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Abstract: Fault diagnosis of wind turbine systems is a challenging process, especially for offshore plants,
and the search for solutions motivates the research discussed in this paper. In fact, these systems must
have a high degree of reliability and availability to remain functional in specified operating conditions
without needing expensive maintenance works. Especially for offshore plants, a clear conflict exists
between ensuring a high degree of availability and reducing costly maintenance. Therefore, this paper
presents viable fault detection and isolation techniques applied to a wind turbine system. The design of
the so-called fault indicator relies on an estimate of the fault using data-driven methods and effective
tools for managing partial knowledge of system dynamics, as well as noise and disturbance effects.
In particular, the suggested data-driven strategies exploit fuzzy systems and neural networks that are
used to determine nonlinear links between measurements and faults. The selected architectures are based
on nonlinear autoregressive with exogenous input prototypes, which approximate dynamic relations with
arbitrary accuracy. The designed fault diagnosis schemes were verified and validated using a high-fidelity
simulator that describes the normal and faulty behavior of a realistic offshore wind turbine plant. Finally,
by accounting for the uncertainty and disturbance in the wind turbine simulator, a hardware-in-the-loop
test rig was used to assess the proposed methods for robustness and reliability. These aspects are
fundamental when the developed fault diagnosis methods are applied to real offshore wind turbines.

Keywords: fault diagnosis; analytical redundancy; fuzzy prototypes; neural networks; diagnostic
residuals; fault reconstruction; offshore wind turbine simulator

1. Introduction

Wind-generated energy is increasingly being used as a power source worldwide, and this has
resulted in the need for the enhanced reliability and so-called “sustainability” of wind turbines. Wind
turbine systems must continuously generate the required amount of electrical power, depending on
the available wind speed, grid demand, and possible malfunctions [1].

Therefore, potential faults affecting the process must be properly detected and managed before
causing the deterioration of the nominal working conditions of the plant or becoming critical issues.
Wind turbines with large rotors (i.e., of megawatt size) are very expensive systems; they should
be highly available and reliable in order to maximize the generated energy (at a reduced cost) and
minimize Operation and Maintenance (O&M) services. In fact, most of the cost of the produced energy
is from the installation cost of the wind turbine, but unplanned O&M costs could increase it by about
30%, particularly when offshore wind turbines are considered [2].

To this end, many wind turbine systems include conservative technologies that protect against
faults, which normally lead to a plant shutdown while awaiting O&M services. Hence, more effective
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solutions for managing faults are required to improve wind turbine features, particularly in faulty
situations. Such features would prevent critical failures that may affect other wind turbine components,
thus avoiding the unplanned replacement of functional parts and increased O&M costs.

It is beneficial to keep maintenance costs as low as possible, decrease downtime, and consequently
increase the amount of captured power and improve reliability despite the presence of faults [3]. Fault
Detection and Isolation (FDI) techniques are powerful methods for this purpose. The fault information
captured by FDI units can be used to optimize maintenance procedures via remote diagnosis [4].
The use of FDI renders the equipment robust to the considered faults and, as a result, maintains the
performance of the wind turbine at the desired level, even with the occurrence of faults. Therefore,
maintenance requirements and downtime will decrease, and the reliability of power generation will
improve. Therefore, the final cost is kept as low as possible [5,6].

FDI designs for wind turbines have been significantly developed over the last decade. Most
of the works in this field have been motivated by competitions conducted by kk-electronic a/c and
MathWorks from 2009–2016 [4,7]. Accordingly, the number of studies and consequent publications has
increased considerably, and the subject is intensively researched worldwide [8]. However, there are
only a few available review papers in this field [7,9].

Hardware redundancy involves equipping components, such as sensors and actuators,
with physically-identical counterparts to generate so-called residual signatures, which contain information
on the possible fault. This approach increases the weight, occupied space, data acquisition complexity,
and therefore, the final design cost. These issues are very problematic for offshore wind turbines.
In contrast, software redundancy or computer-based FDI techniques have been developed for wind
turbines throughout the last decade to overcome the aforementioned problems [1]. A mathematical model
of a wind turbine is used to generate redundant signals and, accordingly, residuals.

The most challenging issue, which should be considered in wind turbine FDI schemes,
is that wind speed is poorly measured by anemometers due to the spatial/temporal effective
wind speed distribution over the blade plane, turbulence, wind shear, and tower shadow effects.
Therefore, wind speed is considered an an unknown disturbance, as is the consequent aerodynamic
torque. Furthermore, FDI schemes should be robust to the considerable noise present in sensor
measurements [4,7].

The most commonly-adopted model-based FDI techniques for wind turbines are the parity
relation method and observer design [10]. However, these approaches require accurate mathematical
models to simulate the dynamic behaviors of the process under diagnosis [11]. These methods do
not require high-resolution signals, so there is no need for data acquisition hardware or installation
of additional sensors. However, it is quite challenging to design an effective model that mimics
real-world applications. Therefore, data-driven approaches, such as Neural Networks (NN) and fuzzy
inference systems, can be used for wind turbine FDI designs. In fact, these artificial intelligence systems
provide the best tools to represent the nonlinear and partially-known behavior of wind turbines [12].
The designed prototype is fed with actual/estimated inputs (i.e., those of the wind turbine) to generate
redundant outputs. Some other works have proposed the use of this data-driven learning scheme for
wind turbine FDI, and it has been considered and applied to different wind turbine components, e.g.,
gearboxes, generator faults, and pitch faults [10].

As an alternative approach, fault information can be directly extracted/inferred using this
method, which relies on the design of an accurate a priori knowledge-based network, e.g., Adaptive
Neuro-Fuzzy Inference System (ANFIS) or Fuzzy Inference System (FIS). Accordingly, expert
knowledge must be included in the design, whether for numerical rules or fuzzy if/then linguistic
rules. One of the advantages of fuzzy logic and fuzzy membership representation is that the uncertain
measurement of the wind speed provided by the anemometer can be directly used [8]. Classification
methods are also utilized for rotor imbalance/aerodynamic asymmetry fault diagnosis [13].

Therefore, the main contribution of this work is the development of viable and reliable solutions
for the fault diagnosis of an offshore wind turbine model. The design of fault-tolerant controllers is not
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considered in this paper, but it would likely rely on the same tools considered here. In fact, the fault
diagnosis module provides information on the faulty conditions of the system so that the controller
activity can compensate. In particular, the FDI task was accomplished here by using fault estimators,
which were obtained via these data-driven approaches, as they also offer effective tools for managing
limited knowledge of the process dynamics, together with noise and disturbance effects.

The first data-driven solution addressed in this paper relies on fuzzy Takagi–Sugeno models [14],
which are derived from a clustering algorithm, followed by an identification procedure [15]. The second
solution exploits NN to describe the nonlinear analytical links between measurement and fault signals.
The chosen network architecture belongs to the Nonlinear AutoRegressive with eXogenous (NARX)
input prototype, which can describe dynamic relationships over time. The training of the neural fault
estimators exploits a standard training algorithm that processes the acquired data [16].

The developed fault diagnosis strategies were verified by means of a high-fidelity simulator
that describes the normal and faulty behavior of a wind turbine plant. The achieved performances
were verified in the presence of uncertainty and disturbance effects, thus validating the reliability
and robustness features of the proposed schemes. Their effectiveness, which was further tested using
a Hardware-In-the-Loop (HIL) test rig, suggests further investigation of more realistic applications of
the proposed schemes.

It is worth noting the rationale underlying the proposal of these tools for the fault diagnosis of
wind turbines. When a mathematical description of a plant subject to diagnosis can be included in the
FDI design phase, model-based techniques yield the best performances. However, when modeling
errors and disturbances are present, the learning phase exploited by the considered data-driven
solutions leads to results that are better than those from model-based schemes. In fact, NN and fuzzy
models use the learning accumulated from data-driven offline simulations, even if the training stage
can be computationally heavy.

This work is organized as follows. Section 2 describes the offshore wind turbine simulator.
Section 3 illustrates the fault diagnosis methodologies that rely on fuzzy and NN prototypes.
The obtained results are summarized in Section 4, taking into account simulated and real-time
conditions. Finally, Section 5 ends the paper by outlining the key achievements of the study and
providing suggestions for future research issues.

2. Wind Turbine Simulator and Fault Model

The three-bladed horizontal-axis wind turbine model considered in this work follows the principle
that wind power activates the wind turbine blades, which leads to the rotation of the low-speed rotor
shaft. In order to increase its rotational speed to that which is generally required by the generator,
a gearbox with a drivetrain is included in the system. A more detailed description of this benchmark
is given in [7], and its schematic diagram is presented in Figure 1.

The wind turbine simulator has two controlled outputs, i.e., the generator rotational speed ωg(t)
and its generated power Pg(t). The wind turbine model is controlled by means of two actuated inputs,
i.e., the generator torque τg(t) and the blade pitch angle β(t). The latter signal controls the actuators of
the blades, which are implemented by hydraulic drives [7].

Several other measurements are acquired from the wind turbine benchmark: the signal ωr(t)
represents the rotor speed, and τr(t) is the reference torque. Moreover, the aerodynamic torque
signal τaero(t) is computed from the wind speed v(t), which is usually available with limited accuracy.
In fact, the wind field is not uniform around the wind turbine rotor plane, especially for large rotor
systems. Moreover, anemometers measuring this variable are mounted behind the rotor on the nacelle.
Therefore, the wind speed measurement vw(t) is affected by the interference between the blades
and the nacelle, as well as the turbulence around the rotor plane. The alteration of the wind speed
measurement vw(t) with respect to its nominal value around the rotor plane represents an uncertainty
in the wind turbine model and a disturbance term in the control design [7].
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Finally, as sketched in Figure 1, the signals generated by the wind turbine system are assumed
to be acquired through the measurement block, whose objective is to simulate the real behavior of
the sensors and actuators. Therefore, the measured signals are modeled as the sum of their actual
values and white Gaussian process terms. Moreover, the wind turbine simulator includes a baseline
controller, represented by standard PID regulators that regulate the generated power on the basis of
the actual wind speed, as shown in [4,7].

Measurements

Wind turbine

Blade &
pitch

Drive-train

Generator

�

w

� �r r,

� �, gg

Baseline
controller

vWind
process

�
ref

g, ref
�

g,m g,m r,m r,m m�� �� �

SensorsRegulator

Figure 1. Scheme of the offshore wind turbine simulator.

The wind turbine simulator also includes the generation of three different typical fault cases:
sensor, actuator, and system faults [4,7]. The sensor faults are generated as additive signals on the
affected measurements. As an example, the faulty sensor of the pitch angle βm provides the wrong
measurement of the blade orientation, and if not handled, the controller cannot fully track the power
reference signal. On the other hand, actuator faults lead to the alteration of the input and output
descriptions of the pitch angle and the generator torque models by modifying their dynamics. In this
way, a pressure drop in the hydraulic circuit of the pitch actuator and an electronic breakdown in the
converter device are simulated, respectively. Finally, a system fault affects the drivetrain of the turbine,
which is described as a slow variation in the friction coefficient over time. This can be caused by wear
and tear of the mechanical parts over time.

This scenario is summarized in Table 1, which also reports the measured signals that are affected
by these nine faults.

Table 1. Fault scenario of the wind turbine simulator.

Fault Case Fault Type Affected Measurement

1 Sensor β1,m1
2 Sensor β2,m2
3 Sensor β3,m1
4 Sensor ωr,m1
5 Sensor ωr,m2 and ωg,m2

6 Actuator Pitch system of Blade #2
7 Actuator Pitch system of Blade #3
8 Actuator τg,m

9 System Drivetrain
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The overall model of the wind turbine process is represented as a nonlinear continuous-time
function fwt that describes the evolution of the turbine state vector xwt excited by the input vector u:{

ẋwt(t) = fwt (xwt, u(t))
y(t) = xwt(t)

(1)

where, in this case, the state of the system is considered equal to the outputs of the wind turbine
system, i.e., the rotor speed, the generator speed, and the generated power:

xwt(t) = y(t) =
[
ωg,m1, ωg,m2, ωr,m1, ωr,m2, Pg,m

]
On the other hand, the input vector,

u(t) =
[
β1,m1, β1,m2, β2,m1, β2,m2, β3,m1, β3,m2, τg,m

]
consists of the measurements of the three pitch angles from the three redundant sensors, as well as
the measured torque. These signals are sampled with a sample time T in order to acquire a total of N
measurements u(k), y(k) with k = 1, . . . , N, in order to implement the data-driven fault diagnosis
solutions proposed in this paper.

It is worth noting that, as highlighted in Section 3, the effect of the faults considered in Table 1
is assumed to be generated by equivalent signals added to the input and output measurements.
This approach was formerly proposed by the authors of [17]. Moreover, this assumption is also
known as Errors-In-Variables (EIV) modeling, which is exploited in the dynamic system identification
framework [18].

3. Fault Diagnosis Techniques: Fuzzy Systems and Neural Networks

In order to solve the fault diagnosis problem, this work assumes that the wind turbine system is
affected by equivalent additive faults on the input and output measurements, as well as measurement
errors, as described by the relations in Equation (2):{

u(k) = u∗(k) + ũ(k) + fu(k)
y(k) = y∗(k) + ỹ(k) + fy(k)

(2)

where u∗(k) and y∗(k) represent the actual process variables; u(k) and y(k) are the measurements
acquired by the sensors; and ũ(k) and ỹ(k) describe the measurement errors. Note that, according
to the relations in Equation (2), it is assumed that the fault signals fu(k) and fy(k) have equivalent
additive effects. These functions are different from zero only in the presence of faults. In general,
the vector u(k) has r components, i.e., the number of process inputs, while y(k) has m elements, i.e.,
the number of process outputs.

This work suggests exploiting fuzzy system and NN structures in order to provide an online
estimation f̂(k) of the fault signals fu(k) and fy(k). Hence, as shown in Figure 2, the diagnostic
residuals r(k) are equal to the estimated fault signals, f̂(k), as in Equation (3):

r(k) = f̂(k) (3)

The variable f̂(k) is the fault vector, i.e., f̂(k) =
{

f̂1(k), . . . , f̂r+m(k)
}

. Therefore, the general

fault estimate f̂i(k) is equal to the itextth component of the fault vectors fu(k) or fy(k) in Equation (2),
with i = 1, . . . , r + m. This residual generation scheme is represented in Figure 2.
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Figure 2. The residual generation scheme.

Figure 2 shows that, in general, the residual generators are fed by the input and output
measurements u(k) and y(k). The occurrence of the itextth fault can be simply detected using the
threshold logic of Equation (4) applied to the itextth residual ri(k) [11]:{

r̄i − δσri ≤ ri ≤ r̄i + δσi fault–free case

ri < r̄i − δσri or ri > r̄i + δσri faulty case
(4)

with ri(k) representing the itextth component of the vector r(k). Its mean r̄i and variance σ2
ri

values are
computed in a fault-free condition from N samples according to the relations in Equation (5):{

r̄i = 1
N ∑N

k=1 ri(k)
σ2

ri
= 1

N ∑N
k=1 (ri(k)− r̄i)

2 (5)

Note that the parameter δ represents a variable that has to be properly tuned in order to separate
the fault-free from the faulty conditions effectively, as shown in Section 4. Once the fault detection
phase is complete, the fault isolation task is directly obtained by means of the bank of estimators
depicted in Figure 3.
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According to the scheme depicted in Figure 3, the number of estimators in the bank is equal to
the number of faults that have to be diagnosed, i.e., r + m. In general, the itextth estimator is driven by
the input and output signals u(k) and y(k). However, its inputs uj(k) and output yl(k) are selected
in order to be selectively sensitive to the particular fault fi(t). To this end, the design of these fault
estimators is enhanced by the fault sensitivity analysis procedure reported in Section 3.

The first method proposed in this paper for designing fault estimators relies on Takagi–Sugeno
(TS) models [19]. This approach was formerly addressed in [14] for the approximation of nonlinear
Multiple-Input Single-Output (MISO) dynamic systems with arbitrary accuracy. The general fault
estimator f̂ has the form of Equation (6):

f̂ =
∑nC

i=1 λi(x)
(
aT

i x + bi
)

∑nC
i=1 λi(x)

(6)

The TS fuzzy model results are described as discrete-time linear AutoRegressive models with
eXogenous input (ARX) of order o, in which the regressor vector has the form of Equation (7):

x(k) =
[
. . . , yl(k− 1), . . . , yl(k− o), . . . uj(k), . . . , uj(k− o), . . .

]T (7)

where ul(·) and yj(·) are the components of the actual system input and output vectors u(k) and y(k)
that are selected using the fault sensitivity analysis proposed in Section 3. The variable k represents the
time step, with k = 1, 2, . . . , N. The parameters of the TS fuzzy model in Equation (6) are collected
into the vector:

ai =
[
α
(i)
1 , . . . , α

(i)
o , δ

(i)
1 , . . . , δ

(i)
o

]T
(8)

where the α
(i)
j coefficients refer to the output samples, while the δ

(i)
j coefficients are associated with the

input ones.
This work proposes to solve the derivation of the TS models as a system identification problems

from the noisy data of Equation (2). In particular, the design of the bank of fault estimators in Figure 3
requires the estimation of the consequent parameters ai and bi of Equation (8).

Note that the design method proposed in this work exploits the direct identification of the TS
fuzzy models of Equation (6). In particular, the fuzzy model structure, i.e., the number of rules nC,
the antecedents, and the fuzzy membership functions λi(x) in Equation (6), are derived by means of
the Fuzzy Modeling and Identification (FMID) toolbox implemented in the MATLAB environment [14].
Moreover, the computation of the TS model parameters in Equation (8) was solved by the authors
in [20] as an EIV estimation problem, as highlighted by the relations in Equation (2). On the other hand,
the FMID toolbox uses the Gustafson–Kessel (GK) clustering method [14] to perform a partition of
input–output data into a proper number nC of regions (clusters), where the itextth model of Equation (6)
is valid. This model is thus obtained after the selection of the model order o and the number of clusters
nC. The FMID toolbox also determines the antecedent degrees of fulfillment λi(x) in Equation (6),
which are derived with a curve fitting method [14].

This paper proposes a different data-driven approach that is based on NN, which is exploited
to implement the scheme shown in Figure 3. According to this scheme, a bank of NN is used to
reconstruct the faults affecting the system under diagnosis using a proper set of input and output
measurements. The structure proposed in this work consists of a feedforward multilayer perceptron
NN with three layers [21]. Moreover, this study suggests the use of a quasi-static NN, as it represents
a suitable tool to predict dynamic relationships between the input–output measurements and the
considered fault function fi(k) with arbitrary accuracy [21].

Therefore, the itextth neural fault estimator in Figure 3 is described by the relation in Equation (9):

f̂i(k) = F
(
. . . , uj(k), . . . , uj(k− du), . . . yl(k− 1), . . . , yl(k− dy), . . .

)
(9)
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where uj(·) and yl(·) are the general jtextth and ltextth components of the measured inputs and outputs
u and y, respectively, that are selected via the fault sensitivity analysis tool. du and dy represent the
number of delays of the input and the output samples. F(·) is the function realized by the static NN,
which depends on the number of neurons and their weights.

The NN exploited in this study uses sigmoidal activation functions for the neurons in both the
input and the hidden layers, while a linear one is used in the output layer. The number of neurons
and delays (du and dy) is selected to obtain suitable fault estimation errors after the NN training from
the data acquired from the system under diagnosis. In particular, the NN training is performed by
generating a proper number of data, N, which are partitioned into the training, validation, and test
sets, as required by the Levenberg–Marquardt back-propagation algorithm [21].

Fault Sensitivity Analysis

The design of the fault diagnosis schemes proposed in this paper and represented in Figure 3 is
enhanced by the tool presented here. It consists of a fault sensitivity analysis that is performed on
the measurements acquired from the wind turbine simulator. The procedure aims to define the most
sensitive measurements uj(k) and yl(k) with respect to the general fault fi(k) considered in Section 2.

According to the assumption of Equation (2), the considered fault signals fi(k) have been injected
into the wind turbine simulator, and only single faults may occur. Then, the Relative-Mean-Squared
Errors (RMSEs) between the fault-free and faulty signals acquired from the simulator are computed.
In this way, the most sensitive signals uj(k) and yl(k) are selected for each fault i. The achieved results
are summarized in Table 2.

Table 2. The most sensitive measurements uj(k) and yl(k) and their RMSE values with respect to the
fault fi(k).

Fault fi 1 2 3 4 5 6 7 8 9

Measurements uj, yl β1,m1 β2,m2 β3,m1 ωr,m1 ωr,m1 β2,m1 β3,m2 τg,m ωg,m1
RMSE 11.29 0.98 2.48 1.44 1.45 0.80 0.73 0.84 0.77

In particular, the fault sensitivity analysis follows the selection algorithm, which relies on the
normalized sensitivity function Nx of Equation (10),

Nx =
Sx

S∗x
(10)

with:

Sx =

∥∥∥x f (k)− xn(k)
∥∥∥

2
‖xn(k)‖2

(11)

and:

S∗x = max

∥∥∥x f (k)− xn(k)
∥∥∥

2
‖xn(k)‖2

(12)

In fact, Nx represents the effect of the considered fault case with respect to the measured signal
x(k), with k = 1, 2, . . . , N. The subscripts “f ” and “n” indicate the faulty and the fault-free cases,
respectively. Therefore, the measurement that is most affected by the considered fault is the value
of Nx, which, in this case, is equal to one. Otherwise, smaller values of Nx indicate that x(k) is not
affected by that fault.

The complete results of the fault sensitivity analysis are summarized in Table 3.
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Table 3. The most sensitive measurements with respect to the considered fault scenario.

Fault Case fi Most Sensitive Inputs uj Most Sensitive Outputs yl

1 β1,m1, β1,m2 ωg,m2
2 β1,m2, β2,m2 ωg,m2
3 β1,m2, β3,m1 ωg,m2
4 β1,m2 ωg,m2, ωr,m1
5 β1,m2 ωg,m2, ωr,m2
6 β1,m2, β2,m1 ωg,m2
7 β1,m2, β3,m2 ωg,m2
8 β1,m2, τg,m ωg,m2
9 β1,m2 ωg,m1, ωg,m2

This method represents a key feature of the proposed approach to fault diagnosis. In fact, the fault
estimators of the bank of Figure 3 are designed by exploiting a reduced number of input signals uj(k)
and yl(k). It also leads to a noteworthy simplification of the complexity and the computational cost of
the identification and training phases of the fuzzy and NN models, respectively.

Note finally that the fault sensitivity analysis was performed by considering one fault at a time.
The case of multiple faults was not considered here, as the wind turbine benchmark simulates the
occurrence of single faults only, as described in [4,7]. However, the case of multiple faults occurring at
the same time could be considered, even if a different fault sensitivity analysis has to be executed.

4. Performance and Robustness Analysis

This section addresses the evaluation of the performances of the fault diagnosis strategies
described in Section 3. In particular, Section 4.1 considers the simulations from the wind turbine
benchmark of Section 2. On the other hand, in order to assess the effectiveness of the considered
solutions in a more realistic framework, Section 4.2 considers HIL experiments obtained by means of
an industrial computer interacting with onboard electronics.

4.1. Simulation Results

With reference to the wind turbine benchmark in Section 2, all simulations were driven by
the same wind sequence vw(t). It represents a real measurement of wind speed, from 5–20 m/s,
with a few spikes at 25 m/s. Moreover, the rated power of the wind turbine is Pr = 4.8 MW, and the
nominal generator speed is ωnom = 162.5 rad/s [7]. The simulations lasted for 4400 s with single fault
occurrences. The measurements were acquired with a sampling frequency of 100 Hz, so N = 440,000
samples were generated for each run. Table 4 summarizes the wind turbine fault modes, as described
in Section 2.

Table 4. Fault modes of the wind turbine simulator.

Fault Case Fault Type Fault Shape Occurrence (s)

1 actuator step 2000–2100
2 actuator step 2300–2400
3 actuator step 2600–2700
4 actuator step 1500–1600
5 actuator step 1000–1100
6 sensor step 2900–3000
7 sensor trapezoidal 3500–3600
8 sensor step 3800–3900
9 sensor step 4100–4300
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Note that Fault Case 7 reported in Table 4 is modeled with a trapezoidal function, which is directly
added to the corresponding output measurement according to the model in Equation (2). On the other
hand, Fault Case 9 is generated as a step change of the parameters of the transfer function describing
the drivetrain model. However, the effect of this fault on the output measurements is different from
a step function. More details regarding the wind turbine fault scenario can be found in [4,7].

As an example, in order to show different fault effects on process measurements, Figure 4
compares the results of the fault sensitivity test in terms of fault-free and faulty signals. In particular,
Faults 1, 2, 3, and 8 are considered.

Fault 1 Fault 2

�
(deg)

1, m1
�
(deg)

2, m2

Time (s)Time (s)

Fault 3 Fault 8

�
(deg)

3, m2

Time (s) Time (s)

P
(W)

g,m

Figure 4. The fault-free (gray line) signals with respect to the faulty ones (black line).

When the FMID tool was applied to the data of the wind turbine simulator, nC = 4 clusters
and o = 3 delays to input and output regressors of the TS fuzzy models were determined. This tool
also provided the membership function points, which were fitted through Gaussian membership
functions [14]. The optimal values of nC and o were determined in order to minimize the fuzzy model
estimation errors. After data clustering, the regressands α

(i)
j and δ

(i)
j in Equation (8) were identified.

The TS models in Equation (6) were thus implemented, and nine fault estimators were organized
with the bank structure of Figure 3. Note that, according to Table 3, each fuzzy fault estimator in
Equation (6) has three inputs. Therefore, each TS fuzzy model has a number of parameters equal to
(3 + 1)× n = 12.

The capabilities of the TS fuzzy estimators were assessed in terms of Root-Mean-Squared Error
(RMSE), which is computed as the difference between the predicted f̂i(k) and the actual fault fi(k),
with i = 1, . . . , 9. Table 5 summarizes the achieved performance of the nine TS fuzzy fault estimators.
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Table 5. Fault estimator performance in terms of RMSE.

Fault Estimator i 1 2 3 4 5 6 7 8 9

RMSE 0.016 0.023 0.021 0.020 0.019 0.021 0.017 0.021 0.019

In order to perform the fault detection task, the diagnostic residuals ri(k) = f̂i(k) were compared
according to the threshold logic of Equation (4). The parameter δ has to be selected in order to optimize
the fault diagnosis performance: for example, in terms of missed faults and false alarm rates [22].
Table 6 summarizes the values of this parameter for each fault estimator i.

Table 6. Optimal value of the parameter δ.

Residual ri(k) 1 2 3 4 5 6 7 8 9

δ 3.8 4.3 4.2 4.5 3.7 4.4 4.3 3.5 3.9

In the following, the simulation results are reported, particularly for Fault Cases 1, 4, 8, and 9.
The estimated faults f̂i depicted in Figure 5 demonstrate that the fault detection task was achieved,
as they exceeded the threshold levels only when the corresponding fault was active, as reported in
Table 4.

Fault 1 Residual Fault 4 Residual

Fault 8 Residual Fault 9 Residual

Time (s) Time (s)

Time (s) Time (s)

r f(k) = (k)

r f(k) = (k)
1 1

r f(k) = (k)
4 4

r f(k) = (k)
8 8 9 9

^^

^^

Fault 1 Residual Fault 4 Residual

Fault 8 Residual Fault 9 Residual

Time (s) Time (s)

Time (s) Time (s)

r f(k) = (k)

r f(k) = (k)
1 1

r f(k) = (k)
4 4

r f(k) = (k)
8 8 9 9

^^

^^

Figure 5. The estimated faults f̂i for Cases 1, 4, 8, and 9.

Figure 5 depicts the reconstructed fault functions f̂i(k) generated by the fuzzy estimators in
faulty conditions (black continuous line) with respect to the fault-free residuals (gray line). The fixed
thresholds of Equation (4) are depicted by dotted lines. It is worth noting that in fault-free conditions,
the estimated fault functions f̂i(k) are not zero due to the model–reality mismatch and the measurement
error. The results also highlight the robustness and reliability characteristics of the developed fault
diagnosis technique, which relies on the proposed fuzzy tool.

For the fuzzy systems, nine NARX NN models were designed according to the scheme in Figure 3.
The NN structure selected in this study consisted of 3 layers, with 3 neurons in the input layer, 8 in the
hidden one, and 1 neuron in the output layer. Furthermore, in this case, a trial and error procedure was
used to determine the optimal number of delays du and dy, as well as the number of neurons, that led
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to the minimization of the fault estimation error. In particular, du = dy = 4 delays were selected in the
relation of Equation (9). According to Table 3 and Figure 3, the NN models have three inputs.

The prediction capabilities of the neural fault estimators are summarized in Table 7, which reports
the values of the RMSEs obtained by comparing the estimated faults with the simulated ones.

Table 7. NN performance in terms of RMSE.

Fault Estimator i 1 2 3 4 5 6 7 8 9

RMSE 0.009 0.009 0.009 0.012 0.011 0.011 0.009 0.009 0.014

Furthermore, in this case, the fault detection task was achieved by comparing the residuals
ri = f̂i(k) from the neural fault estimators with the optimized thresholds of Equation (4). The values
of the parameter δ are reported in Table 8.

Table 8. δ values for the threshold logic.

Residual ri(k) 1 2 3 4 5 6 7 8 9

δ 4.2 4.9 4.7 5.1 4.2 4.6 4.8 4.1 4.3

As an example, with reference to Fault Cases 1, 2, 3, and 4, Figure 6 depicts the residuals f̂i(k)
generated in faulty conditions by the NN estimators (continuous line) compared with the fixed
thresholds (dashed line).

Fault 1 residual

Fault 2 residual

Fault 3 residual

Fault 4 residual

Time (s)

Time (s)

Time (s)

Time (s)

r f(k) = (k)^

r f(k) = (k)^

r f(k) = (k)^

r f(k) = (k)^

1 1

2 2

3 3

4 4

Figure 6. Estimated signals (continuous line) f̂i(k) and fixed thresholds (dashed line) for Faults 1, 2, 3, and 4.
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Furthermore, in this case, the achieved results show the effectiveness of the proposed fault
diagnosis solutions with respect to disturbance and uncertainty effects simulated by the wind turbine
benchmark, thus highlighting their potential application to real wind turbine systems.

4.2. Hardware-in-the-Loop Experiments

The HIL test rig was implemented in order to validate the proposed fault diagnosis schemes
in real-time conditions. This tool was formerly considered in [23], but for fault-tolerant control
design purposes.

The experimental setup in Figure 7 consists of three interconnected components:

• Simulator: The offshore wind turbine system summarized in Section 2 was implemented in the
LabVIEWr environment. This software tool runs on an industrial CPU, which allows real-time
monitoring of the simulated system parameters.

• Onboard electronics: The fault diagnosis schemes were implemented in the AWC 500 system,
which features standard wind turbine specifications. This element acquires the signals from the
wind turbine simulator and processes the fault diagnosis solutions proposed in this study.

• Interface circuits: These facilitate communication between the simulator and the onboard
electronics.

Wind turbine simulation code

Offshore wind turbine simulator

Wind
generatorClock

Real-time

Signal
monitoring

Wind
turbine
model

Aerodynamic
model

Disturbance
& uncertainty

simulator

Disturbance
model

Disturbance
model

Wind signals Wind
gusts

Torque
signal

Monitored
signals

Model
parameters

Interface
circuits

Control
command

Control
command

Power &
angular
speed

Power &
angular
speed

On-board fault
diagnosis system

Electronic
circuits

FDI algorithm

Processor

On-board
electronics

Figure 7. The block diagram of the HIL test rig. FDI, Fault Detection and Isolation.

The achieved performances were evaluated on the basis of the following computed indices, which
were formerly proposed in [24]:

• False Alarm Rate (FAR): the ratio between the number of wrongly-detected faults and the number
of simulated faults;

• Missed Fault Rate (MFR): the ratio between the total number of missed faults and the number of
simulated faults;

• True FDI Rate (TFR): the ratio between the number of correctly-detected faults and the number of
simulated faults;

• Mean FDI Delay (MFD): the average time delay between fault occurrence and fault detection.
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A total of 1000 experiments were performed in order to compute these indices, as the efficacy
of the developed fault diagnosis techniques depends on the model–reality mismatch and the actual
measurements errors.

Table 9 summarizes the results obtained by implementing fuzzy estimators using the real-time
HIL setup.

Table 9. Performance indices with fuzzy fault estimators. MFR, Missed Fault Rate; TFR, True FDI Rate;
MFD, Mean FDI Delay.

Estimated Fault f̂i(k) FAR MFR TFR MFD

1 0.005 0.005 0.995 0.077
2 0.004 0.004 0.996 0.490
3 0.004 0.004 0.996 0.080
4 0.005 0.005 0.995 0.070
5 0.003 0.004 0.997 0.060
6 0.004 0.005 0.996 0.760
7 0.005 0.004 0.995 0.640
8 0.005 0.004 0.995 0.060
9 0.004 0.005 0.996 0.180

On the other hand, Table 10 reports the values achieved with the NN fault estimators implemented
using the same real-time HIL setup.

Table 10. Performance indices with NN fault estimators.

Estimated Fault f̂i(k) FAR MFR TFR MFD

1 0.007 0.006 0.899 0.014
2 0.234 0.005 0.867 0.516
3 0.004 0.004 0.914 0.080
4 0.005 0.005 0.922 0.070
5 0.006 0.007 0.905 0.097
6 0.005 0.006 0.989 0.871
7 0.701 0.007 0.981 6.987
8 0.498 0.008 0.987 0.289
9 0.197 0.176 0.798 0.399

Some further remarks can be made here. When an accurate mathematical description of the
system under diagnosis can be included in the design phase, model-based fault diagnosis techniques
may yield the best performances. However, when modeling errors and uncertainty are present,
the optimization and learning exploited by the proposed data-driven solutions lead to very accurate
results. In fact, the TS fuzzy models led to interesting fault diagnosis capabilities, as they used the
adaptation accumulated from offline simulations. On the other hand, the NN structures use the
training stage, which can be computationally heavy. It can thus be concluded that the proposed
data-driven approaches seem to represent powerful techniques that are able to cope with uncertainty
and disturbances, as well as variable working conditions.

Finally, the results reported here confirm the effectiveness of the developed fault diagnosis
schemes when applied to a real-time test rig. Moreover, the robustness features of the proposed
solutions support the viability of applying the proposed fault diagnosis techniques to real offshore
wind turbine systems.

5. Conclusions

This paper presents the development and analysis of practical tools for performing fault diagnosis
of a wind turbine system. The design of this indicator relies on the direct estimate of the fault itself
and uses two data-driven schemes. These are proposed by the authors to be viable tools for coping
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with poor knowledge of the process dynamics in the presence of noise and disturbance effects. These
data-driven schemes are based on fuzzy and neural network structures used to derive the nonlinear
dynamic link between the input–output measurements and the considered fault signals. The selected
prototypes belong to nonlinear autoregressive with exogenous input architectures, as they can describe
any nonlinear dynamic relationship with an arbitrary degree of accuracy. The fault diagnosis strategies
were tested via a high-fidelity simulator describing the normal and faulty behaviors of an offshore
wind turbine plant. The achieved performances, in terms of reliability and robustness, were thus
verified by considering the presence of uncertainty and disturbance effects simulated by the wind
turbine benchmark. In order to assess the considered fault diagnosis solutions in a more realistic
framework, hardware-in-the-loop experiments were also analyzed by means of an industrial computer
interacting with onboard electronics. The achieved results highlight that data-driven approaches,
such as fuzzy systems and neural networks, are able to lead to robust and reliable solutions, even if
optimization and adaptation procedures are required. Further works will consider the application of
these fault diagnosis schemes to real plants.
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