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NON-ISOTHERMAL AXIAL FLOW OF A RAREFIED GAS
BETWEEN TWO COAXIAL CYLINDERS

Elvira Barbera a∗ and Francesca Brini b

Abstract. A stationary problem of heat transfer in a rarefied gas confined between two
coaxial cylinders is presented. The two cylinders are maintained at two different constant
temperatures, so that a radial temperature gradient is created. The external cylinder is at
rest, while the internal one moves in the axial direction with a constant velocity. A flow of
the gas in the z-direction, orthogonal to the temperature gradient, is created by the motion of
the internal boundary. Instead of the classical Navier-Stokes and Fourier theory, the field
equations of extended thermodynamics with 13 moments are used in order to describe this
physical problem. It turns out that, although only a radial temperature difference is imposed,
the heat flux presents also an axial component. Moreover, some components of the stress
tensor do not vanish, even though the axial velocity of the gas depends only on the radial
coordinate r. The solution here obtained is compared with the classical one. Furthermore,
the dependence of the solution on the boundary velocity is investigated.

1. Introduction

The description of physical phenomena in rarefied gases far from equilibrium is a relevant
topic both from the theoretical and form the experimental point of view. It has motivated
many studies and experiments in order to catch the main features of the problem. In
particular, stationary heat transfer in rarefied gases has been the subject of many works,
since it represents the simplest non-equilibrium example. So, starting from it, different
approaches and methods have been tested and compared.

Historically, one referred to the classical thermodynamics in order to describe mathemat-
ically such a phenomenon. Following this classical theory, the field equations are based on
the conservation laws of mass, momentum and energy, while the closure of the system is
obtained thanks to the Navier-Stokes and the Fourier laws. However, it was observed that,
while the Navier-Stokes-Fourier (NSF) approximations are in complete agreement with the
experimental results for rather dense gases, they are not appropriate for rarefied cases or
when strong deviations from equilibrium occur.

For stationary heat conduction in a rarefied gas several analyses have been carried out
following different approaches. We recall for example the kinetic theory results (Bassanini
et al. 1967; Ohwada et al. 1989; Ohwada 1996).
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In this article we will refer to extended thermodynamics (Müller and Ruggeri 1998). This
theory considers as field variables not only the classical ones (mass densities, momentum and
energy) but also the stress tensor, the heat flux and, for a monatomic gas, the moments of the
distribution function up to a given number. The corresponding field equations are balance
laws supplemented by local and instantaneous constitutive equations. Such constitutive
functions are determined through the validity requirement of universal physical principles,
such as the entropy principle (existence of an entropy inequality and concavity of the entropy
density) and the principle of relativity.

Müller and Ruggeri (2004) proved that, if one considers the stationary heat conduction
problem in a monatomic classical ideal gas in radial symmetry, even the simplest model of
extended thermodynamics (the 13-moment theory) predicts results different from classical
thermodynamics. This fact has motivated many investigations of the heat conduction problem
using 13-moment extended thermodynamics: the stationary heat conduction problem was
studied in the case of a gas between two coaxial rotating cylinders (Barbera and Müller
2006) or between two confocal elliptical cylinders at rest (Barbera and Müller 2008). Then,
the analysis of stationary heat transfer problems was extended to general 3D symmetric
domains (Barbera and Brini 2010; Barbera et al. 2012). All these studies lead to the general
conjecture that, the differences between the stationary solutions of classical and extended
thermodynamics increase when the geometry of the problem becomes more complex and
further from the planar one.

Meanwhile, other authors studied the solution of 13-moment extended thermodynamics
when a flow is introduced. In particular, Marques Jr. and Kremer (2001) investigated the
planar Couette flow, whereas Gramani Cumin et al. (2002) (see also the references therein)
investigated the non-isotermal cylindrical Couette flow with a tangential velocity. It was
shown that the nonlinear equations of 13-moment extended thermodynamics are already
able to predict some differences from the classical thermodynamics which are in agreement
with the expectation of the kinetic theory.

In this article, we consider the field equation of 13-moment extended thermodynamics in
order to describe a non-isotermal axial flow in a rarefied monatomic gas. More precisely,
we assume that the gas is enclosed in the gap between two coaxial cylinders. The external
and the internal cylinders are kept at two different constant temperatures Te and Ti. In this
way a radial temperature field is imposed. Moreover, we assume that the external cylinder
is at rest, while the internal one translates with a constant axial velocity V , parallel to its
axis. To our knowledge this is the first time that this problem is studied in the literature
for rarefied gases in the context of 13-moments extended thermodynamics. We show that
extended thermodynamics is able to predict a stationary solution which depends only of
the radial coordinate r; the heat flux admits an axial non-vanishing heat flux; moreover, the
stress tensor presents more non-vanishing components with respect to those predicted by
the classical theory.

The article is organized as following. The field equations appropriate to our problem
are derived in Section 2, while in Section 3 the boundary conditions are introduced. Then,
the solutions of the problems are shown, commented and compared with the results of the
classical theory in Section 4. Finally, in the last section, some final remarks are addressed.
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2. Field equations

The field variables of extended thermodynamics (Müller and Ruggeri 1998) for an ideal
monatomic gas are the moments of the distribution function f (x,c, t) of the gas, where
f (x,c, t)dc represents the number density of the atoms at the time t, position x with velocity
c. The moments are defined as

Fi1i2...iN = m
∫

ci1ci2 ...ciN f dc, (1)

where m is the atomic mass of the gas. The equations for these quantities are obtained from
the Boltzmann equation which, in the BGK approximation (Bhatnagar et al. 1954), reads

∂ f
∂ t + ck

∂ f
∂xk

=− f− fE
τ

with fE = ρ

m

√
m

2πkBT e−
m(c−v)2

2kBT . (2)

if τ denotes a constant relaxation time, kB the Boltzmann constant, T the temperature, ρ the
density, and v the velocity of the gas, while the symbol "E" indicates an equilibrium state
and the equilibrium distribution function is the Maxwellian one (2)2.

Multiplying the Boltzmann equation (2)1 by ci1ci2 ...ciN and integrating over the whole
range of c, one obtains the balance equations

∂Fi1i2 ...iN
∂ t +

∂Fi1i2 ...iN k
∂xk

=−
Fi1i2 ...iN −FE

i1i2 ...iN
τ

, (3)

that, for N = 0,1, .., represents the infinite hierarchy of moment balance equations.
Usually, the quantities Fi1i2...iN are decomposed into internal parts, that is velocity

independent parts, and the remaining parts which depend explicitly on the velocity. The
internal moments are defined in terms of the peculiar velocity, C = c−v, as

ρi1i2...iN = m
∫

Ci1Ci2 ...CiN f dc. (4)

The first thirteen internal moments can be expressed in terms of the most common
thermodynamic variables: ρ is the density of the gas, ρi = 0, ρll = 3p = 3 kB

m ρT , where p
represents the pressure. Furthermore, we have ρ<i j> =−t<i j> and ρill = 2qi, where ti j is
the stress tensor, the square brackets indicate the traceless part of a symmetric tensor, and qi
represents the heat flux.

Requiring the Galilean invariance, it can be proved (Ruggeri 1989; Müller and Ruggeri
1998) that the relation between Fi1i2...iN and ρi1i2...iN reads

Fi1i2...iN =
N

∑
k=1

(
N
k

)
ρ(i1i2...iN−k

viN−k+1 ...viN), (5)

where round brackets denote the symmetrization.
Then, inserting the decomposition (5) into the balance equations (3) one gets the following

equations for the internal moments
dρi1i2 ...iN

dt +
∂ρi1i2 ...iN k

∂xk
+ρi1i2...iN

∂vk
∂xk

+Nρ(i1i2...iN−1

dviN)

dt +

+Nρk(i1i2...iN−1

∂viN )

∂xk
=−

ρi1i2 ...iN −ρE
i1i2 ...iN

τ
,

(6)

where the symbol d/dt denotes the material time derivative, that is d/dt = ∂/∂ t + vk∂/∂xk,
and N = 0,1, ....
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The infinite hierarchy of balance equations for the internal moments (6) must be truncated
at a finite number of equations. A common choice is to consider the first thirteen moments,
which indeed as said before have a clear physical meaning, then we have explicitly

dρ

dt +ρ
∂vk
∂xk

= 0,

ρ
dvi
dt +

∂ρik
∂xk

= 0,

dρi j
dt +ρi j

∂vk
∂xk

+
∂ρi jk
∂xk

+2ρk(i
∂v j)
∂xk

=−ρ<i j>
τ

,

dqi
dt + 1

2
∂ρikll
∂xk

+qi
∂vk
∂xk

+ 3
2 ρ(il

dvil)
dt + 3

2 ρk(il
∂vl)
∂xk

=− qi
τ
.

(7)

The first two equations and the trace of the third one represent respectively the conservation
laws of mass, momentum and energy. The remaining equations are the balance laws for
the traceless parts of the stress tensor and for the heat flux and are peculiar of extended
thermodynamics.

Unfortunately, these last equations are not closed due to the occurrence of the third and
four rank moments, ρ<i jk> and ρikll , which are not a priori related to the field variables.
They are determined through the Grad distribution function (Grad 1949; Müller and Ruggeri
1998), that represents an expansion of the distribution function f in the neighborhood of its
equilibrium value, fE, in terms of the Hermite polynomials, i.e.

fG = fE

[
1+

m
2pkBT

ρ<i j>CiC j −
m2

pk2
BT 2 qiCi

(
1− m

5kBT
C2

)]
. (8)

Inserting the Grad distribution fG into the expressions of the moments ρ<i jk> and ρikll
(4), one gets the constitutive relations

ρ<i jk> = 0, ρikll = 5p kB
m T δi j +7 kB

m T ρ<i j>, (9)

where δi j denotes the Kronecker tensor, as usually.
So, substituting the constitutive relations (9) into the balance equations (7), one obtains

the closed system of field equations, which consists of thirteen equations in the thirteen field
variables ρ , vi, T , ρ<i j> and qi. For convenience, in the following we will use p = kB

m ρT as
field variables instead of ρ .

In order to study the physical problem presented in the introduction, it is more suitable
to use cylindrical coordinates (r,ϑ ,z), surely more appropriate to the description of the
gas in the gap between two cylinders. So, we rewrite the thirteen field equations (7,9) in
terms of these coordinates, assuming that the fields depend only on the radial coordinate
r, and that the radial and the tangential components of the gas velocity identically1 vanish.
Furthermore, we consider the physical components of the tensors involved, instead of the
contravariant and the covariant components. In fact, in some cases the contravariant and the
covariant components of the tensors do not have an immediate physical meaning and usually
their physical dimensions do not coincide with those of the tensors to which they refer. We
recall that the physical components (Truesdell 1953; Müller 1985) of a tensor are defined as

f̂i1i2...in =
√

gi1i1
√

gi2i2 ...
√

ginin f i1i2...in , (10)

1These assumptions are not necessary, since they follow directly from the field equations if we suppose that
they vanish at the boundary.
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where f i1i2...in represent the contravariant components of the tensor f , while gi j are the
covariant components of the metric tensor and the underlined indices indicate that they are
unsummed.

The dimensionless physical quantities and the parameter Kn are defined as

r̃ = r
re
, p̃ = p

p0
, T̃ = T

Te
, ṽi =

vi√
kB
m Te

ρ̃<i j> =
ρ̂<i j>

p0
, q̃i =

q̂i

p0

√
kB
m Te

, Kn=
τ

√
kB
m Te

re
,

(11)

where re is the radius of the external cylinder, Te its temperature, while p0 denotes a suitable
value of the pressure. Such a quantity will be defined in the following. The parameter Kn in
(11) is related to the Knudsen number and represents a good measure of the gas rarefaction.
In particular, Kn≪ 1 corresponds to a dense gas, while when the gas is rarefied, Kn is closer
to 1.

Therefore, after dropping the tilde for notation simplicity, the system of field equations,
in terms of the physical dimensionless variables (11) reads 2

ρ<rϑ> = 0, ρ<ϑz> = 0, qϑ = 0, (12)

and
d(p+ρ<rr>)

dr + ρ<rr>−ρ<ϑϑ>
r = 0,

dρ<rz>
dr + 1

r ρ<rz> = 0,
dqr
dr + qr

r +ρ<rz>
dvz
dr = 0,

6
5

dqr
dr + 2

5
qr
r =−ρ<rr>

Kn ,

2
5

dqz
dr +

(
p+ρ<rr>

) dvz
dr =−ρ<rz>

Kn ,

2
5

dqr
dr + 6

5
qr
r =−ρ<ϑϑ>

Kn ,

7
2

(
p+ρ<rr>

) dT
dr −

d(pT )
dr − 2

5 qz
dvz
dr =− qr

Kn ,

7
2 ρ<rz>

dT
dr +

7
5 qr

dvz
dr =− qz

Kn .

(13)

The differences between the classical Navier-Stokes-Fourier and extended thermodynam-
ics theories are evident here. Indeed, in classical thermodynamics the field equations are the
balance laws for mass, momentum and energy closed by the Navier-Stokes and Fourier con-
stitutive relations, which assume the stress tensor and the heat flux proportional to gradient
of the velocity and the one of temperature, respectively. Now, under the assumption that the
variables depend only on r and vr = vϑ = 0, the conservation laws coincide with (13)1−3,
while the constitutive relations differ from the remaining equations (13)4−8. In particular,
the classical constitutive relations can be deduced from equations (13)4−8 imposing that
the non-equilibrium variables in their left-hand side are equal to zero. So, the classical

2The conservation law of mass is identically satisfied with the assumption vr = 0.
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constitutive relations coincide with the underlined terms in (13)4−8, and explicitly read

ρ<rz> =−Kn p dvz
dr , ρ<rr> = 0,

qr =− 5
2 Kn p dT

dr ρ<ϑϑ> = 0.
(14)

In this way, (13)4−8 contain also the correction to the constitutive relations (14). In
particular, the field equations of extended thermodynamics, obtained from the Boltzmann
equation, predict non-vanishing components of the heat flux orthogonal to the temperature
gradient and non-vanishing components of the components the tress tensor ρ<rr>, ρ<ϑϑ>

and ρ<rz>. The result is in agreement with the kinetic theory of gas.

3. Boundary conditions

As already mentioned, in many cases extended thermodynamics models are able to
catch and predict more details of the physical phenomena with respect to the classical
Navier-Stokes-Fourier theory. Unfortunately, from the mathematical point of view, they
often introduce a further problem in the determination of the solutions in bounded domains
related to the prescription of the boundary data (the so-called non-controllable boundary
data). This is due to the higher number of independent field variables taken into account by
the Extended Thermodynamics. The problem of the boundary conditions is surely not new
in the context of extended thermodynamics and several different methods and principles
have been proposed in the literature to overcome it, but it must be said that, at this stage, the
problem of boundary conditions is not definitely solved.

Also in the present case we deal with such a problem. Infact, the classical equations
(13)1−3 and (14) form a set ordinary differential equations (ODE) of order 5. Therefore,
for this classical case we need only 5 boundary conditions to get the solution and exactly 5
are the quantities that we can prescribe in the corresponding experiment, as we will recall
later in this section. On the contrary, the equations of extended thermodynamics (13) form a
system of the seventh order. As a matter of fact, system (13) contains 8 equations in 8 fields,
but the variable ρ<ϑϑ> can be algebraically determined in terms of the others. So, only 7
boundary conditions are necessary for the integration.

In this article we will integrate the set of the field equations of extended thermodynamics
(13) in a way similar to the ones already considered by Barbera and Müller (2006), Arima
et al. (2014), and Barbera et al. (2014). We firstly introduce the 5 boundary conditions that
can be assigned in an experiment, then we leave the remaining 2 conditions free and integrate
the full set of equations for different arbitrary values of these 2 remaining quantities.

Changing these two values arbirarily, we obtain solutions, that after a very steep gradient
ath the boundary (very close to a vertical line), sweep into the same single functions.
Therefore, although there is no proof of that, we will take as “correct”boundary values the
ones for which no boundary layers are observed and that surely represents the appropriate
prediction at least far from the boundaries.

More precisely in order to determine the solutions of (13), we consider as integration
domain for the dimensionless radius r, the range between ri = 0.2 and re = 1 and assume
as numerical value for the Knudsen number Kn= 0.1, which is appropriate for a moderate
rarefied gas.
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Figure 1. Solutions for the axial heat flux qz and ρ<rr> obtained from equations
(13) with the boundary conditions (15) for different values of Q and H.

The internal and external cylinders are kept at two different temperatures Ti and Te,
therefore the two dimensionless boundary temperatures are T (ri) = 1.15 and T (re) = 1. We
prescribe the pressure p0 at the external radius, then the dimensionless pressure at re reads
p(re) = 1. Furthermore, the no-slip boundary conditions for the boundary axial velocities
are assumed, so vz (ri) =V = 0.1 and vz (re) = 0. Summarizing, we associate to our ODE
system the following 5 boundary conditions

T (ri) = 1.15, T (re) = 1, p(re) = 1,

vz (ri) = 0.1, vz (re) = 0.
(15)

As already said, these 5 conditions which can be prescribed in experiments are sufficient
for the integration of the classical field equations (13)1−3 and (14) but not for our system
(13). Then, we integrate system (13) with these 5 boundary values and arbitrary values of

qz (re) = Q and ρ<rr> (re) = H. (16)

As it can be easily seen in Fig. 1, the solutions for qz and ρ<rr> differ only in the steep
boundary layer. So, as explained before, we choose as values of the two arbitrary constants
Q and H, the ones for which no boundary layers can be observed, which are

Q ≃ 0.00049 and H ≃ 0.0021. (17)

The solutions for all field variables are shown and discussed in the next section.

4. Solutions and discussion of the results

In this section we analyse the solution of the equation system (13-17), starting off with the
velocity component vz and the rz-component of the deviatoric part of the stress tensor, ρ<rz>.
These quantities are shown with continuous lines in Fig. 2, while the classical solutions is
plotted in dashed line, in order to show the differences between the predictions of these two
theories.

It can be easily seen that the solutions for the z-component of the velocity and for ρ<rz> are
almost coincident. The small differences are due to the occurrence of some terms in equation
(13)5, that are not present in the corresponding equation of classical thermodynamics (14)1.
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Figure 2. Solutions for the axial velocity vz and ρ<rz> obtained from equations
(13-17). The continuous lines refer to extended thermodynamics, while the dashed
lines refer to the classical theory.

Figure 3. Solutions for the temperature T and the radial component of the heat
flux qr obtained from equations (13-17). The continuous lines refer to extended
thermodynamics, the dashed lines refer to the classical theory.

In Fig. 3 we consider the temperature together with the radial component of the heat flux.
Also here, no relevant differences between the predictions of the two theories are observable.
In fact, the presence of the non-underlined terms in (13)7, which are not contained in the
Fourier law (14)3, gives rise to very small discrepancies.

The first significant differences between the results of the two theories are shown in Fig. 4.
As a matter of fact, the classical thermodynamics predict a constant pressure while, the
pressure described by equations (13) increases when r decreases. This is due to the presence
of the two non-vanishing components of the stress tensor ρ<rr> and ρ<ϑϑ>, drawn in the
same figure.

As already said in the introduction, the presence of these two non-vanishing quantities
was firstly predicted in bounded domains with cylindrical and spherical symmetries by
Müller and Ruggeri (2004), as an effect of the radial geometry. In particular, in the article
of Müller and Ruggeri (2004), where vz = 0, one had ρ<rr> ̸= 0 and ρ<ϑϑ> ̸= 0, but the
combinations dρ<rr>

dr + ρ<rr>−ρ<ϑϑ>
r and ρ<zz> =−ρ<rr>−ρ<ϑϑ> vanished identically, so

that the pressure remained constant and no-normal stress is observable.
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Figure 4. Solutions for pressure p and for three components of the traceless part
of the stress tensor obtained from equations (13-17). The continuous lines refer to
extended thermodynamics, while the dashed lines refer to the classical theory.

Figure 5. Solutions for the axial component of the heat flux qz obtained from
equations (13-17).

Here the behavior of such variables is also related to the effect of the velocity field vz,
which causes a non-constant pressure and a non-vanishing ρ<zz>.

On the contrary, in the case of axial velocity vz ̸= 0 for a planar domain, the pressure
remains constant and ρ<zz> = 0.

The effects in Fig. 4 are quite small, since we supposed a small axial velocity of the
internal cylinder owing to stability reasons. Obviously, for increasing boundary velocity V ,
the order of magnitude of the deviation of the pressure and of ρ<zz> increases, as shown
later.

Finally, Fig. 5 presents the most interesting result of this article, that is the presence of an
axial component of the heat flux, contrary to the assumption of the classical Fourier law,
which suppose the heat flux parallel to the temperature gradient.

It can be proved, see equation (13)8, that the presence of this non-vanishing qz in extended
thermodynamics is due to the simultaneous presence of the temperature field and of the
axial velocity of the gas. The field qz vanishes if vz vanishes and/or if an isothermal flow is
taken into account. Its presence is predicted also in the planar case.
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Figure 6. Dependence of the pressure, stress tensor and axial heat flux on V .

Figure 6 shows the dependence of the results on the values of the velocity of the internal
boundary, V . The solutions are plotted for V = 0.1, 0.2, 0.3. In particular, the pressure
deviation grows for increasing values of V , as expected. Instead, the stress tensor component
ρ<rr> decreases, when V grows. This fact can be easily understood from the relation between
ρ<rr>, qr and dvz

dr , which follows from combinations of equations (13)3,4, that is

ρ<rr> = Kn
(

4
5

qr

r
+

6
5

ρ<rz>
dvz

dr

)
. (18)

When vz increases, the second term dvz
dr increases in modulus, but it is negative. So, at the

end, ρ<rr> becomes smaller.
On the contrary ρ<ϑϑ>, which from (13)3,6 is given by

ρ<ϑϑ> = Kn
(
−4

5
qr

r
+

4
5

ρ<rz>
dvz

dr

)
(19)

decreases when V increases. The third component ρ<zz> =−2Knρ<rz>
dvz
dr depends only

on the gradient of the velocity and not on the heat flux. Finally, Fig. 6 shows clearly that
the axial component of the heat flux increases proportionally to increasing axial boundary
velocities. It is clear the the order of magnitude of qz cannot be so high, since it is related to
the magnitude of qr and V , by a dependence of the kind ∥qz∥ ≈ 0.8V ∥qr∥.

5. Conclusions and final remarks

In this article the 13-moment extended thermodynamics equations are used in order to
study the non-isothermal axial flow in the gap between two coaxial cylinders at different
temperatures and under the assumption that the inner cylinder is moving along its axis,
while the outer one is at rest. To our knowledge the problem was never studied before in the
literature for rarefied gases.

The solutions for this problem are analysed and compared with those obtained in the
framework of classical thermodynamics.

Moreover, the role of the non-zero axial velocity in the 13-moment equations is investigated
comparing the predictions herein obtained with the ones for the planar geometry and also with
the cylindrical ones when both boundary walls are kept at rest. In addition, the dependence
on the boundary velocity of the gas is discussed.

The article can be viewed as the last one of a series (Marques Jr. and Kremer 2001;
Gramani Cumin et al. 2002; Müller and Ruggeri 2004; Barbera and Müller 2006, 2008;
Barbera and Brini 2010; Barbera et al. 2012) dedicated to stationary heat transfer phenomena
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in monatomic simple gases. The results obtained here prove once more that extended
thermodynamics with 13 moments is already able to predict more general and elaborate
behaviors than the classical Navier-Stokes-Fourier theory. The qualitative differences
between classical and extended thermodynamics increases, when the phenomena are more
complex and/or far from equilibrium.

The physical effects that we have predicted here are observable in experiments, at least for
what concerns the mass density and the heat flux behaviors. For this reason, qualitative and
quantitative comparisons with experimental data would be crucial to validate the predictions
and to better understand the range of validity of different theories. To this goal, we wish
that new experiments will be carried on in the future.

Moreover, it would be very interesting to analyse the same problem for dense gases,
whose extended thermodynamics theory was recently proposed by Ruggeri and Sugiyama
and studied by several authors (Ruggeri and Sugiyama 2014; Carrisi and Pennisi 2015;
Carrisi et al. 2015).
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