and we assume the state
and the inputs have to satisfy constraints zi ∈ Zi, ui ∈ Ui

for some compact sets Zi,Ui. We further assume that the
system states and/or must satisfy coupling constraints

that are, e.g., linear,
∑N

i=1

(
Zizi(k) + Uiui(k)

)
≤ b,

where b ∈ RS and the matrices Zi, Ui have appropriate
dimensions. The goal for the agents is to compute a control
input by solving an optimal control problem, involving the
whole group of dynamical systems, of the form

min
{zi(k+1),ui(k)}k,i

N∑
i=1

K−1∑
k=0

�i
(
zi(k), ui(k)

)
+ Vi

(
zi(K)

)

subj. to zi(k + 1) = hi(zi(k), ui(k)), ∀ k, i

zi(k + 1) ∈ Zi, ui(k) ∈ Ui, ∀ k, i
N∑
i=1

(
Zizi(k) + Uiui(k)

)
≤ b, ∀ k,

(1)

where K ∈ N is the prediction horizon, �i : Rzi+ui → R
is the i-th system stage cost and Vi : Rzi → R is the
i-th terminal cost. In distributed MPC, problem (1) is
repeatedly solved in a receding horizon fashion.

It is important to note that problem (1), in general, is
nonconvex. Indeed, even when the stage cost �i and the
functions hi are convex, the feasible set is nonconvex due
to the constraints zi(k + 1) = hi(zi(k), ui(k)). In order to
lighten the notation and give a general discussion, in the
next subsection we formalize a distributed optimization
set-up that encloses (1) as a special case.

2.2 Distributed Nonconvex Optimization Set-up

Let us consider a network of N agents that aim to
cooperatively solve the optimization problem

min
x1,...,xN

N∑
i=1

fi(xi)

subj. to
N∑
i=1

gi(xi) ≤ 0

xi ∈ Xi, i ∈ {1, . . . , N},

(2)

where x1 ∈ Rn1 , . . . ,xN ∈ RnN are the decision variables
(one for each agent), and each fi : Rni → R is the cost
function associated to xi. Each variable xi must satisfy
individual constraints xi ∈ Xi, where Xi ⊂ Rni can
be nonconvex. Moreover, the variables are intertwined

by means of S ∈ N coupling constraints
∑N

i=1 gi(xi) ≤
0, where each gi : Rni → RS is used to model the
contribution of xi to the coupling constraints, and 0
denotes the vector with all zero entries. We use the
symbols ≤ and ≥ to denote component-wise inequalities.
We focus on large-scale instances of problem (2) where the
number of agents is considerably larger than the number
of coupling constraints, i.e., N � S, which is a challenging
scenario in distributed control applications.

The optimal control problem (1) is a special case of prob-
lem (2): indeed, each variable xi consists of the trajec-
tory {zi(k + 1), ui(k)}k associated to the i-th dynamical
system, the sets Xi take into account the i-th system
dynamics (i.e., Xi contains the constraints zi(k + 1) =
hi(zi(k), ui(k)), zi(k) ∈ Zi, ui(k) ∈ Ui), and the functions
gi encode the coupling among the systems.

Throughout the paper, we assume that each agent i knows
only its local constraint Xi, its local cost function fi and
its own contribution gi to the coupling constraints. We
make the following standing assumption.

Assumption 1. Problem (2) is feasible. Moreover, for all
i ∈ {1, . . . , N}, (i) the set Xi is compact, (ii) the function
fi and each component of gi are convex. �

The analysis carried out in this paper can be extended to
the case in which fi and gi are not convex, by using their
convex closure (this is subject of current investigation).
In the remainder of this section, we consider a convex
relaxation of problem (2) and we recall a decomposition
strategy that allows for the design of distributed algo-
rithms to solve the convexified problem.

2.3 Problem Relaxation

Let us now consider the following relaxed version of
problem (2),

min
x1,...,xN

N∑
i=1

fi(xi)

subj. to
N∑
i=1

gi(xi) ≤ 0

xi ∈ conv(Xi), i ∈ {1, . . . , N},

(3)

where conv(Xi) denotes the convex hull ofXi. Thus, under
Assumption 1, problem (3) is convex.
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The significance of problem (3) lies in two facts. On the
one hand, there exist distributed methods for the solution
of convex problems in the form (3). On the other hand, it
can be shown that its optimal solutions have a very special
structure that pave the way for a distributed suboptimal
approach for problem (2). Indeed, under the assumption of
uniqueness, the optimal solution of the convex problem (3)
largely satisfies the nonconvex constraints xi ∈ Xi, except
for a small number of solution portions. The following
theorem formalizes this fact.

Proposition 2. Let Assumption 1 hold and let (x�
1, . . . ,x

�
N )

be the unique solution of problem (3). There exists a set
I⊂{1, . . . , N}, with cardinality at most S+1, such that

x�
i /∈ Xi, for all i ∈ I, and

x�
i ∈ Xi, for all i /∈ I. �

Notice that if the optimal control problem (1) has
quadratic cost with positive definite matrices, the assump-
tion of unique optimal solution of (3) is readily satisfied.

2.4 Primal Decomposition Review

In this subsection, we recall a strategy that allows for
the decomposition of problem (3). Such method allows
us to utilize the distributed algorithm in Notarnicola and
Notarstefano (2019) to solve the relaxed problem (3).

Specifically, we consider a primal decomposition scheme,
also called right-hand side allocation (Silverman (1972);
Bertsekas (1999)). With this approach, the coupling con-

straints
∑N

i=1 gi(xi) ≤ 0 are treated as a (given) lim-
ited resource. Then, a two-level hierarchical structure is
formulated, with N independent subproblems having a
fixed, local allocation of resource, and a master problem,
coordinating the overall resource allocation process.

Formally, for all i ∈ {1, . . . , N} and yi ∈ RS , the i-th
subproblem is

pi(yi) = min
xi

fi(xi)

subj. to gi(xi) ≤ yi

xi ∈ conv(Xi),

(4)

where yi is a local allocation for subproblem i and pi :
RS → R is the function associating each yi to the
optimal cost of the corresponding subproblem. The local
allocations are coordinated by a master problem, i.e.,

min
y1,...,yN

N∑
i=1

pi(yi)

subj. to
N∑
i=1

yi = 0

yi ∈ Yi, i ∈ {1, . . . , N},

(5)

where, for all i ∈ {1, . . . , N}, the set Yi ⊆ RS is the domain
of the local allocations for subproblem i (i.e., the set of
yi that make problem (4) feasible). The following lemma
establishes the equivalence between problems (5) and (3).

Lemma 2.1. (Silverman (1972)). Let Assumption 1 hold.
Then, problems (3) and (5) are equivalent, in the sense
that (i) the optimal costs are equal, (ii) if (y�

1, . . . ,y
�
N ) is

an optimal solution of (5) and x�
i is an optimal solution

of (4) with yi = y�
i for all i, then (x�

1, . . . ,x
�
N ) is an optimal

solution of (3). �

There is a nice correspondence between the primal decom-
position scheme and the distributed information structure
associated to problem (3). Indeed, each subproblem i in-
volves only the information that is known to agent i, and
if the agents are provided with their own optimal local
allocation, by Lemma 2.1 they are able to compute their
own portion of optimal solution of problem (3).

3. APPROACH FOR NONCONVEX SOLUTION

In this section, we extend a framework for feasible solution,
formerly introduced in Camisa et al. (2018) for mixed-
integer linear programs, to the nonconvex set-up (2). The
method is a building block for the distributed algorithm
in Section 4. First, we introduce a modified version of
problem (3), then we formalize and analyze our method.

Approach idea: adapt the solution of (3), which satis-
fies most of the local nonconvex constraints (cf. Propo-
sition 2), in order to obtain a feasible solution of (2).

3.1 Restricted Problem

By exploiting the result in Proposition 2, the main idea
is to change only those portions of optimal solution of (3)
that do not already satisfy the local nonconvex constraints.
This is obtained via a local correction procedure executed
at each node (see Section 3.2). Since, as seen in Section 3.2,
the corrected solution may result into a violation of the

coupling constraints
∑N

i=1 gi(xi) ≤ 0, we replace prob-
lem (3) with a restricted version,

min
x1,...,xN

N∑
i=1

fi(xi)

subj. to
N∑
i=1

gi(xi) ≤ −σ

xi ∈ conv(Xi), i ∈ {1, . . . , N},

(6)

where the value of the restriction vector σ ∈ RS , with
non-negative components, will be specified in Section 3.3.
In order to apply Proposition 2 to problem (6), we make
the following assumption.

Assumption 3. Problem (6) is feasible and its optimal
solution is unique. �

To formulate the primal decomposition scheme for prob-
lem (6), it is sufficient to replace the master problem (5)
with the following restricted version, i.e.,

min
y1,...,yN

N∑
i=1

pi(yi)

subj. to
N∑
i=1

yi = −σ

yi ∈ Yi, i ∈ {1, . . . , N},

(7)

where the subproblems have the form (4). Clearly,
Lemma 2.1 holds true also for problems (7) and (6).

3.2 Local Procedure for Solution Correction

In this subsection, we formalize the local procedure to
correct the local solutions at each node. This procedure is
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position scheme and the distributed information structure
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if the agents are provided with their own optimal local
allocation, by Lemma 2.1 they are able to compute their
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formerly introduced in Camisa et al. (2018) for mixed-
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Approach idea: adapt the solution of (3), which satis-
fies most of the local nonconvex constraints (cf. Propo-
sition 2), in order to obtain a feasible solution of (2).

3.1 Restricted Problem

By exploiting the result in Proposition 2, the main idea
is to change only those portions of optimal solution of (3)
that do not already satisfy the local nonconvex constraints.
This is obtained via a local correction procedure executed
at each node (see Section 3.2). Since, as seen in Section 3.2,
the corrected solution may result into a violation of the
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In order to apply Proposition 2 to problem (6), we make
the following assumption.
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lem (6), it is sufficient to replace the master problem (5)
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a building block for the distributed algorithm in Section 4.
We assume that each agent i is provided with a local
allocation, which we denote by yend

i ∈ RS . We will show
in the next that, even though the agents may violate
the restricted coupling constraints of (6), an appropriate
choice of σ will result in a feasible solution of the original
problem (2). The local procedure is formalized in the
following table from the perspective of agent i.

Local Procedure Get-Nonconvex-Sol
Input: yend

i , i-th allocation

Compute xconv
i as optimal solution of (4) with yend

i

If xconv
i ∈ Xi then output xout

i = xconv
i

Else

Compute xnc
i as a feasible solution of

min
xi

fi(xi)

subj. to gi(xi) ≤ yend
i

xi ∈ Xi

(8)

If (8) is feasible then output xout
i = xnc

i

Else output xout
i = xnc viol

i as a feasible solution of

min
xi

fi(xi)

subj. to gi(xi) ≤ yend
i + ρi1

xi ∈ Xi

(9)

with minimal violation ρi > 0

End If
End If

The procedure always yields a vector satisfying (by con-
struction) the local nonconvex constraints xi ∈ Xi. It is
completely local: no communication is needed to perform
the computation, and the connection with the rest of the
problem depends on the input yend

i , which is provided by
the distributed algorithm.

Let us comment on the structure of Get-Nonconvex-
Sol. The computation of xconv

i requires the solution
of a convex problem, and for most of the agents (cf.
Proposition 2) the procedure will end with xconv

i without
solving any nonconvex problem. If xconv

i does not satisfy
the constraints, the agents first try to solve problem (8),
a nonconvex version of the local problem (4). However,
since Xi ⊂ conv(Xi), problem (8) might be infeasible. In
this case, problem (9) is solved instead, where a violation
ρ1 of the local coupling constraints gi(xi) ≤ yend

i is
allowed. The solution of problem (9), to be carried out
after a minimal violation ρi is determined, will result into
a (controlled) violation of the local allocation and will
produce a global violation of the coupling constraints. In
order to compute ρi, agents can solve the problem

min
xi,ρi

ρi

subj. to gi(xi) ≤ yend
i + ρi1

xi ∈ Xi.

An optimal solution of the nonconvex problems (8) and (9)
is desirable to improve the overall cost, however note that
a feasible solution is sufficient for the distributed algorithm
to produce a feasible solution to the original problem.

3.3 Restriction Vector and Preliminary Analysis

In order to make sure the overall solution (xout
1 , . . . ,xout

N )
is feasible for the original problem (2), it is necessary to
guarantee that the coupling constraints are satisfied. The
restriction vector σ is meant to compensate for possible
violations of the local coupling constraints, so that, overall,

it holds
∑N

i=1 gi(x
out
i ) ≤ 0.

For all i ∈ {1, . . . , N}, let us define a vector Li, represent-
ing a resource lower bound, with components[

Li

]
s
� min

xi∈conv(Xi)

[
gi(xi)

]
s

s ∈ {1, . . . , S},

where the notation [·]s indicates the s-th component of
the vector in brackets. Then, let us define xL

i ∈ Xi as the
vector with minimal resource usage, i.e.,

xL
i ∈ argmin

xi∈Xi

max
s∈{1,...,S}

[
gi(xi)− Li

]
s
.

Note that, by construction, the optimal cost of the preced-
ing problem represents a minimal allocation required by
agent i to compute a feasible vector in Xi. A restriction
vector σ, representing the worst-case overall violation, is

σ = (S + 1) · max
i∈{1,...,N}

max
s∈{1,...,S}

[
gi(x

L
i )−Li

]
s
1, (10)

where the inner maximization is the worst-case violation
for each agent i and the coefficient S+1 is due to the max-
imum number of agents that can simultaneously violate
(by Proposition 2). We point out that the restriction (10)
can be computed in a distributed way by using a max-
consensus algorithm.

To conclude this section, we give a preliminary analysis
of the framework introduced so far. To this end, let us
consider the simplified case in which the local procedure
is initialized with the optimal solution of problem (7) (the
general case is discussed in Section 4.2). The first result of
the paper is summarized in the next theorem, by which we
assess that the solution computed by Get-Nonconvex-
Sol under the preceding assumption is feasible for the
original problem (2).

Theorem 4. Let Assumptions 1 and 3 hold and let
(y�

1, . . . ,y
�
N ) be an optimal solution of problem (7), with

σ equal to (10). Let xout = (xout
1 , . . . ,xout

N ), where each
xout
i is the output of Get-Nonconvex-Sol with input

y�
i . Then, x

out is feasible for the original problem (2). �

4. DISTRIBUTED PRIMAL DECOMPOSITION FOR
NONCONVEX PROBLEMS

In the remainder of the paper, we formalize our distributed
algorithm to compute a feasible solution to the nonconvex
problem (2). The algorithm is obtained by integrating the
framework of Section 3 with the distributed algorithm
in Notarnicola and Notarstefano (2019). First, we formally
describe the algorithm and implementation features. Then,
we discuss its theoretical properties.

4.1 Algorithm Description and Implementation

Let us consider a network of N agents communicating
according to a connected and undirected graph G =
({1, . . . , N}, E), where E ⊆ {1, . . . , N} × {1, . . . , N} is
the set of edges. If (i, j) ∈ E , then agents i and j can
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exchange information (and in fact also (j, i) ∈ E). We
denote by Ni the set of neighbors of agent i in G, i.e.,
Ni = {j ∈ {1, . . . , N} | (i, j) ∈ E}.
To achieve finite-time feasibility of the sequences com-
puted by the distributed algorithm, we consider the fol-
lowing problem,

min
x1,...,xN

N∑
i=1

fi(xi)

subj. to
N∑
i=1

gi(xi) ≤ −(σ + δ1)

xi ∈ conv(Xi), i ∈ {1, . . . , N},

(11)

which is obtained from problem (6) by further restricting
the coupling constraint components by an arbitrary δ > 0.
We will assume that Assumption 3 holds true for prob-
lem (11), whose primal decomposition can be formulated
by properly adapting problem (7).

As for the notation, t ∈ N denotes a universal time index,
whileGet-Nonconvex-Sol(yt

i) is the output of the local
procedure with input equal to yt

i , the i-th allocation at
time t. In the following table we summarize our Dis-
tributed Primal Decomposition for Nonconvex problems
(DiP-Nonconvex) from the perspective of agent i, where
M > 0 is a scalar and {αt}t≥0 is the step-size sequence.

Distributed Algorithm DiP-Nonconvex

Initialization: y0
i such that

∑N
i=1 y

0
i = −(σ + δ1)

Evolution: For t = 0, 1, . . .

Compute µt
i as a Lagrange multiplier of

min
xi,ρi

fi(xi) +Mρi

subj. to µi : gi(xi) ≤ yt
i + ρi1

xi ∈ conv(Xi), ρi ≥ 0

(12)

Gather µt
j from j ∈ N t

i and update

yt+1
i = yt

i + αt
∑
j∈N t

i

(
µt

i − µt
j

)
(13)

Compute xt
i as

xt
i = Get-Nonconvex-Sol(yt

i) (14)

The algorithm is fully distributed, in the sense that at
every iteration t the computation performed by each agent
i involves only local information and the information gath-
ered from its neighbors to perform (13). The algorithm is

initialized such that
∑N

i=1 y
0
i = −(σ + δ1), in order to

take into account both restrictions σ and δ1. The first two
steps (12)-(13) implement the distributed algorithm in No-
tarnicola and Notarstefano (2019), while the last step (14)
implements the framework of Section 3 to compute a
solution satisfying the nonconvex constraints. The satis-
faction of the coupling constraints is taken into account
by the restriction in the initialization of the algorithm.
A remarkable property of our algorithm is that it only
requires the solution of convex problems in order to evolve
(indeed problem (12) is convex), while, as already noted
in Section 3.2, nonconvex problems in Get-Nonconvex-
Sol can also be solved suboptimally.

In order to carry out the step (12) numerically, agents
may need an explicit description of conv(Xi) in terms of
inequalities. This issue is problem dependent, and a couple
of special cases are discussed here. If the cost fi and the
coupling constraint function gi are both linear, a Lagrange
multiplier of problem (12) can be computed by locally
running a dual subgradient algorithm involving the solu-
tion of small nonconvex problems. In Section 5, we instead
consider a numerical example in which the description of
conv(Xi) can be obtained by simply replacing equalities
with inequalities.

4.2 Theoretical Properties of the Algorithm

In order to formulate the theoretical results, we make the
following assumption on problem (11).

Assumption 5. There exist vectors x̄1 ∈ conv(X1), . . . ,

x̄N ∈ conv(XN ) such that
∑N

i=1 gi(x̄i) < −(σ + δ1). �

Assumption 5 is Slater’s constraint qualification and is a
standard condition for the application of duality. As for
the step-size, we make the following assumption, which is
common for duality-based algorithms.

Assumption 6. The step-size sequence {αt}t≥0, with each

αt ≥ 0, satisfies
∑∞

t=0 α
t = ∞,

∑∞
t=0

(
αt
)2

< ∞. �

Under the preceding assumptions, we are able to show
the following theorem, in which we assess that in finite
time the solution sequence computed by DiP-Nonconvex
is feasible for the original problem (2).

Theorem 7. Let Assumptions 1, 5 and 6 hold and let
Assumption 3 hold for problem (11), where σ is equal
to (10) and δ > 0 is arbitrary. Moreover, let the local

allocation vectors y0
i be initialized such that

∑N
i=1 y

0
i =

−(σ + δ1). Then, there exists a sufficiently large M > 0
and Tδ > 0 for which DiP-Nonconvex generates a sequence
{xt

1, . . . ,x
t
N}t≥0 such that the vector (xt

1, . . . ,x
t
N ) is a

feasible solution for problem (2) for all t ≥ Tδ. �

Finite-time feasibility of DiP-Nonconvex is an appealing
feature for model predictive control applications, since it
can ensure recursive feasibility of the control algorithm.
As for the parameter M , it must be greater than ‖µ�‖1,
where µ� denotes a dual optimal solution of problem (11)
(see Notarnicola and Notarstefano (2019)). In practice, it
suffices to choose M sufficiently large.

Remark 8. We point out that it is possible to compute
guaranteed suboptimality bounds of the solution com-
puted by DiP-Nonconvex. For the sake of space, we omit
the discussion, but an explicit formula can be obtained by
extending the results in Camisa et al. (2018) to the general
nonconvex case. �

5. NUMERICAL EXAMPLE

In this section, we provide numerical computations per-
formed with the Matlab software to corroborate the
theoretical results and to highlight the main features of
our algorithm. We consider a simplified scenario in which
we are able to express conv(Xi) explicitly.

Formally, consider a network of N = 50 agents, whose aim
is to cooperatively find a feasible solution to an optimal
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exchange information (and in fact also (j, i) ∈ E). We
denote by Ni the set of neighbors of agent i in G, i.e.,
Ni = {j ∈ {1, . . . , N} | (i, j) ∈ E}.
To achieve finite-time feasibility of the sequences com-
puted by the distributed algorithm, we consider the fol-
lowing problem,

min
x1,...,xN

N∑
i=1

fi(xi)

subj. to
N∑
i=1

gi(xi) ≤ −(σ + δ1)

xi ∈ conv(Xi), i ∈ {1, . . . , N},

(11)

which is obtained from problem (6) by further restricting
the coupling constraint components by an arbitrary δ > 0.
We will assume that Assumption 3 holds true for prob-
lem (11), whose primal decomposition can be formulated
by properly adapting problem (7).

As for the notation, t ∈ N denotes a universal time index,
whileGet-Nonconvex-Sol(yt

i) is the output of the local
procedure with input equal to yt

i , the i-th allocation at
time t. In the following table we summarize our Dis-
tributed Primal Decomposition for Nonconvex problems
(DiP-Nonconvex) from the perspective of agent i, where
M > 0 is a scalar and {αt}t≥0 is the step-size sequence.

Distributed Algorithm DiP-Nonconvex

Initialization: y0
i such that

∑N
i=1 y

0
i = −(σ + δ1)

Evolution: For t = 0, 1, . . .

Compute µt
i as a Lagrange multiplier of

min
xi,ρi

fi(xi) +Mρi

subj. to µi : gi(xi) ≤ yt
i + ρi1

xi ∈ conv(Xi), ρi ≥ 0

(12)

Gather µt
j from j ∈ N t

i and update

yt+1
i = yt

i + αt
∑
j∈N t

i

(
µt

i − µt
j

)
(13)

Compute xt
i as

xt
i = Get-Nonconvex-Sol(yt

i) (14)

The algorithm is fully distributed, in the sense that at
every iteration t the computation performed by each agent
i involves only local information and the information gath-
ered from its neighbors to perform (13). The algorithm is

initialized such that
∑N

i=1 y
0
i = −(σ + δ1), in order to

take into account both restrictions σ and δ1. The first two
steps (12)-(13) implement the distributed algorithm in No-
tarnicola and Notarstefano (2019), while the last step (14)
implements the framework of Section 3 to compute a
solution satisfying the nonconvex constraints. The satis-
faction of the coupling constraints is taken into account
by the restriction in the initialization of the algorithm.
A remarkable property of our algorithm is that it only
requires the solution of convex problems in order to evolve
(indeed problem (12) is convex), while, as already noted
in Section 3.2, nonconvex problems in Get-Nonconvex-
Sol can also be solved suboptimally.

In order to carry out the step (12) numerically, agents
may need an explicit description of conv(Xi) in terms of
inequalities. This issue is problem dependent, and a couple
of special cases are discussed here. If the cost fi and the
coupling constraint function gi are both linear, a Lagrange
multiplier of problem (12) can be computed by locally
running a dual subgradient algorithm involving the solu-
tion of small nonconvex problems. In Section 5, we instead
consider a numerical example in which the description of
conv(Xi) can be obtained by simply replacing equalities
with inequalities.

4.2 Theoretical Properties of the Algorithm

In order to formulate the theoretical results, we make the
following assumption on problem (11).

Assumption 5. There exist vectors x̄1 ∈ conv(X1), . . . ,

x̄N ∈ conv(XN ) such that
∑N

i=1 gi(x̄i) < −(σ + δ1). �

Assumption 5 is Slater’s constraint qualification and is a
standard condition for the application of duality. As for
the step-size, we make the following assumption, which is
common for duality-based algorithms.

Assumption 6. The step-size sequence {αt}t≥0, with each

αt ≥ 0, satisfies
∑∞

t=0 α
t = ∞,

∑∞
t=0

(
αt
)2

< ∞. �

Under the preceding assumptions, we are able to show
the following theorem, in which we assess that in finite
time the solution sequence computed by DiP-Nonconvex
is feasible for the original problem (2).

Theorem 7. Let Assumptions 1, 5 and 6 hold and let
Assumption 3 hold for problem (11), where σ is equal
to (10) and δ > 0 is arbitrary. Moreover, let the local

allocation vectors y0
i be initialized such that

∑N
i=1 y

0
i =

−(σ + δ1). Then, there exists a sufficiently large M > 0
and Tδ > 0 for which DiP-Nonconvex generates a sequence
{xt

1, . . . ,x
t
N}t≥0 such that the vector (xt

1, . . . ,x
t
N ) is a

feasible solution for problem (2) for all t ≥ Tδ. �

Finite-time feasibility of DiP-Nonconvex is an appealing
feature for model predictive control applications, since it
can ensure recursive feasibility of the control algorithm.
As for the parameter M , it must be greater than ‖µ�‖1,
where µ� denotes a dual optimal solution of problem (11)
(see Notarnicola and Notarstefano (2019)). In practice, it
suffices to choose M sufficiently large.

Remark 8. We point out that it is possible to compute
guaranteed suboptimality bounds of the solution com-
puted by DiP-Nonconvex. For the sake of space, we omit
the discussion, but an explicit formula can be obtained by
extending the results in Camisa et al. (2018) to the general
nonconvex case. �

5. NUMERICAL EXAMPLE

In this section, we provide numerical computations per-
formed with the Matlab software to corroborate the
theoretical results and to highlight the main features of
our algorithm. We consider a simplified scenario in which
we are able to express conv(Xi) explicitly.

Formally, consider a network of N = 50 agents, whose aim
is to cooperatively find a feasible solution to an optimal
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control of the type (1). For simplicity, we consider 1-step
predictions of the dynamics. Each dynamical system i has
1-dimensional state and input, with dynamics zi(k + 1) =
zi(k)

2 + qiui(k)
2 + ri, where the parameters qi and ri are

randomly drawn from [1, 5] and [−4, 0] respectively. The
state and input constraints Zi and Ui are box constraints
(i.e., zLBi ≤ zi(k) ≤ zUB

i and similarly for the set Ui) where
the lower and upper bounds have entries in [−10,−5]
and [5, 10] respectively. We assume that the systems are
initialized in the origin, i.e., zi(0) = 0 for all i. Therefore,
the local nonconvex feasible set Xi is a clipped parabola
in R2, and conv(Xi) can be obtained by replacing the
dynamics constraints with the inequality version zi(k +
1) ≥ qiui(k)

2 + ri. The agents must further satisfy S = 3
coupling constraints, where the matrices Zi and Ui have
entries in [0, 1] and the vector b has entries in [−3, 7]. As
for the cost functions, we assume that �i(zi, ui) and Vi(zi)
are linear with random entries in [−5, 5].

The communication graph is a random Erdős-Rényi graph
with edge probability 0.2. A random problem has been
generated, and a local minimum has been found using a
centralized solver (fmincon). In order to check whether
the instance is meaningful, we make sure it has a duality
gap by solving the dual problem with a dual subgradient
algorithm. We perform a simulation of the distributed
algorithm with δ = 1. The restriction σ has ∞-norm
equal to 3.5, and agents computed in finite time a feasible
solution to the nonconvex problem (1) (as expected from
Theorem 7). In Figure 1 the distributed utilization of the
coupling constraints is shown, where xt

i denotes the stack
of the local optimization variables, obtained as the output
of Get-Nonconvex-Sol with allocation equal to yt

i , and
gi(xi) = Uiui(0) + Zizi(1)− b/N .

Notably, the solution is feasible since the first iteration of
the distributed algorithm and has 19% suboptimality with
respect to the solution computed by fmincon.

0 1000 2000 3000 4000

−40

−20
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t

∑
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1
g
i
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t i
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Fig. 1. Evolution of the coupling constraint utilization
(S = 3 components). The solution computed by the
algorithm is feasible for the coupling constraints since
the first iteration, indeed the maximum value is below
0 in the whole graph.

6. CONCLUSIONS

In this paper, we considered a large-scale optimization
set-up, arising in distributed nonlinear optimal control,
in which the optimization variables must satisfy individ-
ual nonconvex constraints and coupling constraints. We
proposed a distributed algorithm, based on a primal de-
composition framework and on a convexified version of the

problem, that computes a feasible solution of the original
problem in a finite number of iterations. A numerical
example shows the main features of the algorithm.
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