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An optimal control approach to the design of periodic
orbits for mechanical systems with impacts

Sara Spedicatoa,∗, Giuseppe Notarstefanoa

aDepartment of Engineering, Università del Salento, Via per Monteroni, 73100 Lecce, Italy

Abstract

In this paper we study the problem of designing periodic orbits for a special

class of hybrid systems, namely mechanical systems with underactuated con-

tinuous dynamics and impulse events. We approach the problem by means of

optimal control. Specifically, we design an optimal control based strategy that

combines trajectory optimization, dynamics embedding, optimal control relax-

ation and root finding techniques. The proposed strategy allows us to design,

in a numerically stable manner, trajectories that optimize a desired cost and

satisfy boundary state constraints consistent with a periodic orbit. To show the

effectiveness of the proposed strategy, we perform numerical computations on a

compass biped model with torso.

Keywords: Nonlinear optimal control, Trajectory generation, Hybrid systems,

Biped walking

1. Introduction

Hybrid systems, involving both continuous and discrete dynamics, arise nat-

urally in a number of engineering applications. In particular, many robotics

tasks, such as legged locomotion, (multi-finger) manipulation and load trans-
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portation with aerial vehicles, can be modeled as mechanical systems with im-

pacts, a particular class of hybrid systems. These classes of systems experience

continuous dynamics until an interaction with the surrounding environment (i.e.,

an impact) occurs, thus causing a state discontinuity due to impulsive forces and

(possibly) a switch between different dynamics.

In this paper we concentrate on a particular aspect that has important im-

plications both for modeling and control of robots, namely trajectory design.

Motivations. The trajectory design task has gained a lot of attention both as

a preliminary task for control and as a tool to explore and understand the ca-

pabilities of the system [1],[2] ( see [3] for an earlier reference). Optimization

techniques allow us to design reference trajectories for robot controllers by min-

imizing a given cost function. Typical cost functions are (i) the distance from

a desired state-input curve (which does not satisfy the dynamics) and (ii) the

energy injected into the system. For example, for humanoid robot design, the

distance from a desired (but unfeasible) human-like walking pattern ([4], [5])

is often considered. Additional challenges arise when the trajectory generation

problem is addressed for (underactuated) mechanical systems with impacts. The

impact events complicate the trajectory optimization problem since discontinu-

ous changes in the state occur. For some systems, the underactuation and the

instability of the continuous dynamics render the problem even more challeng-

ing. The optimal control theory offers powerfull tools to deal with trajectory

generation problems for hybrid dynamical systems.

Literature review. The literature on optimal control of hybrid systems is quite

vast, thus we report only two sets of contributions relevant for our work.

Fist, a general overview on recent advances for optimal control of hybrid sys-

tems is presented. A recent survey, focusing in particular on switched systems, is

[6]. In [7] the authors propose optimal control algorithms for discrete-time linear

hybrid systems which “combine a dynamic programming exploration strategy

with multiparametric linear programming and basic polyhedral manipulation”.

In [8] a set of necessary conditions is formulated and optimization algorithms
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are presented for optimal control of hybrid systems with continuous nonlinear

dynamics and with autonomous and controlled switchings. The algorithm de-

scribed in [9] (for hybrid systems with partitioned state space and autonomous

switching) is based on a version of the minimum principle for hybrid systems

providing optimality conditions for intersections and corners of switching mani-

folds, and thus avoiding the combinatorial complexity of other algorithms (e.g.,

[8]). Furthermore, the work in [10] deals with optimal mode-scheduling via

a gradient descent algorithm for the particular class of autonomous switched-

mode hybrid dynamical systems. In [11] and [12] the design of switching laws for

switched systems with linear dynamics, based on the optimization of a quadratic

criterion, is addressed.

Second, we focus on trajectory optimization for the particular class of me-

chanical systems with impacts. Besides results regarding systems with impulsive

controls, e.g. [13], [14], we focus on the trajectory design for systems controlled

by inputs of the continuous dynamics. The majority of works adopt parametric

optimization methods, as, e.g., [15], [16], [17]. This means that trajectories are

approximated as, for example, classical, trigonometric or Bézier polynomials and

the optimization is performed with polynomial coefficients as decision variables.

In other works, e.g. [18], the optimization problem is addressed via dynam-

ics equation discretization and the optimal periodic trajectory is computed by

means of an approximated cost function. Available software toolboxes are used

to solve trajectory generation problems addressed in [15], [16], [17] and [18]. Re-

cently, the optimization over jump times and/or mode sequence, as e.g., in [19]

and [20], has been considered. In [19] the instants of jump are optimized, but

the sequence of continuous dynamics modes is fixed. In [20] the mode sequence

is also optimized by sequential quadratic programming. Focusing in particular

on the trajectory generation problem for legged robots (the major robotic ap-

plication regarding mechanical systems with impacts), challenges arising when

dealing with underactuated robots are addressed in [21] and [22] by consider-

ing an additional “virtual” input acting on the unactuated degrees of freedom.

Then, an optimal approximated trajectory of the underactuated dynamics is
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computed by dynamics inversion. Furthermore, online trajectory optimization

is addressed in [23] through a method based on iterative LQG and in [24] tra-

jectories are designed by using an auxiliary system of differential equations and

then stabilizing the generated curves through a feedback on the target system.

Contributions. As main contribution of this paper, we develop an optimal con-

trol based strategy to design periodic orbits for a class of hybrid dynamical

systems with impacts. First, we formulate an optimal control problem with ad-

hoc boundary conditions. These ones are provided by studying how the initial

conditions and the jump conditions are related in a periodic orbit with one jump

per period. Second, instead of using available softwares, we develop an ad-hoc

strategy based on the combination of trajectory functional optimization with

three main tools: dynamics embedding, constraint relaxation and zero finding

techniques. These tools enable us to (i) deal with the undeartuated nature of

dynamics, (ii) consider highly non trivial constraints and (iii) avoid the tedious

search for a suitable “initial (guess) trajectory” to initialize the optimization

algorithm. Furthermore, optimal control problems involved in our strategy are

solved by combining the penalty function approach [25] with the Projection

Operator Newton method [26]. In contrast with many strategies reported in

the literature, we do not resort to approximations such as considering discrete

sets of motion primitives (thus ending up with the only optimization of their

parameters), and/or discrete time. In fact we consider system states and inputs

as optimization variables and a second-order approximation of the optimiza-

tion problem is directly constructed in continuous time. In detail, the proposed

strategy is based on the following steps. By adding a fictitious input, we embed

the system into a completely controllable (fully actuated) one. On this system

we set up, by constraint relaxation, an unconstrained optimal control problem

to find a trajectory of the system (a curve satisfying the dynamics) that mini-

mizes a weighted L2 distance from a desired curve. The desired curve, together

with the weights of the cost functional become important parameters in the

designer’s hand to explore the system dynamics, that is different periodic orbits
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that the system can execute. We solve the optimal control problem to generate

a trajectory of the fully actuated system with almost null fictitious input. Dif-

ferently from [21] and [22], we use this trajectory to initialize the last step of

our strategy, where the optimal control problem is set up on the underactuated

dynamics. A Newton update rule on the final penalty of the weighted cost func-

tional is adopted in order to hit the desired final state. It relies on the solution

of an optimal state transfer problem presented in [27], where the advantages of

the method are highlighted with respect to the classic ones.

We provide a set of numerical computations showing the effectiveness of the

proposed strategy. In particular, we generate a periodic gait for a three-link

biped robot (compass model with torso). We perform two computations by

choosing two different sets of weights. In the first scenario we try to generate a

trajectory that is as close as possible to the guessed state curve. Vice-versa, in

the second one, we compute a trajectory that minimizes the input effort (i.e.,

some sort of minimum-energy trajectory). It is worth noting that, although the

three links model is relatively simple, its underactuation represents a significant

challenge. Also, it is well known that for many applications, even such a reduced

model of the biped dynamics is instrumental for analyzing and controlling the

actual system, see, e.g., [24].

Paper organization. The paper is organized as follows. In Section 2 we intro-

duce the model of the particular class of hybrid system we study in this paper

and we present the problem formulation for the generation of periodic orbits.

In Section 3 we describe the proposed strategy and in Section 4 we provide

numerical computations (on a biped walking model) showing its effectiveness.

2. Problem formulation for the generation of periodic orbits

In this section we provide the optimal control formulation for solving the

problem of periodic orbit generation.
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2.1. Hybrid system model: underactuated systems with impacts

In this subsection we introduce the particular class of hybrid systems studied

in the paper. The hybrid model consists of a continuous dynamics phase and a

discrete (impulsive) jump event, occurred when the system state reaches a jump

set. The mechanical system dynamics is modeled by the ordinary differential

equation

M(q)q̈ + C(q, q̇) +G(q) = Yu(q) u, (1)

where q, M(q), C(q, q̇), G(q), u, are respectively the generalized coordinate

vector, the mass matrix, the Coriolis vector, the gravity vector, and the in-

put vector. The dynamics (1) can be written in the state space form as the

continuous and control affine dynamics

ẋ(t) = f(x(t)) + g(x(t))u(t), (2)

with state x ∈ Rn defined as x := [qT q̇T ]T and input u ∈ Rm. In particular,

we assume that (i) the system is underactuated, i.e., we let m < n, and (ii)

functions f : Rn → Rn and g : Rn → Rn×m are (at least) C3. When the

system state, evolving as modeled in (2), reaches a jump set S ⊂ Rn, a discrete

impulsive event occurs, causing a discontinuity in the system state evolution.

The discrete event is modeled by the jump map ∆ : Rn → Rn, which we assume

to be invertible, such that

x+(t) = ∆(x−(t)), (3)

where x−(t) := limτ→t− x(τ) and x+(t) := limτ→t+ x(τ) denote the left and

right limits of system trajectories satisfying (2). Finally, the overall hybrid

model is:

Σ: =

 ẋ(t) = f(x(t)) + g(x(t))u(t), x−(t) /∈ S

x+(t) = ∆(x−(t)), x−(t) ∈ S.
(4)

2.2. Optimal control problem set-up

We aim at designing periodic trajectories, minimizing a weighted L2 dis-

tance from a desired curve, whose period T is fixed. We approach the task
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by formulating an optimal control problem over the continuous dynamics (2).

We impose a boundary constraint x(T ) = xf , where xf is a final state that

allows the system to jump exactly to the initial condition x0, i.e., x0 = ∆(xf ).

In particular, we choose the initial state x0 and we compute the final state by

inverting the jump map, i.e., xf = ∆−1(x0).

Let a desired curve (xd(·), ud(·)), satisfying xd(0) = x0, xd(T ) = xf and thus

xd(T ) = ∆−1(xd(0)), be given. Furthermore, let us assume that the desired

curve does not reach the jump set S in the open time interval (0, T ). We

are ready now to present the optimal control problem we aim to solve for the

generation of periodic orbits,

min
x(·),u(·)

1

2

∫ T

0

(‖x(τ)− xd(τ)‖2Q + ‖u(τ)− ud(τ)‖2R) dτ

subj. to ẋ(t) = f(x(t)) + g(x(t)) u(t)

x(0) = x0

x(T ) = xf ,

(5)

where x(·) is an absolutely continuous state trajectory, u(·) is a bounded (mea-

surable) input, Q and R are positive definite weighting matrices and for some

vector z ∈ Rk and matrix W ∈ Rk×k we denote ‖z‖2W = zTWz.

The time-horizon T is a design parameter together with the desired curve,

the initial (or final) conditions and the weighting matrices Q and R. We stress

the fact that the desired curve is not a trajectory of the system, i.e., even if it

satisfies the boundary conditions, it does not satisfy the dynamics. Thus, the

desired curves can be seen as “design tools” to parameterize actual trajectories

of the system. Furthermore, by choosing the desired trajectory (xd(·), ud(·)) to

satisfy the jump condition only at time T , we expect to compute an optimal

(state) trajectory satisfying the same property. Otherwise, this constraint can

be (implicitly) enforced by properly choosing the weight matrices Q and R.

Remark (Final state constraint and controllability). It is worth noticing that

for problem (5) to be feasible the state xf must belong to the reachable space of

the system. �
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3. Optimal control based strategy for periodic orbit design

As highlighted in the literature review, several software toolboxes are avail-

able to solve nonlinear constrained optimal control problems. Nevertheless,

optimal control problems are optimization problems in the infinite dimensional

space of state-input curves subject to highly non trivial constraints as the dy-

namics and the fixed final state constraint. This means that the solution of an

algorithm is highly influenced by the desired curve and by the “initial curve”

(possibly a trajectory) that initializes the algorithm. For this reason, instead of

attacking the problem directly by simply applying one of the solvers available in

the literature, we develop a strategy based on suitable embedding and relaxation

ideas that gives a systematic method to compute periodic trajectories.

We divide our strategy into three steps that will be presented in detail in the

next subsections. Here we provide an informal idea. First, we add a fictitious

input to the underactuated dynamics, thus getting a fully actuated system.

Second, we consider an unconstrained relaxation of the optimal control problem

(5) by substituting the final state constraint with a penalty in the cost function.

We solve the relaxed problem by using also the fictitious input, but with a high

penalty. Third and final, we get rid of the fictitious input and enforce the final

state constraint exactly by means of a suitable iterative method (i.e., a zero

finding Newton iteration on the final state penalty).

3.1. Dynamics embedding

The first part of the strategy is called dynamics embedding and is inspired

by [28]. It consists of embedding the underactuated system into a fully actuated

one by adding a fictitious input uemb ∈ Rp, with p = n−m. Thus, embedding

the mechanical system (1) into a fully actuated one, we get

M(q)q̈ + C(q, q̇) +G(q) = Y (q) ue, (6)

where ue := [uT uTemb]
T and Y (q) := [Yu(q) Yemb(q)] is assumed to be invertible

∀q. Accordingly, the state space equations of the (embedding) fully-actuated
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dynamics are

ẋ(t) = f(x(t)) + g(x(t))u(t) + gemb(x(t))uemb(t), (7)

where gemb is a C3 vector field taking into account the action of the embedding

input. The role of this additional input is to allow for the tracking of any

(sufficiently regular) desired curve. This provides a useful tool to initialize the

optimal control problem solved in the next part of the strategy.

3.2. Optimal control problem relaxation and continuation with respect to param-

eters

Next, we design an optimal control relaxation of problem (5). The relaxation

involves two aspects. First, according to the dynamics embedding introduced in

the previous step we consider the fully actuated version of the system. We add

a penalty in the cost function for the embedding input. Second, we relax the

final state constraint by adding a penalty in the cost functional. The relaxed

problem is

min
x(·),u(·)

1

2

∫ T

0

(‖x(τ)− xd(τ)‖2Q + ‖u(τ)− ud(τ)‖2R

+ ρ2emb‖uemb(τ)‖2) dτ +
1

2
ρ2f‖x(T )− xT ‖2

subj. to ẋ(t) = f(x(t)) + g(x(t))u(t) + gemb(x(t))uemb(t)

x(0) = x0,

(8)

where ρemb and ρf in R>0 are respectively the weights on the embedding input

and the final state error. The target state xT is a strategy parameter that is set

to xd(T ) at beginning of the strategy, but will be modified during the strategy

evolution according to the root finding procedure described in the next step.

The idea is to weight the embedding input and the final state error much more

than the other inputs and the states. In order to avoid a conflict between the

two objectives we propose a continuation procedure on the two penalties.

Problem (8) is an unconstrained optimal control problem that could be

solved by means of several available tools in the literature. We use the PRo-
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jection Operator Newton method for Trajectory Optimization (PRONTO) in-

troduced in [26] and described in Appendix A. We adopt the PRONTO tool

because it shows two main appealing features for our trajectory design task.

First, it allows one to handle unstable dynamics in a numerically stable manner

and with a “reasonable” computational effort. Second, it guarantees recursive

feasibility during the algorithm evolution. That is, at each step a system tra-

jectory is available.

We are now ready to present the second step of the strategy. First, given

a desired state curve xd(·) such that xd = [qTd q̇Td ]T , we can easily compute

input trajectories of the fully actuated system such that the desired state curve

is a system trajectory. By inverting the fully actuated dynamics model (6), we

compute ued(t), ∀t ∈ [0, T ] as

ued = Y (qd)
−1[M(qd)q̈d + C(qd, q̇d) +G(qd)].

Note that, ued(·) depends on the choice of Yemb(·) but once Yemb(·) is defined,

the input ued(·) is unique.

Thus, the second step of the strategy can be informally described as follows.

We denote by ξe = (x(·), [uT (·) uTemb(·)]T ) a generic state-input curve for the

fully actuated system. We set the desired curve to ξed = (xd(·), [uTd (·) 0T (·)]T )

and let ξe0 = (xd(·), ued(·)) be the initial trajectory (of the fully actuated sys-

tem) for the Projection Operator Newton method (the optimal control solver).

Then, following an integral penalty function approach [25], we iteratively solve

problem (8) increasing the weight ρemb at each step, by means of a suitable

heuristic. When the norm of the embedding input is sufficiently small (i.e.,

when ‖uemb(·)‖ < εemb, where εemb is a given tolerance) we stop the procedure,

thus obtaining an approximated trajectory of the underactuated system.

A pseudo-code description of the strategy is given in the next table (Al-

gorithm 1). We denote Pe the projection operator (A.3) acting on the fully

actuated system, so that ηe = Pe(ξe) is a trajectory of the fully-actuated sys-

tem. For given ρemb and ρf , we denote PRONTOe a routine such that ξeopte =

PRONTOe(ξe0, ξ
e
d; ρemb, ρf ), i.e., it takes as inputs an initial trajectory ξe0 and a
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desired (state-control) curve ξed, and computes an embedding optimal trajec-

tory, which is denoted as ξeopte = (xopte(·), [uTopte(·) uTopte,emb(·)]T ), solving the

nonlinear optimal control relaxation in (8).

Algorithm 1 Periodic orbit design strategy: step 2

Require: Initial condition x0 and embedding desired curve ξed

compute initial trajectory ξe0 = Pe(ξe0)

for i = 0, 1, . . . do

% solve relaxed optimal control for given ρemb

ξeopte,i = PRONTOe(ξei , ξ
e
d; ρemb, ρf )

if ‖uemb(·)‖ < εemb exit for end if

increase ρemb

set ξei+1 = ξeopte,i

end for

Ensure: ξeopte = ξeopte,i

Remark. (Convergence) Provided that a solution to (8) with uemb(·) = 0 exists,

the existence of the solution is also guaranteed, by continuity, when uemb is

in a neighbourhood of the origin (with suitable radius remb ≥ εemb). Thus, a

solution to (8) with ||uemb(·)|| < εemb exists and the convergence to that solution

follows since we are using an integral penalty function approach (see, e.g. [25]).

Nevertheless, dealing with a non-convex problem, only a local convergence is

ensured, provided that the algorithm is initialized with a trajectory lying inside

the basin of attraction.

3.3. Enforcing the final state constraint

We are ready to present the third and final step of the strategy. This part

relies on the idea, proposed in [27], of enforcing the final state constraint of

problem (5) by combining two actions: (i) increase the penalty ρf on the fi-

nal state error, and (ii) vary the target state xT until the candidate optimal

trajectory “practically” meets the final state constraint.
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The following optimal control problem is the relaxation of problem (5) sub-

ject to the original system, i.e., without dynamics embedding

min
x(·),u(·)

1

2

∫ T

0

(‖x(τ)− xd(τ)‖2Q + ‖u(τ)− ud(τ)‖2R) dτ

+
1

2
ρ2f‖x(T )− xT ‖2

subj. to ẋ(t) = f(x(t)) + g(x(t))u(t)

x(0) = x0.

(9)

Before presenting the theorem that establishes a connection between the

original problem (5) and its relaxed version (9), let us state the second order

sufficient condition for optimality satisfied by a local minimum of the original

problem (5).

Definition 1. (Second order sufficient condition [27]) The second order suffi-

cient condition for a local minimum is

∫ T

0

 z(τ)

v(τ)

T  Hxx(τ) Hxu(τ)

HT
xu(τ) Huu(τ)

 z(τ)

v(τ)

 dτ > 0, ∀z ∈ Rn,∀v ∈ Rm,

where H is the control Hamiltonian and Huu = ∂2H
∂u2 , Hxx = ∂2H

∂x2 , Hxu = ∂2H
∂x∂u .

The following result is at the basis of the third step of the proposed strategy.

Theorem 1. (Equivalence of constrained and relaxed minimizers [27]) Suppose

that ξ∗ = (x∗(·), u∗(·)) is a local minimum of (5) satisfying the second order

sufficiency condition for optimality. Then for each ρf > 0, there is a target

state xT = xT (ρf ) such that ξ∗ is a local minimizer of problem (9) satisfying

the corresponding second order sufficiency condition. �

Thus, the third step of the strategy can be informally described as follows.

Given an embedding optimal trajectory ξeopte from the previous step, we obtain

the initial trajectory ξ0 = P((xopte(·), uopte(·)) of the original system, where P

is the projection operator acting on the original system. Furthermore, we reduce

the embedding desired curve ξed, in order to get the desired curve for the original

12



system as ξd = (xd(·), ud(·)). Then, adopting a penalty function approach, we

iteratively solve problem (9) increasing the weight ρf at each step. The use of

a large ρf can easily result in a poorly conditioned problem where the terminal

cost overwhelms the remaining one. Thus, we start with a reasonably small ρf

and we gradually increase it by means of a suitable heuristic. Note that our

penalty function approach generates an optimal trajectory which approximately

satisfies the final state constraint. For this reason, when the final state xopt,i(T )

of the temporary optimal trajectory is “sufficiently close” to the desired final

state (i.e., ‖xopt,i(T ) − xd(T )‖ ≤ δftol, where δftol is tolerance guaranteeing the

root finding convergence), we apply a Newton method for root finding on xT

to meet exactly the final state constraint. The update rule we use on xT is the

one proposed in [27]. According to the Implicit Function Theorem, (i) there

exists a mapping β : Rn → Rn such that xopt,i(T ) = β(xT,i), where ξopt,i(·) =

(xopt,i(·), uopt,i(·)) is the solution to (9) with target state xT,i and (ii) the first

Fréchet differential of β(·) at xT,i, i.e., zf 7→ Dβ(xT,i) · zf , exists. Furthermore,

provided that the linearization of ẋ(t) = f(x(t)) + g(x(t))u(t) about ξopt,i is

controllable on [0, T ], the mapping β(·) is invertible. Thus, a Newton method

for root finding is applied on the final state constraint equation β(xT )− xf = 0

in order to find the value of xT such that the solution to (9) is equivalent to the

solution to (5). In particular, at the iteration i+ 1, we update the value of xT

according to the following rule: xT,i+1 = xT,i +Dβ(xT,i)
−1(xf − β(xT,i)). The

final state constraint is met when ‖xopt,i(T ) − xd(T )‖ < εftol, where εftol is the

desired tolerance on the final state error.

A pseudo code description of the third step is given in the following table

(Algorithm 2). We use the following notation. For a given ρf and xT , we

denote PRONTO the Projection Operator Newton method for the original system,

so that we have ξopt = PRONTO(ξ0, ξd; ρf , xT ). Note that, as for Algorithm 1,

convergence of Algorithm 2 directly follows since it is a properly formulated

penalty function approach.
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Algorithm 2 Periodic orbit design strategy: step 3

Require: ξeopte and ξed

reduce embedding desired curve

ξd = (xd(·), ud(·))

% project (xopte(·), uopte(·)) to get an initial trajectory for PRONTO

ξ0 = P((xopte(·), uopte(·)))

for i = 0, 1, . . . do

compute: ξopt,i = PRONTO(ξi, ξd; ρf , xT,i)

if ‖xopt,i(T )− xd(T )‖ < εftol then exit end if

if ‖xopt,i(T )− xd(T )‖ > δftol then

increase ρf

else

xT,i+1 = xT,i +Dβ(xT,i)
−1(xd(T )− β(xT,i))

end if

set: ξi+1 = ξopt,i

end for

Ensure: ξopt = ξopt,i

4. An illustrative example: three link planar biped robot

As an example, we apply the proposed technique to a planar biped walking

model. The model adopted in this paper was introduced in [29].

4.1. Biped model

The three rigid links biped with four lumped masses consists of a torso and

two legs of equal length connected at the hip. The hybrid walking model consists

of a continuous swing phase model and a discrete jump event model.

The swing phase model describes the motion of the swing leg to develop

a walking step. Let θ1, θ2, θ3 denote the orientation of the stance leg, the

swing leg and the torso, respectively. Furthermore, let u1 be the torque applied

between the stance leg and the torso while the torque u2 acts between the swing
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leg and the torso. The swing phase model via Euler-Lagrange equations is given

by

M(θ)θ̈ + C(θ, θ̇) +G(θ) = U (10)

where θ = [θ1 θ2 θ3]T and M(θ), C(θ, θ̇), G(θ) and U (defined in Appendix B)

are respectively the mass matrix, the Coriolis vector, the gravity vector and the

generalized torques vector. Defining the state x = [θ1 θ2 θ3 θ̇1 θ̇2 θ̇3]T , and the

input u = [u1 u2]T , we can write the dynamics (10) in state-space form (2).

The jump event model takes into account (i) the impulse force arising when

the swing leg touches the ground and (ii) the switch of the leg being in contact

with the ground. See [29] for more details. The jump event model is given by

(3) where

∆([θ−T θ̇−T ]) =

 R 03×3

03×3 A(θ−)

 θ−

θ̇−

 (11)

with A(θ−) reported in Appendix C and

R =


0 1 0

1 0 0

0 0 1

 .
The jump event occurs when the system state reaches the jump set

S := {x ∈ R6|θ1 = θjmp1 } (12)

where θjmp1 is set according to physical considerations.

4.2. Numerical computations

According to [29], we consider the following model parameters: mass of the

legs m = 5 kg; mass of the hip MH = 15 kg; mass of the torso MT = 10 kg;

length of the legs r = 1 m, and the length of the torso l = 0.5 m. We use as

jump angle θjmp1 = π/8. We choose as time horizon T = 1.53 and as initial

condition x0 = [−22.5 deg 22.5 deg 20 deg 50 deg/s 0 deg/s 90 deg/s]T .

The first step of the proposed strategy requires the definition of a fully

actuated dynamics and the design of a desired curve. In order to obtain a
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fully actuated dynamics, we consider the dynamics (10) and add a (generalized)

torque acting directly on the torso angle velocity θ̇3. That is, the swing phase

model becomes

M(θ)θ̈ + C(θ, θ̇) +G(θ) = Ue, (13)

where Ue = Y ue,

Y =


−1 0 0

0 −1 0

1 1 1

 , (14)

and ue = [u1 u2 uemb]
T . To design a desired curve that satisfies constraints on

the initial and final states, we choose as desired angles θd,k(·) with k = 1, 2, 3

spline curves so that the initial and final point and their relative slopes, i.e.,

θd,k(0), θ̇d,k(0), θd,k(T ) and θ̇d,k(T ), can be assigned a priori. Then, the desired

velocity and acceleration curves, respectively θ̇d(·) and θ̈d(·), are obtained by

symbolic time differentiation. According to the fully-actuated dynamic model

(13), we compute ∀t ∈ [0, T ]

ued(t) = Y −1(M(θd(t))θ̈d(t) + C(θd(t), θ̇d(t)) +G(θd(t))),

where ued = [uT0 u0,emb]
T , with u0 ∈ R2 and u0,emb ∈ R. Furthermore, as regards

the update rule for the penalty parameters, at iteration i+ 1, we set ρemb,i+1 =

2 ρemb,i. The same update rule is adopted for ρf . Numerical computations

characterized by two different design objectives are presented in the following.

We also invite the reader to watch the attached video showing optimal walking

gaits obtained by means of the proposed strategy.

In the first computation, we choose xd(t) = [θd(t)
T θ̇d(t)

T ]T and ud(t) =

u0(t), ∀t ∈ [0, T ]. We find the optimal trajectory choosing diagonal Q and

R matrices and penalizing the angles 104 times the input, while the veloci-

ties 103 times the input. That is, Q = diag [100 100 100 10 10 10] and R =

diag [0.01 0.01]. The optimal trajectory (blue) is depicted on the left column of

Figure 1 and Figure 2 together with the desired curve (red), the embedding opti-

mal trajectory (green) and temporary trajectories of the underactuated system

(black). The optimization strategy shapes the desired curve in order to obtain
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a trajectory (a curve satisfying the dynamics), thus showing that in this case

the desired curve is just a rough guess of the biped gait.

In the second computation, we look for a trajectory that minimizes the

“energy” injected in the system. Indeed, we choose xd(t) = [θd(t)
T θ̇d(t)

T ]T ,

ud(t) = [0 0]T , ∀t ∈ [0, T ], and penalize the inputs 103 times the angles and 102

times the velocities. That is, we choose Q = diag [0.01 0.01 0.01 0.1 0.1 0.1] and

R = diag [10 10]. The optimal trajectory (blue) is depicted on the right column

of Figure 1 and Figure 2 together with the desired curve (red), the embedding

optimal trajectory (green) and temporary trajectories of the underactuated sys-

tem (black). As expected, the desired curve and the optimal trajectory coincide

at T , while the embedding optimal trajectory has a nonzero final state error.

This shows the effectiveness of the third step of the strategy that enforces the

final state constraint. This optimal trajectory is different from the previous one,

thus showing another possible gait. In order to minimize the injected energy,

the swing leg first goes behind the stance one, it gains potential energy and

then, it passes in front of the stance leg. This gait requires a less amount of

torque, with respect to the first gait. Approaching the final time T , the torque

u2 of the first gait (Figure 2c) is greater than 100 Nm while it approaches zero

in the second gait (Figure 2d).

5. Conclusion

In this paper we have developed an optimal control based strategy to com-

pute periodic orbits for underactuated mechanical systems with impacts. The

strategy combines trajectory optimization with dynamics embedding, optimal

control relaxation and root finding techniques. The proposed strategy provides

a systematic and numerically robust methodology to design periodic orbits for

a particular class of hybrid systems.
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(a) Snapshots of the optimal trajectory (Gait 1)
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(b) Snapshots of the optimal trajectory (Gait 2)
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(c) Stance leg position θ1 (Gait 1)
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(d) Stance leg position θ1 (Gait 2)
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(e) Swing leg position θ2 (Gait 1)
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(f) Swing leg position θ2 (Gait 2)
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(g) Torso position θ3 (Gait 1)
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(h) Torso position θ3 (Gait 2)

Figure 1: Gait 1 (left column) and gait 2 (right column): optimal trajectory (solid blue)

compared to the desired infeasible curve (solid red) and the temporary optimal trajectory

of the embedded system (solid green). Temporary optimal trajectories of the uderactuated

system are depicted in black: trajectories varying ρf (dotted line) and updating the target

state xT (dot-dashed line).

18



0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8
−400

−300

−200

−100

0

100

200

time [s]

[N
 m

]
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(b) Input u1 (Gait 2)
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(c) Input u2 (Gait 1)
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(d) Input u2 (Gait 2)

Figure 2: Inputs of gait 1 (left column) and gait 2 (right column): optimal trajectory (solid

blue) compared to the desired infeasible curve (solid red) and the temporary optimal trajectory

of the embedded system (solid green). Temporary optimal trajectories of the underactuated

system are depicted in black: trajectories varying ρf (dotted line) and updating the target

state xT (dot-dashed line).
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Appendix A. The Projection Operator approach for the optimiza-

tion of trajectory functionals

The PRojection Operator based Newton method for Trajectory Optimiza-

tion (PRONTO) [26] is suitable for solving optimal control problems in the form

min

∫ T

0

l(x(τ), u(τ)) dτ +m(x(T ))

subj. to ẋ(t) = f(x(t), u(t)), x(0) = x0,

(A.1)

where the initial condition x0 is fixed and l(x, u), m(x) and f(x, u) are (at least)

C3 in x and u. Sufficient conditions on f , l and m ([30], [31]) guarantee the

existence of optimal trajectories. In order to deal with state-input constraints,

a strategy combining PRONTO with a barrier function approach is proposed in

[32]. The key idea of PRONTO is that a properly designed projection operator

P, mapping state-control curves into system trajectories (curves satisfying the

dynamics), is used to convert the dynamically constrained optimization problem

(A.1) into an essentially unconstrained one. Let ξ = (α(·), µ(·)) be a bounded

curve and let η = (x(·), u(·)) be a trajectory of the nonlinear feedback system

ẋ(t) =f(x(t), u(t)), x(0) = x0,

u(t) =µ(t) +K(t)(α(t)− x(t)),
(A.2)

where the initial condition x0 is given in (A.1) and the feedback gain K(·) is

designed, e.g., by solving a suitable linear quadratic optimal control problem, in

order to guarantee (local) exponential stability of the trajectory η. The feedback

system (A.2) defines the nonlinear projection operator

P : ξ 7→ η, (A.3)

mapping the curve ξ to the trajectory η. Using the projection operator to

locally parameterize the trajectory manifold, problem (A.1) is equivalent to

the one of minimizing the unconstrained functional g(ξ) = h(P(ξ)), where

h(ξ) :=
∫ T
0
l(x(τ), u(τ)) dτ + m(x(T )). Then, using an (infinite dimensional)
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Newton descent method, a local minimizer is computed. The strength of this

approach is that the local minimizer is obtained as the limit of a sequence of

trajectories, i.e., curves satisfying the dynamics. The feedback system (A.2),

defining the projection operator, allows us to generate trajectories in a numer-

ically stable manner. In other words, the choice of the feedback in (A.2) is

convenient from a numerical point of view. Furthermore, note that (projected)

trajectories (xi(·), ui(·)) satisfy xi(0) = x0, according to the definition of the

projection operator.

A pseudo-code of the Projection Operator Newton method is shown in the

table (Algorithm 3). Let ξ0 be an initial trajectory. Minimization of the cost

functional g(ξ) is accomplished iteratively. Given the current trajectory iterate

ξi, the search direction ζi is obtained by solving a linear quadratic optimal

control problem with cost Dg(ξi) · ζ + 1
2D

2g(ξi)(ζ, ζ), where ζ 7→ Dg(ξi) · ζ and

ζ 7→ D2g(ξi)(ζ, ζ) are respectively the first and second Fréchet differentials of

the functional g(ξ)=h(P(ξ)) at ξi. Then, the curve ξi + γiζi, where γi is a

step size obtained through a standard backtracking line search, is projected, by

means of the projection operator, in order to get a new trajectory ξi+1.

Algorithm 3 Projection Operator Newton method

Require: initial trajectory ξ0 ∈ T

for i = 0, 1, 2 . . . do

design K defining P about ξi

search for descent direction

ζi = arg minζ∈TξiT Dg(ξi) · ζ + 1
2D

2g(ξi)(ζ, ζ)

step size γi = arg minγ∈(0,1] g(ξi + γζi);

project ξi+1 = P(ξi + γiζi).

end for

Remark. The algorithm has the structure of a standard Newton method for the

minimization of an unconstrained function. The key points are the design of K

defining the projection operator and the computation of the derivatives of g to

“search for descent direction”. It is worth noting that these two steps involve
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the solution of suitable (well known) linear quadratic optimal control problems,

[26]. �

Appendix B. Biped walking model: swing phase

The mass matrix, the Coriolis vector, the gravity vector and the generalized

torques vector of equation (10) are respectively

M(θ) =


( 5
4m+MH +MT )r2 − 1

2mr
2c12 MT rlc13

− 1
2mr

2c12
1
4mr

2 0

MT rlc13 0 MT l
2

 (B.1)

C(θ, θ̇) =


− 1

2mr
2s12θ̇2

2
+MT rls13θ̇3

2

1
2mr

2s12θ̇1
2

−MT rls13θ̇1
2

 (B.2)

G(θ) =


− 1

2g(2MH + 3m+ 2MT )r sin θ1

1
2gmr sin θ2

−gMT l sin θ3

 (B.3)

U =


−u1
−u2

u1 + u2

 (B.4)

where

c12 := cos(θ1 − θ2) c13 := cos(θ1 − θ3)

s12 := sin(θ1 − θ2) s13 := sin(θ1 − θ3),
(B.5)

and the model parameters are: the mass of the legs m, the mass of the hip MH ,

the mass of the torso MT , the length of the legs r, and the length of the torso l.

Appendix C. Biped walking model: relation between velocities

just after and before the impact

The relation between velocities just after and before the impact is repre-

sented by θ̇+ = A(θ−)θ̇−. The terms of the matrix A(θ−) are reported below.

A11 =
1

den
[2MT cos(−θ−1 − θ

−
2 + 2θ−3 )+
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−(2m+ 4MH + 2MT ) cos(θ−1 − θ
−
2 ),

A12 =
1

den
m, A13 = 0,

A21 =
1

den
[m− (4m+ 4MH + 2MT ) cos(2θ−1 − 2θ−2 )+

2MT cos(2θ−1 − 2θ−3 )],

A22 =
1

den
[2m cos(θ−1 − θ

−
2 )], A23 = 0,

A31 =
1

lden
[(2mr + 2MHr + 2MT r) cos(θ−1 − 2θ−2 + θ−3 )+

−2MHr cos(−θ−1 + θ−3 )− (2mr + 2MT r)

cos(−θ−1 + θ−3 ) +mr cos(−3θ−1 + 2θ−2 + θ−3 ),

A32 = − 1

lden
rm cos(−θ−2 + θ−3 ), A33 = 1,

den = −3m− 4MH − 2MT + 2m cos(2θ−1 − 2θ−2 )+

2MT cos(−2θ−2 + 2θ−3 ).
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