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Abstract 24 

The verification of the geographical origin of extra virgin (EVOO) and virgin olive oil (VOO) is crucial to protect 25 

consumers from misleading information. Despite the large number of studies performed, specific markers are 26 

still not available. The present study aims to evaluate sesquiterpene hydrocarbons (SHs) as markers of EVOO 27 

geographical origin and to compare the discrimination efficiency of targeted profiling and fingerprinting 28 

approaches. A prospective study was carried out on 82 EVOOs from seven countries, analyzed by Headspace 29 

Solid Phase Microextraction-Gas Chromatography-Mass Spectrometry (HS-SPME-GC-MS). Classification models 30 

were developed by Partial Least Square-Discriminant Analysis (PLS-DA) and internally validated (leave 10%-out 31 

cross-validation). The % of correct classification was higher for the fingerprinting (100%) than for the profiling 32 

approach (45.5-100%). These results confirm the suitability of SHs as EVOO geographical markers and establish 33 

the fingerprinting as the most efficient approach for the treatment of SH analytical data with this purpose up to 34 

date. 35 

Keywords 36 

Fingerprinting; Geographical origin; Virgin Olive Oil; Sesquiterpene; Food authentication.  37 
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1. Introduction 38 

As reported by EU Parliament (Parliament Resolution EU No 2013/2091 (INI)), the cases of food fraud reduce the 39 

confidence of consumers in the food chain, compromising its global image and causing a negative influence in 40 

the food sector. EU Regulation No 29/2012 states as mandatory the country of origin in labeling extra virgin olive 41 

oil (EVOO) and virgin olive oil (VOO) to inform the consumer regarding their geographical origin. The geographical 42 

origin reported in the label refers to i) a single EU Member State or third country, ii) oil blends of European Union 43 

or non-European Union origin, or iii) certain protected designations of origin or protected geographical 44 

indications according to EU Regulation (Regulation (EU) No 1151/2012). The verification of conformity of the 45 

label-declared geographical origin of EVOO and VOO plays a key role, not only to protect consumers from 46 

misleading information and restore their confidence in the product, but also to detect and prevent fraudulent 47 

practices and increase the competitiveness of the sector. A large number of studies have been performed trying 48 

to face up the EVOO geographical authentication. They have been based on several chemical compounds such 49 

as triacylglycerols, fatty acids, phenolic compounds, pigments, sterols and volatile compounds, by applying 50 

different analytical techniques as well as chemometric approaches (Bajoub, Bendini, Fernández-Gutiérrez & 51 

Carrasco-Pancorbo, 2018; Conte et al., 2019). However, it is known that the levels of some of these analytes 52 

change along EVOO shelf life (i.e. phenols and pigments) and others are related to olive oil quality/purity (i.e. 53 

volatile compounds), meaning that they can be affected by storage and processing factors (García-González & 54 

Aparicio, 2010). Other studies focused on the olive oil chemical fingerprint by stable Isotope Ratio Mass 55 

Spectrometry and Nuclear Magnetic Resonance (Alonso-Salces et al., 2015; Camin et al., 2016). Even though their 56 

results were promising by combining data from both analyses, they require smart instrumentation that is not 57 

often affordable for common control laboratories. For these reasons, we can state that there is room still for 58 

improvement in the development of EVOO and VOO geographical markers. 59 

To develop efficient tools for the geographical authentication of EVOO and VOO, it is necessary to identify the 60 

most robust markers and analytical approaches. To be reliable, geographical markers of food products should 61 

depend mainly climatic and agronomic factors linked to a specific area, while keeping the influence of other 62 
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factors to a minimal degree (Vichi, Tres, Quintanilla-Casas, Bustamante & Guardiola, 2018). Additionally, the 63 

determination of such markers for routine analysis should imply low cost, short times and automatable 64 

procedures.  65 

Recent studies reveal that sesquiterpene hydrocarbons (SHs) might act as valid markers to address the genetic 66 

and geographical origin of EVOO and VOO (Bortolomeazzi, Berno, Pizzale & Conte, 2001; Zunin, Boggia, Salvadeo 67 

& Evangelisti, 2005; Vichi, Guadayol, Caixach, Lopez-Tamames & Buxaderas, 2006; Vichi, Lazzez, Grati-Kamoun, 68 

Lopez-Tamames & Buxaderas, 2010; Damascelli & Palmisano, 2013). SHs are semi-volatile plant metabolites 69 

comprising an extremely wide number of compounds in nature. In EVOO and VOO, SH composition is highly 70 

dependent on the olive trees’ cultivar and growing area, and scarcely influenced by other factors such as oil 71 

extraction conditions and storage (Vichi et al., 2018). The effect of agronomic and pedoclimatic conditions on 72 

olive oil SHs has been proven by the fact that significant differences in the SH composition have been found 73 

between samples from the same cultivar produced in different geographical areas (Ben Temime, Campeol, Cioni, 74 

Daoud & Zarrouk, 2006; Youssef et al., 2011; Vichi et al., 2015) and also between EVOOs from different cultivars 75 

grown in the same parcel did (Vichi et al., 2010). However, the suitability of SHs as geographical markers in a 76 

realistic scenario should be tested with olive oils from different geographical areas under the usual production 77 

practices, implying the use of monovarietal oils from typical olive cultivars as well as their usual market blends, 78 

as addressed by some studies (Zunin et al., 2005; Damascelli & Palmisano, 2013).  79 

In the last years, the analysis of SHs has evolved from time-consuming methods (Bortolomeazzi et al., 2001) to 80 

simpler methods based on the analysis of the volatile fraction such as solid phase microextraction (SPME) (Vichi 81 

et al., 2006), allowing further studies of these compounds in EVOOs and VOOs and considering their use as 82 

possible authenticity markers. 83 

Concerning the analytical approach, the traditional way to assess these semi-volatile compounds is based on a 84 

target-type analysis to identify and determine the SH profile of samples. This approach involves a peak 85 

identification step, which presents some difficulties because the mass spectra of these analytes contain the same 86 
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specific ions in different proportions, which causes that many SHs have not been identified yet. Consequently, 87 

under a targeted profiling approach, as defined by Ballin and Laursen (2019), part of the information is ignored. 88 

Nowadays, the emerging strategy in food authentication consists in finding specific patterns in highly 89 

dimensional analytical data, known as fingerprints, which might be based directly in raw analytical signals such 90 

as a chromatogram (Berrueta, Alonso-Salces & Heberger, 2007; Bosque-Sendra, Cuadros-Rodriguez, Ruiz-91 

Samblas & de la Mata, 2012; Melucci et al., 2016; Ballin & Laursen, 2019). When these distinctive patterns are 92 

specific to a given food category (such as a particular geographical origin) and can be used to verify its 93 

authenticity. Under the fingerprinting approach, since peak identification and quantitation are not necessary, 94 

some of the drawbacks related with the targeted profiling approach mentioned above are overcome. Besides, 95 

since the full analytical data is used, more information is considered and misclassifications are revealed easier. 96 

With the aim to evaluate the suitability of SHs as geographical markers for EVOO and VOO under real production 97 

conditions we carried out a prospective study on EVOOs from seven different geographical origins, comprising 98 

monovarietal oils as well as market blends of oils from various cultivars typically produced in these origins. The 99 

SHs were determined by HS-SPME and gas chromatography-mass spectrometry (GC-MS) and data was evaluated 100 

under targeted (profiling) and non-targeted (fingerprinting) analytical approaches with the aim to compare their 101 

discrimination-efficiency in the verification of the geographical origin.  102 

 103 

2. Material and Methods 104 

2.1. Sampling 105 

A total of 82 authentic and traceable samples, declared as EVOO by the suppliers, were obtained in the 106 

framework of OLEUM project (EC H2020 Programme 2014-2020) from seven different EU and non-EU countries: 107 

Croatia (HRV) (n=11); Slovenia (SVN) (n=8); Spain (ESP) (n=17); Italy (ITA) (n=15); Greece (GRC) (n=6); Morocco 108 

(MAR) (n=15) and Turkey (TUR) (n=10). With the aim of reflecting the real production scenario, EVOO samples in 109 

this prospective study were obtained under usual production practices for commercial purposes, and thus 110 
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consisted of both monovarietal oils as well as market blends of olive cultivars typical of each geographical origin 111 

(Supplementary material, Table S1).  112 

2.2. Headspace-Solid Phase Microextraction (HS-SPME) 113 

SHs present in EVOO were analyzed using a Triplus autosampler (Thermo Fischer Scientific, Bremen, Germany) 114 

at the conditions reported by Vichi et al. (2006). Shortly, 2 g of oil was weighed into a 10 mL vial fitted with a 115 

silicone septum and kept at 70 °C under agitation. After 10 min of sample conditioning, a 116 

divinylbenzene/carboxen/polydimethylsiloxane (DVB/CAR/PDMS) fiber (2 cm length, 50/30 m film thickness) 117 

was exposed during 60 min to the sample headspace and then desorbed for 10 min in the GC injection port (260 118 

° C). The thermal stability of SHs at these SPME conditions was previously verified (Vichi et al., 2006). During the 119 

desorption step, the injector was maintained in split-less mode during 5 min. Oil samples were previously spiked 120 

with a standard solution of indene to a final concentration of 10 µg/kg. 121 

2.3. Gas Chromatography-Mass Spectrometry (GC-MS) 122 

Separation and detection of volatile compounds was performed by GC coupled to an ion trap mass selective 123 

spectrometry using a ThermoFinnigan Trace GC equipped with an ITQ MS (Thermo Fisher Scientific, Waltham, 124 

MA) using helium as carrier gas at a constant flow of 1.3 mL min-1. Analytes were separated on a Supelcowax-10 125 

(Supelco, Bellefonte, PA) 60 m x 0.25 mm i.d., 0.25 μm film thickness. Column temperature was held at 40 °C for 126 

3 min, increased to 75 at 4 °C min-1, then to 200 at 8 °C min-1 and to 260 °C at 15 °C min-1, holding the last 127 

temperature for 2 min. The temperatures of the ion source and the transfer line were 200 and 275 °C, 128 

respectively. Mass spectra were recorded with a scan event time of 0.37 s; electron energy was 70 eV. Acquisition 129 

in the complete scanning mode (SCAN) was in the range m/z 40-300, to allow the identification of compounds in 130 

EVOO samples. 131 

2.3. Data processing 132 

2.3.1. Profiling approach 133 

Compounds were identified by comparing their mass spectra and retention times to those of the standard 134 

compounds, or the ones available in the NIST 2.0 mass spectrum library and in the literature. Non-isothermal 135 
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linear retention indices (LRI), using the definition of Van den Dool and Kratz (1963), were calculated and 136 

compared with those available in the literature (Supplementary material, Table S2).  137 

Several common ions, only differing in their proportions, characterize the mass spectra of SHs. Therefore, a 138 

quantitative assessment of SHs was carried out in Extracted Ion Chromatogram (EIC) by selecting the following 139 

ions: m/z 69, 93, 107, 119, 135, 157, 159, 161, 189, 200, 202 and 204. The selection of quantification ions was 140 

done according to Vichi et al. (2006) and the confirmation ions were the molecular ions m/z 204, 202 or 200. 141 

Quantification was carried out by internal standard, considering a response factor equal to 1, and expressed as 142 

µg equivalents of IS/kg of oil (Supplementary material, Table S2). According to Vichi et al. (2006), both SH and 143 

monoterpenes may be taken into consideration to be studied as genetic or geographic markers of virgin olive oil 144 

origin. However, monoterpene content suffers higher variability due to their low-boiling point compared with 145 

sesquiterpenes, introducing variability not related to the origin into the model (data not shown). Since models 146 

developed with sesquiterpene data were successful, it was not considered necessary to also include 147 

monoterpenes. 148 

2.3.2. Fingerprinting approach 149 

The EIC of specific SH ions (m/z 93, 107, 119, 135, 157, 159, 161, 189 and 204) were obtained from the Total Ion 150 

Current (TIC). The intensities of scans comprised from 18th to the 30th minute (2467 scans) were considered for 151 

each ion (2467 scans x 9 ions = 22,203 variables per sample). To solve the retention time shifting, for each 152 

selected ion the EICs of the 82 samples were aligned by icoshift algorithm in Matlab® (Tomasi, Savorani & 153 

Engelsen, 2011). Once aligned, the 9 matrices of the 9 aligned EICs were concatenated conforming a two-way 154 

unfolded matrix (82 samples x 22,203 variables). 155 

2.3.3. Chemometrics 156 

Univariate statistical analysis for the profiling approach was carried out with SPSS software v25© (IBM Corp., NY 157 

USA). A one-way ANOVA was applied: F test and Tukey multiple comparisons test were used when variances 158 

were equal between groups. Instead, Welch test and Games-Howell multiple comparisons test were applied 159 

when groups presented unequal variances. P<0.05 was considered significant.  160 
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Multivariate analysis of profiling and fingerprinting approaches was performed with SIMCA software v13.0© 161 

(Umetrics AB, Sweden). After data pre-processing (log10, mean centering and scaling for the target data; first 162 

derivative, log10, mean centering and scaling for the fingerprint data), a Principal Component Analysis (PCA) was 163 

developed for both profile and fingerprint data to explore the natural grouping of samples and detect potential 164 

outliers (according to Hotelling’s T2 range and distance to the model parameters). Partial Least Square-165 

Discriminant Analysis (PLS-DA) classification models were built with data obtained by profiling (34 variables) and 166 

fingerprinting analysis (22,203 variables) to verify the geographical origin of EVOO samples coming from 7 167 

different countries: HRV, SVN, ESP, ITA, GRC, MAR and TUR. PLS-DA is a supervised discriminant technique based 168 

on finding the maximum correlation between the data (the SH profile or the SH fingerprint) and each of the 169 

categories (each of the seven countries of origin). By doing this, PLS-DA finds the most different features between 170 

categories while minimizing those variables not related with a given category. The models were internally 171 

validated by leave 10% out cross-validation and the number of latent variables of PLS-DA models were selected 172 

according to the lowest RMSEcv value. Model successfulness was evaluated by their prediction power (Q2 value) 173 

and the % of correct classifications. Random behavior and model over-fitting were assessed through the ANOVA 174 

on the cross-validated predictive residuals (p-value) and the permutation test, in which the prediction power (Q2 175 

value) of 20 models developed after randomizing sample categories (countries) was compared with that of the 176 

original model. 177 

3. Results and Discussion  178 

3.1. Profiling approach  179 

The chromatograms obtained extracting typical SH ions from the TIC, showed an extremely complex fraction 180 

(Figure 1). As commented above, the identification of SHs is a challenging task because they present very similar 181 

mass spectra. Despite this fact, a total of 34 peaks were included in the SH profile; 23 of them were assigned to 182 

previously reported SH (Bortolomeazzi et al., 2001; Vichi et al., 2006) while the remaining ones were not found 183 

in literature but could be related to SH compounds based on their mass spectra. The quantitative data of these 184 

SHs, expressed as g equivalents of IS/kg of oil, were used to perform the univariate statistical analysis by a one-185 
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way ANOVA (Supplementary material, Table S2). Although some differences were found for some SHs, the high 186 

intra-class and inter-class variability caused that this univariate approach was not successful in distinguishing the 187 

various origins and that specific markers of origin could not be directly found.  188 

Multivariate techniques under a profiling and a fingerprinting approach were assayed in order to better explore 189 

the differences between samples from different countries. In the profiling approach, after data pre-treatment 190 

and PCA exploration, no outliers were detected. Therefore, the PLS-DA classification model for the targeted data 191 

was developed with all the samples (n=82) (Figure 2a).  After various pre-processing techniques assayed, the 192 

model on the log10, mean centering and data scaling to unit variance was the most successful, and with 8 latent 193 

variables it achieved the lowest global RMSEcv for most of the categories.  194 

Table 1 shows the classification results obtained from cross-validation by leave 10%-out and the respective 195 

RMSEcv values for each class. The model rendered good percentages of correct classification for samples from 196 

certain geographical origin, such as SVN (100%), TUR (100%) and MAR (93.3%). However, in the case of oils from 197 

the rest of the countries, it generated some misclassifications, particularly in the case of HRV (45.5%), resulting 198 

in a non-satisfactory model. This agrees with the fact that the global Q2 score (0.351) was low, which indicates a 199 

low prediction power of the present classification model. On the other hand, the ANOVA p-value (0.013) indicates 200 

that the model is significant and thus, that the classification is not at random. Also, the Q2 values of the 201 

permutation test for each category were below 0 indicating the absence of a random classification and of model 202 

overfitting.  203 

As aforementioned, the target analysis is limited to the number of compounds that can be identified or 204 

tentatively identified based on their mass spectrum and linear retention index (LRI). However, the 205 

chromatograms obtained by extracting typical terpene fragment ions (Figure 1) show that the SH fraction is much 206 

more complex, and that many SHs might have not been considered, meaning that the profiling approach might 207 

have missed part of the information of the SHs profile.   208 

3.2. Fingerprinting approach 209 
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With the aim to extract exhaustive information from the SH fraction in EVOO, a non-target fingerprinting analysis 210 

was evaluated. All data points obtained from the selected region of each SH specific EIC were used as variables 211 

so that every signal related to SH was taken into account by the model.  212 

The two-way unfolded matrix obtained (82 samples x 22,203 variables) was subjected to data pre-processing and 213 

PCA exploration, in which any outlier was detected. Then, a PLS-DA classification model was performed. The 214 

model leading to the lowest RMSEcv used 6 latent variables (Figure 2b). In this case, the sample grouping 215 

according to the origin was drastically improved compared to the profiling model. A 100% of correct classification 216 

(by leave 10%-out cross-validation) was obtained for each of the 7 countries of origin (Table 1). ANOVA p-value 217 

(1.6e-18) indicated that the model was significant and excluded a random classification. Results from the 218 

permutation test were very satisfactory, with Q2 values below 0.2, suggesting that the optimized classification 219 

model was not over-fitted.  220 

The successful classification results obtained under this approach agreed with the fact that the sub-models for 221 

each geographical origin found patterns of the SH fingerprint that were characteristic of each of them, as 222 

revealed by the regression coefficient plots (Supplementary material, Figure S1). To illustrate this, a section of 223 

EIC for m/z 119 of TUR samples (Figure 3a) is plotted against the corresponding regression coefficients of the 224 

SHs fingerprint of TUR sub-model (Figure 3b). It reveals that some of the highest regression coefficients 225 

corresponded to peaks (i.e. peaks 7, 9, 13 and 17) that had been quantified with the m/z 119 and included in the 226 

profiling model. Nevertheless, other significant regression coefficients were related with parts of the EIC that 227 

had not been included in the profiling approach, such as minor SHs or not well-resolved peaks. Thus, this explains 228 

the higher discrimination power of the fingerprinting approach compared to the profiling approach. 229 

This prospective study sets SHs as successful EVOO geographical markers because even if various monovarietal 230 

EVOOs and EVOO cultivar blends were included for each geographical origin (Supplementary material, Table S1), 231 

the country of origin was correctly verified. This is because PLS-DA was supervised per geographical origin 232 

(country), and thus the model was addressed to focus on the SHs features more related to the geographical area, 233 

beyond the cultivar. This means that the PLS-DA model finds features that are common between samples from 234 
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the same region even if they are from different cultivars. In this way, even if in some cases the same cultivar was 235 

present in different countries [‘Arbequina’, ‘Leccino’ and ‘Istrska belica’ (Figures 4a, 4b and 4c, respectively)], 236 

the model correctly classified the samples into the country of origin. This is especially relevant because it is known 237 

that genetic factors influence EVOO’s SH profile (Guinda, Lanzon & Albi, 1996; Osorio-Bueno, Sanchez-Casas, 238 

Montaño García & Gallardo González, 2005; Vichi et al., 2010). However, here, thanks to the sampling design 239 

and to the ability of PLS-DA to extract information from the fingerprint correlated with the discriminated 240 

characteristic (origin in this case), the influence of pedoclimatic aspects on SHs could be exploited.   241 

On the other hand, it is noteworthy that although the model was supervised per country of origin, it naturally 242 

grouped samples into smaller sub-regions within the same country (although the sub-region information had not 243 

been provided to the model). Figure 5 illustrates this behavior by exemplifying the case of Italian and Turkish 244 

oils, where samples from Tuscany, Sicily and Apulia (Figure 5a), and samples from North Aegean, Germencik and 245 

Antakya (Figure 5b), respectively, conform independent clusters within each class. This entails that the SH 246 

fingerprint holds similar traits among samples from regions smaller than a country and sets a promising scenario 247 

for downscaling the model to verify the geographical origin of EVOO produced in smaller regions of interest such 248 

as those from protected designations of origin (PDO) or protected geographical indications (PGI).  249 

4. Conclusions 250 

This prospective study focused on the suitability of SHs as EVOO geographical markers and the evaluation of the 251 

best approach for data processing, allowed us i) to confirm that SH can be successfully used for the verification 252 

of EVOO geographical origin, ii) to state that the fingerprinting approach provided a model with a higher 253 

discrimination capacity (100% correct classification) with respect to the targeted profiling one (from 46 to 100% 254 

correct classification, depending on the country). It is remarkable that this classification rate was achieved under 255 

a real scenario of EVOO global production, which implied the use of various monovarietal and blends of oils from 256 

cultivars typically produced and marketed in each country. Also, samples from the same olive cultivar coming 257 

from different countries were correctly classified according to the geographical origin Moreover, as the SH 258 

fingerprint holds similar traits among samples from sub-regions within a country, it sets a promising scenario for 259 
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downscaling the model to smaller regions of interest such as PDO or PGI oils, as well as for challenging model 260 

robustness with samples for various harvest years. Actually, evaluating the effect of the harvest year has been 261 

shown to be crucial for some authentication models developed for EVOO verification, because as reviewed by 262 

Tres et al. (2013) the differences in the climatic conditions might affect EVOO composition.    263 

Overall, we can conclude that the successfulness of the model is the result of a conjunction of factors: i) 264 

sesquiterpenes are suitable geographical markers, ii) the use of the sesquiterpene fingerprint permits to exploit 265 

all the information obtained during the analysis in contrast of the target approach, and iii) PLS-DA finds features 266 

in the sesquiterpene fingerprint that are common between samples from the same region even if they belong to 267 

different cultivars. Although we are aware that an increment of samples (with more samples from these and 268 

other origins, and from different harvest years) and external validation are still necessary to develop a more 269 

robust and elaborated model for the classification of samples according to their geographical origin, these 270 

preliminary results confirm the suitability of SHs as geographical markers and set the basis for the most efficient 271 

approach for the treatment of SH analytical data with this purpose up to date.  272 
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Figure captions 392 

Figure 1. Extracted ion chromatograms of sesquiterpene hydrocarbons: a) Quantification ions; b) Confirmation 393 

ions (molecular ions), obtained by analysing an extra virgin olive oil from Spain by HS-SPME-GC-MS.  394 

Figure 2. Score scatter plot (first 3 latent variables) of classification models (PLS-DA) developed by country of 395 

origin, based on extra virgin olive oil sesquiterpene data by applying a) profiling approach (34 variables); b) 396 

fingerprint approach (22,203 variables). HRV: Croatia, SVN: Slovenia, ESP: Spain, ITA: Italy, GRC: Greece, MAR: 397 

Morocco and TUR: Turkey. 398 

Figure 3. a) Section of m/z 119 EIC (from 23.8 to 27 min) of Turkish extra virgin olive oils by HS-SPME-GC-MS; b) 399 

PLS regression coefficients of the fingerprinting classification model, resulting from each data point in Figure 3a 400 

vs. ‘Turkey’ category (the highest coefficients are in red). Peaks considered in the profiling approach are: 7: α-401 

bergamotene; 8: β-gurjunene; 9: β-caryophyllene; 13: non-identified sesquiterpene; 17: α-zingiberene; 18: 402 

germacrene D; 21: (E,E)- α-farnesene; 24: δ-cadinene. 403 

Figure 4. Score scatter plot (first 3 latent variables) of sesquiterpene fingerprint classification model (PLS-DA) 404 

supervised by geographical origin, showing how extra virgin olive oils (EVOO) from the same olive cultivar cluster 405 

according to the country of origin: a) ‘Arbequina’ EVOOs produced in Italy (ITA), Spain (ESP) and Morocco (MAR); 406 

b) ‘Leccino’ EVOOs produced in Italy (ITA) and Croatia (HRV); c) ‘Istrska belica’ EVOOs produced in Croatia (HRV) 407 

and Slovenia (SVN). 408 

Figure 5. Score scatter plot (first 3 latent variables) of sesquiterpene fingerprint classification model (PLS-DA)  409 

supervised by country of origin, exemplifying the grouping of extra virgin olive oils  into sub-regions of origin: a) 410 

samples from Italy (ITA); b) samples from Turkey (TUR). 411 

 412 

 413 
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Table 1. Misclassification results of classification models (PLS-DA) developed with Extra Virgin Olive 
Oil sesquiterpene profile (34 variables; log10, mean centering and scaling to unit variance; 8 latent 
variables) and extra virgin olive oil sesquiterpene fingerprint (22,203 variables; 1st derivative, log10, 
mean centering and scaling to unit variance; 6 latent variables), cross-validated by leave 10%-out.  

   Members  
Correct 

classification  
HRV  SVN  ESP  ITA  GRC  MAR  TUR  

No class  
(YPred < 0.5)  

RMSEcv  

Profilinga            

HRV  11  45.5%  5  0  0  0  0  0  0  6  0.28  

SVN  8  100%  0  8  0  0  0  0  0  0  0.22  

ESP  17  58.8%  0  0  10  0  0  0  0  7  0.38  

ITA  15  53.3%  0  0  1  8  0  0  0  5  0.39  

GRC  6  50%  0  0  0  0  3  0  0  3  0.25  

MAR  15  93.3%  0  0  0  0  0  14  0  1  0.26  

TUR  10  100%  0  0  0  0  0  0  10  0  0.17  

Total  82  73.7%  5  8  11  8  3  14  10  22    

Fingerprintingb            

HRV  11  100%  11  0  0  0  0  0  0  0  0.25  

SVN  8  100%  0  8  0  0  0  0  0  0  0.23  

ESP  17  100%  0  0  17  0  0  0  0  0  0.32  

ITA  15  100%  0  0  0  15  0  0  0  0  0.33  

GRC  6  100%  0  0  0  0  6  0  0  0  0.23  

MAR  15  100%  0  0  0  0  0  15  0  0  0.26  

TUR  10  100%  0  0  0  0  0  0  10  0  0.19  

Total  82  100%  11  8  17  15  6  15  10  0    

Abbreviations used: HRV: Croatia, SVN: Slovenia, ESP: Spain, ITA: Italy, GRC: Greece, MAR: Morocco; TUR: 
Turkey; RMSEcv: Root Mean Square Error of cross-validation. 
a Profiling PLS-DA model: Q2: 0.351; ANOVA p-value: 0.013;  
b Fingerprinting PLS-DA model Q2: 0.561; ANOVA p-value: 1.6e-18.  
 



Highlights 

 Geographical authentication models developed with virgin olive oil sesquiterpene (SH) 

data 

 The suitability of SH as virgin olive oil geographical markers was confirmed 

 Better classification by SH fingerprinting (100%) than by profiling (46-100%) 

 SH fingerprinting set a promising scenario for downscaling the model to smaller 

regions 

 The efficiency of the model by geographical origin was independent from the cultivar 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure S1. PLS regression coefficients of fingerprinting PLS-DA classification model, resulting from each data point of the m/z 119 
EIC vs each country of origin: a) Croatia (HRV); b) Slovenia (SLO); c) Spain (ESP); d) Italy (ITA); e) Greece (GRC); f) Morocco (MAR) 
and g) Turkey (TUR). The highest coefficients are in red. 

a. b. 

c. d. 

e. f. 

g. 



Table S1. List of EVOO cultivars per country included in the 
sampling of monovarietal and cultivar blends. 

 

 

 

Country EVOO variety (monovarietal and cultivar blends) 
Croatia (HRV, n=11) Buza puntoza 
 Istrska belica 
 Oblica 
 Picholine 
 Ascolana tenera / Itrana / Frantoio blend 
 Buza puntoza / Rosijnola / Bova blend 
 Leccino / Pendolino blend 
 Picholine / Leccio del Corno blend 
 Plominka/Simjaca 
Slovenia (SVN,n=8) Istrska belica 
 Istrska belica / Leccino / Maurino blend 
 Istrska belica / Leccino / other varieties blend 
Spain (ESP, n=17) Arbequina 
 Hojiblanca 
 Manzanilla 
 Picual 
 Arbequina / Hojiblanca blend 
 Hojiblanca / Picual blend 
Italy (ITA, n=15) Arbequina 
 Biancolilla 
 Castiligionese 
 Coratina 
 Frantoio 
 Coratina / Ogliariola blend 
 Leccino / Frantoio / Moraiolo blend 
 Leccino / Frantoio / Pendolino blend 
 Nocellara del Belice 
 Nostrana di Brisighella 
Greece (GRC, n=6) Arbequina 
 Koroneiki 
 Manaki 
Morocco (MAR, n=15) Arbosana 
 Arbequina 
 Koroneiki 
 Picholine 
 Picholine / Hojiblanca blend 
Turkey (TUR, n=10) Ayvalik 
 Domat 
 Memecik 
 Ayvalik / Domat blend 
 Karamani / Hasebi blend 
 Memecik / Gemlik blend 



Table S2. Characterization of sesquiterpene hydrocarbons in samples: quantification and confirmation ions, Linear Retention Index (LRI) of identified compounds in comparison 
to those reported in literature and mean values with standard deviation calculated by country between parentheses. Significant statistical differences between groups (by ANOVA) 
are shown. Compounds have been tentatively identified by mass spectra and retention indices. 

 
 Compound Iona  MWb LRI Calc.c LRI Liter.d HRV (n=11) SVN (n=8) ESP (n=17) ITA (n=15) GRC (n=6) MAR (n=15) TUR (n=10) Sig.e 

  m/z m/z   µg eq. IS/kg µg eq. IS/kg µg eq. IS/kg µg eq. IS/kg µg eq. IS/kg µg eq. IS/kg µg eq. IS/kg  

1 α-cubebene 161 204 1481 1461g 

1481h 

2.6 (2.5) y 2 (0.8) xy 3 (1.9) y 1.7 (2.8) xy 0.5 (0.4) xy 0.4 (0.4) x 1.5 (1.0) xy ** 

2 Cyclosativenef 161 204 1512 1485g 63.6 (48.8) y 131 (33.2) z 31.6 (37.7) xy 39.6 (37.1) y 11.8 (8.7) xy 4.1 (4.4) x 63.6 (68.5) xyz ** 
3 α-copaene 161 204 1519 1496g 

1497i 

540.7 (419.2) 1144.8 (296.2) 889.4 (2990) 330.6 (369.3) 61.5 (44.9) 30.5 (38.9) 549.5 (562.7)  

4 α-cedrenef 119 204 1551 1542g 1.1 (1) x 1.2 (0.4) y 7.9 (5.3) z 3.2 (4.4) xyz 0.2 (0.4) x 8.4 (9.3) z 201.4 (246.4) xyz ** 
5 ni1f 161 204 ni ni 0.7 (0.7) xy 1.5 (0.4) y 0.2 (0.5) x 0.3 (0.5) x 0.1 (0.2) x 0.1 (0.2) x 0.5 (0.3) x ** 
6 β-cubebenef 161 204 1495 1521j 1.5 (0.6) z 1.2 (0.6) yz 0.2 (0.4) x 0.5 (0.7) xy 0.1 (0.1) x 0.1 (0.1) x 3.4 (6.4) xyz ** 
7 α-bergamotenef 119 204 1604 1585j 

1592g 

4.2 (3.1) xy 3.4 (1.5) y 9.9 (6) z 5.7 (7.2) xyz 1 (0.4) x 2.1 (2.5) xy 117.5 (139.3) xyz ** 

8 β-gurjunenef 161 204 1627 1600g 13.9 (9.7) xz 25 (6.7) z 6 (8.4) xy 7.6 (8.3) xy 0.8 (0.6) xy 0.6 (0.3) x 2.7 (1.8) y ** 
9 β-caryophyllenef 119 204 1634 1592j 

1612i 

3.2 (2.8) xyz 1.7 (0.3) y 1.7 (0.6) xy 1.7 (0.9) y 2 (1.3) xyz 0.7 (0.5) x 3.0 (0.8) z ** 

10 ni2f 161 204 ni ni 1 (2.1) xy 0.4 (0.1) y 0.2 (0.5) xy 0.2 (0.1) x 0.1 (0.1) x 0.1 (0.0) x 0.4 (0.1) y ** 
11 (Z)-β-farnesenef 69 204 1649 1652g 2.9 (1.9) 3.4 (1.3) 3 (1.4) 2.6 (1.5) 7.5 (6.0) 2.4 (2.0) 4.5 (1.6)  
12 (E)-β-farnesenef 69 204 1673 1644j 

1672g 

1.5 (1) x 1.2 (0.3) x 3.5 (1.6) yz 2.2 (1.2) xy 9.1 (13.1) xyz 1.8 (1.5) xy 5.7 (2.1) z ** 

13 ni3f 119 204 ni ni 5.8 (2.4) y 3.6 (0.5) y 5 (2.5) y 3.5 (1.6) y 1.6 (0.6) x 2.4 (2.2) xy 27.3 (34.0) xy ** 
14 γ-gurjunenef 189 204 1696 1675g 1.2 (1.5) xy 2.8 (0.7) y 0.7 (0.6) x 0.7 (0.6) x 0.7 (0.7) x 0.2 (0.2) x  2.2 (0.8) y ** 
15 β-acoradienef 161 204 1712 1693i 1.4 (0.7) y 0.9 (0.3) xy 0.8 (0.5) xy 0.8 (0.5) xy 1.0 (0.6) xy 0.5 (0.7) x 35 (29.3) y ** 
16 γ-muurolenef 161 204 1721 1692h 7.9 (5.7) yz 12.7 (3.2) z 3.3 (3.7) vwxy 4.1 (4.0) wxy 0.6 (0.6) vwx 0.3 (0.4) v 1.3 (0.7) w ** 
17 α-zingiberenef 119 204 1715 1721j 

1728h 

5.2 (3.9) 4.6 (1.1) 3.6 (3.7) 3.3 (2.5) 4.5 (4.6) 2.9 (3.8) 16.8 (12.3)  

18 Germacrene Df 161 204 1736 1718h 

1726i 

1.8 (1.4) x 1.2 (0.2) x 1.8 (2.0) x 1.1 (1.1) x 3.4 (3.8) xy 2.0 (2.5) x 17.2 (12.3) y * 

19 Valencenef 161 204 1751 1757g 23.1 (26.7) xy 16.9 (7.5) y 5.4 (2.7) x 13.9 (10.0) xy 27.5 (20.0) xy 11.9 (13.2) xy 26.8 (17.3) y ** 
20 α-muurolenef 161 204 1736 1721j 146.8 (101.5) yz 230 (94.3) z 51 (65.6) xy 71.2 (75.2) xy 6.4 (3.9) x 5.2 (4.4) x 121 (124.9) xyz ** 
21 (E,E)- α-farnesenef 93 204 1760 1751j 

1757g 

80.8 (91.8) xy 30.2 (14.4) xy 68.9 (84.3) xy 56 (68.9) xy 17 (18.4) x 26.5 (25.6) x 371.8 (295.3) y ** 



22 ni4 161 204 ni ni 2.8 (3.4 1.7 (0.7 1.5 (4.3) 1.2 (0.8) 3.6 (1.1) 2.3 (2.3) 3.6 (2.7)  
23 ni5f 93 204 ni ni nd nd 0.3 (0.2) nd 0.2 (0.5) 0.1 (0.2) 8 (8.1)  
24 δ-cadinenef 161 204 1788 1757j 

1771g 

9.7 (4.8) yz 13.5 (4.1) z 5.6 (3.4) y 5.5 (4.0) y 1.6 (1.0) x 1.4 (1.4) x 5.2 (4.5) xyz ** 

25 ni6f 161 204 ni ni 1 (0.5) xy 1 (0.4) xy 1.7 (0.8) y 1.3 (1.1) xy 0.4 (0.4) x 0.6 (0.6) x 4.3 (2.1) z ** 
26 ar-curcumenef 119 202 1798 1786g 5.8 (3.3) yz 2.7 (1.0) y 7.5 (4.2) z 4.3 (2.7) yz 1.4 (0.9) xy 2.8 (4.4) xyz nd x ** 
27 ni7f 161 204 ni ni 1.5 (2.1) xy 0.6 (0.2) y 1.4 (1.7) xy 1 (1.3) xy 0.6 (0.3) xy 0.4 (0.5) xy 0.3 (0.1) x ** 
28 ni8f 189 204 ni ni 4.1 (3.6) x nd x 4.9 (6.1) xy 3.7 (7.4) xy 5.8 (5.1) xyz 1.6 (2.3) xy 13.5 (4.2) z ** 
29 (Z)-calamenenef 159 202 1875 1842h 

1850g 

15.8 (4.5) z 18.3 (2.8 z 8.9 (4.7) y 8.1 (5.5) y 2.2 (1.7) x 1.8 (1.4) x 13 (4.0) yz ** 

30 ni9f 189 204 ni ni 1.4 (1.3) xy 0.7 (0.2 )x 2.3 (1.7) yz 1.5 (2.1) xy 9.5 (14.9) xyz 4.2 (6.4 xyz 4.0 (1.7) z ** 
31 ni10f 135 204 ni ni 8.6 (10.1) xy 3.5 (1.0) x 8.2 (9.1) xy 6.3 (6.7) xy 2.2 (1.8) x 3.3 (4.1) x 26.4 (19.4) y ** 
32 α-calacorenef 157 200 1930 1917g 3.0 (2.2) xy 1.8 (0.3) xy 3.4 (2.7) y 2.5 (1.5) xy 1.3 (1.1) xy 1.0 (1.2) x 11.5 (6.0) z ** 
33 ni11f 135 204 ni ni 10.8 (12.9) xy 4.3 (1.3) x 10.6 (12.6) x 8.2 (8.9) x 2.7 (2.4) x 3.8 (5.6) x 30.6 (15.6) y ** 
34 β-calacorenef 157 200 1967 ni 2.8 (1.6) yz 3.5 (0.9) z 1.7 (1.0) xy 1.6 (1.2) xy 0.9 (0.6) wx 0.4 (0.2) w 2.9 (1.8) xyz ** 

 

Abbreviations used: HRV: Croatia, SVN: Slovenia, ESP: Spain, ITA: Italy, GRC: Greece, MAR: Morocco; TUR: Turkey; ni: not identified compound; nd, not detected 
a Ion used for quantification 
b Molecular weight (confirmation ion) 
c Calculated linear retention indices 
d Literature linear retention indices 
e Significance value, according to one-way ANOVA: *, P≤0.05; ** P≤0.01 
f Unequal variances between groups: ANOVA performed with Welch test and multiple comparisons test carried out by Games-Howell test. 
g Vichi, S., Guadayol, J. M., Caixach, J., López-Tamames, E., & Buxaderas, S. (2006). Monoterpene and sesquiterpene hydrocarbons of virgin olive oil by headspace solid-phase microextraction coupled to 
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