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RESEARCH HIGHLIGHTS

e Low-cost sensors can enable high density monitoring of air pollutants.

e  Wereview the performance of low-cost sensors for monitoring air pollution.

e Data quality is a major concern for the measurements from low-cost sensors.

e The sensors should be frequently calibrated under final deployment conditions.

e Sensor aging and manufacturing variability should be accounted during measurements.
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ABSTRACT

Low-cost sensor technology can potentially revolutionise the area of air pollution monitoring by
providing high-density spatiotemporal pollution data. Such data can be utilised for supplementing
traditional pollution monitoring, improving exposure estimates, and raising community
awareness about air pollution. However, data quality remains a major concern that hinders the
widespread adoption of low-cost sensor technology. Unreliable data may mislead unsuspecting
users and potentially lead to alarming consequences such as reporting acceptable air pollutant
levels when they are above the limits deemed safe for human health. This article provides
scientific guidance to the end-users for effectively deploying low-cost sensors for monitoring air
pollution and people’s exposure, while ensuring reasonable data quality. We review the
performance characteristics of several low-cost particle and gas monitoring sensors and provide
recommendations to end-users for making proper sensor selection by summarizing the
capabilities and limitations of such sensors. The challenges, best practices, and future outlook for
effectively deploying low-cost sensors, and maintaining data quality is also discussed. For data
quality assurance, a two-stage sensor calibration process is recommended, which includes
laboratory calibration under controlled conditions by the manufacturer supplemented with routine
calibration checks performed by the end-user under final deployment conditions. For large sensor
networks where routine calibration checks are impractical, statistical techniques for data quality
assurance should be utilised. Further advancements and adoption of sophisticated mathematical
and statistical techniques for sensor calibration, fault detection, and data quality assurance can

indeed help to realise the promised benefits of a low-cost air pollution sensor network.

KEYWORDS: Pollution exposure; Human health; Outdoor pollution sensing; Environmental

sensing; Real-time exposure
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LIST OF ACRONYMS

CV: Coefficient of variation

EC: Electrochemical

EU: European Union

LOD: Limit of detection

MOS: Metal-oxide-semiconductor
nRMSE: Normalised root mean square error
PM: Particulate matter

PM; 5 =PM less than 2.5 um in diameter
PM;y = PM less than 10 um in diameter
R?: Coefficient of determination

R’.q7 Adjusted coefficient of determination
RH: Relative humidity

RMSE: Root mean square error

SD: Standard deviation

SE: Standard error

tg: Time interval between a step change in input concentration and the first observable
corresponding change in measurement response

trise: Time interval between initial measurement response and 95% of final response after a step
increase in input concentration

to-90o Time interval needed by a sensor to reach 90% of the final stable value
too.0: Time interval needed by a sensor to reach zero concentration

too: Mean of to.9o and tyg-o
1. INTRODUCTION

Outdoor air pollution is a major problem in the 21 century, attributing to ~3.7 million deaths
globally (WHO 2014). Today, ~92% of the world’s population lives in regions where air
pollutant levels are higher than the WHO-specified limits (WHO 2016). In addition, air pollution
is also responsible for global climate change (Ramanathan and Feng 2009) and environmental
problems such as acid rain (Menz and Seip 2004), haze (Li and Zhang 2014; Xu et al., 2013),
ozone depletion (Solomon 1999; Solomon et al., 1986), and damage to crop (Avnery et al.,
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2011a; Avnery et al., 2011b; Van Dingenen et al., 2009). Thus, there is a global drive to tackle

this problem (Fenger 2009).

Traditionally, air pollution is monitored by measuring concentrations of various pollutants such
as carbon monoxide (CO), ozone (O3), nitrogen dioxide (NO), sulphur dioxide (SO,), and
particulate matter (PM) at fixed sites by using accurate and expensive instrumentation (Kumar et
al., 2014; Mouzourides et al., 2015; Sharma et al., 2013). Monitoring sites in the EU are
determined based on the EU Air Quality Directive 2008/50/EC, which clearly defines the
minimum number of fixed monitoring stations for each target pollutant based on the air pollution
levels, population, and coverage area. Such sites are generally spread in and around cities and
provide temporal concentrations (typically hourly) of different pollutants. Cities in developed
countries might contain one official monitoring station covering about 100,000 people as
opposed to covering millions of people in cities of developing and highly polluted countries. For
example, there are around 300 monitoring sites in the UK (DEFRA 2011) and around 600 in
India (CPCB 2017). However, they are insufficient to provide accurate information about the
spatial distribution of pollutants or identify pollution hotspots, and even more so for developing
countries. Even though pollutant dispersion models can be used to address this issue, their
accuracy is rather limited (Holmes and Morawska 2006; Kumar et al., 2011; Kumar et al., 2015;

Vardoulakis et al., 2003).

Recent advancements in the field of sensors, digital electronics, and wireless communication
technology have led to the emergence of a new paradigm for air pollution monitoring (Hagler et
al., 2013; Kumar et al., 2015). This paradigm aims to gather high-resolution spatiotemporal air

pollution data by using a ubiquitous network of low-cost sensors for monitoring real-time
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concentrations of different air pollutants, which can be then utilised for a variety of air pollution
management tasks such as (i) supplementing conventional air pollution monitoring; (ii)
improving the link between pollutant exposure and human health; (iil)) emergency response
management, hazardous leak detection, and source compliance monitoring; and (iv) increasing

community’s awareness and engagement towards air quality issues.

Though there is no universally agreed definition of a “low-cost” sensor since anything costing
less than the instrumentation cost required for demonstrating compliance with the air quality
regulations can be termed as low-cost. However, the cost should be as low as possible to achieve
the above-mentioned aims of a sensor-based system for monitoring air pollution, so that
widespread deployment is commercially feasible. Thus, in this paper, the term low-cost sensor is
used either for designating sensors costing only a few 10°’s of US dollars or for sensing
kits/nodes/platforms costing a few 100’s of US dollars. The higher cost of sensing kits is
expected since they typically include one or more sensors, microprocessor, data-logger, memory

card, battery, and display.

Several review articles have already addressed this emerging area of sensor-based air quality
monitoring (Table 1). A majority of these articles focus on the needs, benefits, challenges, and
future directions of a sensor-based pollution monitoring paradigm for different applications
(Castell et al., 2013; Kumar et al., 2016a; Kumar et al., 2015; Kumar et al., 2016b; Snyder et al.,
2013; White et al., 2012). A few others discuss emerging sensor technologies for monitoring
gaseous and/or particulate air pollutants (Aleixandre and Gerbolesb 2012; Bhanarkar et al., 2016;
White et al., 2012; Zhou et al., 2015). On-going air quality management campaigns using sensor

networks were reviewed in some other articles (Castell et al., 2013; Thompson 2016). However,
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none of them have comprehensively addressed the crucial aspect of performance assessment of
low-cost sensors for monitoring different air pollutants vis-a-vis their more expensive
counterparts. Jovasevi¢-Stojanovi¢ et al. (2015) provided some information about selecting low-
cost PM sensors based on their specifications and the monitoring objectives. However, they did
not include gaseous sensors, and several new research articles on performance assessment of PM
sensors have come up since then. Williams et al. (2014b) provided guidelines regarding sensor
selection but these guidelines are open ended and leave it for end-users to carefully review a
sensor’s performance before purchasing it. Without a proper understanding of the performance
characteristics of the available low-cost sensors, the end-users cannot be expected to effectively
deploy them for achieving an effective sensor-based management of air pollution (Castell et al.,
2016; Jovasevi¢-Stojanovic et al., 2015; Judge and Wayland 2014; Lewis and Edwards 2016).

Addressing this crucial issue forms the motivation for this review article.

We recognise a need for providing scientific guidance to end-users in choosing appropriate low-
cost sensors by matching user requirements with sensor performance. Through a comprehensive
review of the scientific literature, we assessed the performance of several commercially available
low-cost sensors for measuring PM and gaseous pollutants in the outdoor environment, i.e., CO,
O; and NO,. We could not review the low-cost sensors for measuring SO, due to a dearth of
studies on their performance assessment. Additionally, we have provided recommendations for
end-users in selecting low-cost sensors for monitoring outdoor air pollutants. Finally, we have
outlined the challenges faced by the end-users in deploying low-cost sensors for monitoring air

pollution and the future research directions to overcome them.

2. LOW-COST SENSORS FOR MONITORING PARTICULATE MATTER

The light scattering method is used in low-cost PM sensors since the sensors based on this

-6-
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principle are cheap to manufacture, have low power requirements, and quick response times
(Wang et al., 2015). In this method, a light source illuminates the particles, and then the scattered
light from the particles is measured by a photometer. For particles with diameters greater than
~0.3 um, the amount of light scattered is roughly proportional to their mass/number
concentration; however, particles smaller than ~0.3 pm in diameter do not scatter enough light,
and cannot be detected by this method (Koehler and Peters 2015; Thomas and Gebhart 1994).
The detectable particles (>0.3 pm in diameter) can be size-segregated by either using an
algorithm on the signal obtained from the scattered light (Northcross et al., 2013) or by attaching

an impactor/filter at the inlet (Sousan et al., 2016b).

2.1 Specifications and application areas

Low-cost PM sensors are available from several manufacturers, and their specifications are given
in Table 2 as claimed by their respective makers. These sensors are roughly palm-sized, weigh a
few 10’s of grams (or 100’s of grams for sensor kits), are battery operable, and cost around $10—
100 (or $100-500 for the sensor kits). The typical range of measurement extends from a few

ng/m’ to about 100’s of pg/m’.

Some of the sensor models such as the GP2Y1010AUOF, DSM501A, PPD42NS, PPD60PV, and
SDS198 (Table 2) cannot distinguish between particle sizes and typically report the concentration
of particles with sizes greater than ~0.3 pm as a single value for the PM concentration in air.
Other sensor models such as the Novafit sensors and Dylos (Table 2) rely on size discrimination
by applying signal processing techniques on the photometer’s output. However, this technique
might result in significant misclassification of particles (Sousan et al., 2016b). We found that the

DN7C3CAO006 sensor is the only sensor equipped with a virtual impactor that allows only
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particles <2.5 um in diameter to pass through the sensing zone, making it suitable for measuring
PM, 5 (particles less than 2.5 pm in diameter). It is not known how the Plantower sensors (Table
2) perform size discrimination between particles. Thus, to monitor PMjg (particles less than 10
um in diameter) or PMys any sensor given in Table 2 would be suitable if an appropriate
mechanism for size selection is used. The requirement for a size selection mechanism is not
stringent for monitoring PM; since particles >10 pum are difficult to draw in the sensing zone
(Koehler and Peters 2015), meaning that the raw sensor output would roughly correspond to the

PM; concentration.

Many of these sensors have already been used in air quality monitoring studies such as
monitoring ambient wood smoke (Olivares and Edwards 2015), risk husk in a rice mill (Zakaria
et al., 2014), cigarette smoke in a garage (Rajasegarar et al., 2014), PM levels associated with
source activities in homes (Olivares et al., 2012), and urban and rural backgrounds (Steinle et al.,
2015). However, there is a huge gap in the scientific literature related to their calibration and
performance assessment, which makes it challenging to evaluate the data quality obtained by the
different investigations and make comparisons between them. Several PM sensors have not been
tested by scientific investigations, making it infeasible to judge their performance (see Table 2).
Thus, in the remainder of this paper, we focus only on those low-cost sensors (both for PM and
gaseous pollutants) whose performance traits have been tested by at least one scientific
investigation. Table S1 gives a summary of investigations focused on testing low-cost PM
sensors along with the test conditions and reference instrumentation. Due to the lack of a standard
calibration protocol specific for low-cost sensors, studies have used dissimilar calibration
methods, including chamber and field testing against a variety of reference instruments, which

again makes inter-comparison between them infeasible. Nevertheless, these studies provide
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crucial information about the performances of low-cost sensors under a variety of operating

conditions, as discussed in the following sub-section.

2.2 Performance assessment

Table 3 gives a summary of the performance characteristics of the low-cost PM sensors tested by
scientific studies; including their comparisons with reference measurements; repeatability and
reproducibility characteristics, limit of detection (LOD); and dependence on particle composition,
size, humidity, and temperature. These individual performance criteria are discussed in the

subsequent text.

2.2.1 Comparisons with reference measurements

All the investigations sumarised in Table S1 compared the measurements from the low-cost PM
sensors with relevant high-cost reference instruments. Figure 1 shows the range of values for the
coefficient of determination (R’) between the low-cost PM sensors and the high-cost reference
instruments obtained by using a simple linear function from the different investigations. Figure 1
also shows that a simple linear function is generally adequate to calibrate the sensor response
with the reference measurements, yielding moderate to high R’ values. However, a few
investigations have reported that the sensor response begins to saturate at high particle
concentrations (higher than 50-100 ug/rn3) and that higher order polynomial or exponential
functions are needed to capture this behaviour (Austin et al., 2015; Johnson et al., 2016; Kelly et
al., 2017; Manikonda et al., 2016; Wang et al., 2015). Thus, it is necessary to select the
appropriate response function for a particular sensor by calibrating it under the full range of

expected PM concentrations.
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Figure 1 also suggests that the sensors typically performed better (with high R values) under
laboratory conditions compared with field conditions. This performance deterioration in real-
world conditions is attributed to the changing conditions of particle compositions, sizes, and
environmental factors, which can drastically impact a sensor’s response as discussed below.
Thus, on-site calibration of low-cost PM sensors is crucial, and laboratory calibrated sensors
should not be directly used for real-world measurements. Furthermore, the sensors should be
calibrated individually since even the sensors of the same type can give different outputs even
under identical conditions (Austin et al., 2015; Olivares et al., 2012; Sousan et al., 2016b; Wang

etal., 2015).

2.2.2 Repeatability, reproducibility, stability, and limit of detection

Repeatability and reproducibility are defined as the closeness between successive measurements
of the same measurand carried out under identical and non-identical conditions of measurement,
respectively (Taylor and Kuyatt 1994). Thus, we use the terms sensor repeatability to denote the
dispersion between consecutive measurements obtained from a given sensor, whereas
reproducibility is used for designating dispersion between measurements obtained by using

different sensors of the same model.

Repeatability is very difficult to measure for PM sensors due to difficulty in maintaining constant
particle concentrations. Wang et al. (2015) reported repeatability characteristics for three
different low-cost PM sensors, as measured by the coefficient of variation (CV), to lie between 2
and 28% (Table 3). The repeatability deteriorated at low PM concentrations, and all the sensors

had CV in the 23-26% range at ~50 pg/m’ PM concentration (Wang et al., 2015).
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Regarding reproducibly, several investigations have pointed out that the sensors need to be
calibrated individually, illustrating poor reproducibility for the raw sensor outputs. However,
after calibration, their reproducibility characteristics get improved (Sousan et al., 2016b). To
quantify reproducibility, a few investigations reported CV values ranging from 0.9-16% as
given in Table 3 (Sousan et al., 2016a; 2016b), while some others reported the R? values (R’ =
0.25 to 1.0 in Table 3) between sensors (Holstius et al., 2014; Jiao et al., 2016; Kelly et al., 2017).
Manikonda et al. (2016) used the normalised root mean square error (nRMSE) value to quantify
sensor reproducibility, and found that the reproducibly was much higher when the sensors were
exposed to cigarette smoke (nRMSE = 2.6-22.3%) as compared to Arizona test dust (nRMSE =
46.1-118.2%). Sensor reproducibility could get deteriorated due to the accumulation of particles
in the sensing zone, which seems more pronounced when the sensors were exposed to larger

sized particles (Arizona test dust) as compared to smaller particles (cigarette smoke).

We define stability as a sensor’s capability to maintain its performance characteristics over a
sufficiently long duration (at least a few months). This is a crucial performance trait if low-cost
sensors are to be deployed for long-term monitoring. However, only Jiao et al. (2016) have
conducted measurements with low-cost PM sensors for a sufficiently long period (2—6 months).
They reported an improvement in the adjusted-R’ (Rzadj) value from 0.45 to 0.56 for a sensor
when “days of use” was added as a predictor in the regression model used for calibration. Thus, it
seems possible that the sensor’s response was changing with time due to sensor aging and/or dust
accumulation; however, “days of use” could just have been a confounding variable also. Clearly,

more investigations are required to address this crucial issue of sensor stability.
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Limit of detection (LOD) for a sensor is defined as the lowest concentration of a pollutant that
can be significantly differentiated from zero concentration. LOD can be estimated as three times
the standard deviation of the sensor output obtained at zero pollutant concentration. It is desirable
to have the LOD as low as possible since it determines the lowest detectable concentration. LOD
values for the different PM sensors have only been evaluated by a few studies (Table 3) and lie
between 1-27 pg/m’. Figure 2 shows the LOD for the different low-cost PM and gaseous sensors
together with the pollutant concentrations (urban and background) typically found in EU
countries and their corresponding limits. It is evident that the LOD for all the PM sensors (except
GP2Y1010AUOF) is less than the EU specified limits for both PM; s and PM;o and lie in the
lower spectrum of the concentration ranges found in EU nations. Note that the high LOD values
for the GP2Y1010AUOF sensor reported by Wang et al. (2015) likely to rise since they probably
did not account for the large intercept present in the sensor calibration curve while calculating its
LOD. Generally, the PM sensors seem suitable for measuring both PM,s and PMjj
concentrations, unless the concentrations are very low (<10 pg/m’). However, given that PMo
levels are always higher than PM;s levels, the sensors would be better suited for monitoring

PMo.

2.2.3 Impact of particle characteristics on sensor output

The impact of particle composition on outputs of the low-cost PM sensors has been studied by a
few laboratory investigations (Northcross et al., 2013; Sousan et al., 2016a; Sousan et al., 2016b;
Wang et al., 2015). This factor was found to affect the sensor outputs by as much as 30 times for
the various sensors (Table 3). One field investigation reported that the output of Dylos sensor was
unaffected by the change in aerosol composition from secondary inorganic aerosols to sea-salt

dominated aerosols (Steinle et al., 2015). Since the chamber investigations have used aerosols
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with significantly different compositions ranging from polystyrene latex spheres (Northcross et
al., 2013), sugar (Wang et al., 2015), salt (Northcross et al., 2013; Sousan et al., 2016a; Sousan et
al., 2016b; Wang et al., 2015), wood-smoke (Northcross et al., 2013), diesel exhaust (Sousan et
al., 2016b), welding fumes (Sousan et al., 2016a; Sousan et al., 2016b) to road dust (Sousan et al.,
2016a; Sousan et al., 2016b) compared with the field investigations, the high variability in sensor
outputs during laboratory testing is reasonable. The difference in particle composition impacts the
scattering and absorption of light by the sensors; thus, affecting their outputs. For example,
organic materials tend to absorb a higher proportion of incident light as compared to inorganic
materials. This means that the optical sensors will report a much higher concentration when
measuring organic particles as compared to inorganic particles, even under identical

concentrations (Wang et al., 2015).

Some investigations have studied the impact of particle size on the outputs of low-cost PM
sensors as given in Table 3 (Austin et al., 2015; Han et al., 2016; Sousan et al., 2016a; Sousan et
al., 2016b; Wang et al., 2015). The sensor outputs are generally found to increase with the
particle size since for the same mass concentration larger particles scatter more light, which
results in higher reported concentrations (Wang et al., 2015). For example, Wang et al. (2015)
reported that the output of the sensor with 900 nm size particles was as high as 2-24 times when
compared to their outputs with 300 nm size particles at similar mass concentrations. All the low-
cost PM sensors show similar dependence on particle size except for the OPC-N2, which seems

relatively unaffected by particle sizes (Sousan et al., 2016a); however, the reason is unknown.
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2.2.4 Impact of environmental factors on sensor output

The impact of environmental factors (relative humidity and temperature) has been assessed by
several investigations (Table 3). For example, Wang et al. (2015) used an environmental chamber
to study the effect of environmental factors on the performance of three different PM sensors by
comparing their outputs under different relative humidity and temperature conditions, while
maintaining similar PM mass concentrations. They found that the sensors outputs first increased,
and then decreased as the relative humidity was increased from 20% to 90%. The ratios of the
sensor outputs at different humidity conditions ranged from 1.5-8.0 (Table 3). However, the
impact of temperature on sensor outputs was very less as compared to humidity, with the ratios of
the sensor outputs ranging from 1.2-1.6 at different temperatures (5-32°C). The effect of
humidity on sensor outputs is attributed to a combination of factors: (i) absorption of radiation by
water causing an overestimation of particle concentrations, (ii) unsuitability of the reference
instrument used at high humidity conditions, and (ii1) probable circuit failure in particle sensors
at high relative humidity. Whereas light scattering and absorption are theoretically independent of
temperature, which means that temperature variations should not affect an optical sensor’s

output.

Of the several field investigations that have looked into the effects of environmental factors on
the outputs from different low-cost PM sensors, almost all have reported that the sensor outputs
do not seem to be associated with humidity or temperature (Table 3). Olivares et al. (2012)
reported that the baseline response of a PM sensor was linearly proportional to the temperature.
However, the same lead author later reported that this linear relationship was probably because
the temperature affects the measured particles, and not because it affects the sensor (Olivares and

Edwards 2015).
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Overall, there seems to be a consensus between the field investigations that the low-cost PM
sensor outputs are not affected by humidity or temperature variations. However, the laboratory
investigation (Wang et al., 2015) discussed previously had a conflicting conclusion about the
effect of humidity on sensor outputs. Laboratory investigations are preferred for such
assessments since field investigations do not have a control over all the variables that can impact
the output of a sensor, and it is not possible to deduce causal relationships. Thus, more laboratory

studies are required to address this contradiction.

2.3 Recommendations for end-users

Several low-cost PM sensors are available in the market that measures the concentration of
particles based on the light scattering method. This method is suitable only for measuring
particles larger than ~0.3 pm in diameter since smaller particles do not scatter enough light. To
use this technique for measuring PM; s or PMj,, it should be ensured that the sensor is equipped
with an impactor or filter at the air inlet that provides the appropriate cut-off diameter (2.5 um
and 10 pm for measuring PM; s and PM,, respectively). This feature is not provided in any of
the sensors given in Table 2, expect for the DN7C3CAO006 sensor that is equipped with a 2.5 pm
virtual impactor. A few sensors (e.g. Dylos) utilise signal processing algorithms to categorise
particles between PM,s and PMjo; however, such algorithms may lead to significant
misclassification (Sousan et al., 2016b). Thus, to measure concentrations of PM, s or PMj, any
optical sensor (Table 2) can be used in principle when combined with a suitable size cut-off

mechanism.

It is also important to note that a few low-cost PM sensors (e.g., GP2Y1010AUOG and

PPD42NS) are available as stand-alone sensors, and require integration into a data acquisition
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and storage system. However, other sensors (e.g., Dylos and Novafitness SDI1.301) are available
as ready-to-use modules with their own data acquisition, storage, and display system. Based on

the user’s familiarity with these issues, an appropriate choice can be made.

A number of investigations have assessed the performance of low-cost PM sensors. However, the
lack of a standardised method for performance assessment of low-cost PM sensors makes it
difficult to make inter-comparisons between the results obtained from different studies.
Nevertheless, the performance characteristics of the different sensors seem to be roughly similar
(Table 3). The sensors generally demonstrate R’ values greater than 0.50 when compared with
reference measurements. The CV value, which is generally used to characterise sensor
repeatability and reproducibility, is in the 1-28% range. This means that even if the sensors work
perfectly, 1-28% errors in PM concentrations can be expected. The LOD ranges from 1-27
ng/m’, and generally lies at the lower spectrum of the PM, s and PM,o concentration ranges in
EU countries. It is also seen that the sensors’ outputs are highly dependent on the particle
composition and size. Environmental factors such as relative humidity and temperature might
also influence PM sensors’ response; however, further investigations are required to understand

this influence. Sensor stability is another inadequately understood issue.

Thus, the end-users should be aware of the above-mentioned characteristics, performance traits,
and limitations of the low-cost PM sensors when deploying them. Before performing any PM
monitoring task, the sensors should be properly calibrated under conditions as close to the final
deployment as possible. Furthermore, since the long-term (more than a week) performance of

these low-cost sensors largely remains unknown, frequent calibration is recommended.
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3. LOW-COST SENSORS FOR MONITORING GASEOUS POLLUTANTS

3.1 Specifications and application areas

To measure gaseous air pollutants, there are currently two types of low-cost sensors available in

the market: (1) metal-oxide-semiconductor (MOS) sensors, and (ii) electrochemical (EC) sensors.

The MOS sensors employ a metal oxide that changes its electrical properties (typically
resistance) when exposed to the target gas. This change can be easily measured and corresponds
to the concentration of the gas (Fine et al., 2010). Such sensors are small in size (a few
millimetres), light-weight (a few grams), inexpensive (~$10), have quick response times, low
detection limits and power requirements (~100 mW) (Aleixandre and Gerbolesb 2012; Piedrahita
et al., 2014). However, they have a non-linear response curve; and suffer from sensitivity to

changes in environmental conditions and interfering gases (Spinellea et al., 2016).

The EC sensors are generally operated in an amperometric mode, wherein the electrochemical
reactions between the target gas and an electrolyte produce a current dependent on the gaseous
concentration (Stetter and Li 2008). The sensors typically consist of three electrodes, termed as
working, counter, and reference. The target gas undergoes electrolysis (oxidation or reduction) at
the working electrode and generates an electric current, which is balanced by the reaction at the
counter electrode. The measured electric current corresponds to the concentration of the gas, and
the response is either linear or logarithmic (Aleixandre and Gerbolesb 2012). The reference
electrode is typically employed in the sensor to ensure that the working electrode is maintained at
the correct operating potential. These sensors are claimed to have lower detection limits, power

requirements (~100 uW), and sensitivity to changes in environmental conditions and interfering
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gases than MOS sensors, but are also larger (few tens of millimeters in size), and more expensive

(~$100) (Aleixandre and Gerbolesb 2012; Piedrahita et al., 2014).

Low-cost gas sensors have been used in several air quality campaigns ranging from background
pollutant measurements at rural and urban sites (Jiang et al., 2016; Spinelle et al., 2015b; Sun et
al., 2016), measurements of road-side pollution (Mead et al., 2013; Popoola et al., 2016), mobile
vehicular measurements (Hu et al., 2011; Suriano et al., 2015), source attribution (Heimann et al.,
2015), and personal exposure monitoring (Jiang et al., 2011; Piedrahita et al., 2014). However,
their performance characteristics are not well understood, and we found only a few studies
focused on their performance assessment (Table S2). Based on those studies, we have evaluated

the performance of low-cost sensors for O3, NO,, and CO in the following sub-sections.

3.2 Performance assessment of O3 sensors

We found several MOS O3 sensors and a few EC O3 sensors that have been tested in scientific

studies. Their key performance characteristics are summarised in Table 4 and discussed below.

3.2.1 Comparisons with reference measurements

Figure 3 shows the comparisons between the outputs from the low-cost O3z sensors and reference
measurements, as quantified by the R’ values during laboratory and field testing. Clearly, both
EC and MOS sensors perform very well during laboratory tests (R° > 0.90); however, their
performance gets deteriorated under real-world conditions (R’ = 0.01-0.94). This performance
deterioration is expected since these low-cost sensors are generally prone to sensitivities to

environmental conditions, gaseous co-pollutants, and aging (Spinelle et al., 2015b; 2017).
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The MOS Oj; sensors have been tested by a few studies under chamber conditions. Williams et al.
(2014c) tested three different MOS sensors in an exposure chamber under four different
conditions (normal, hot, humid, and cold). They generally found high R’ values (0.88-0.99).
However, it should be noted that the MICS-2611 sensor could not complete the tests under hot
(temperature > 50°C) and humid (RH > 85%) conditions since its response was found unstable
under those conditions. Spinellea et al. (2016) tested four MOS O3 sensors in an exposure
chamber, and reported the residual values (reference concentration minus the sensor measured
concentration) for those sensors. At Oz concentrations ranging from 0—110 ppb, the residuals
were quite low (2.0—4.2 ppb) for three sensors; however, the residual was as high as 13.3 ppb for
the MICS-2610 sensor. Low standard errors (SE = 3-8 ppb) were reported by Williams et al.

(2013) while testing the S300 sensor under chamber conditions.

Some studies have tested MOS O3 sensors under real-world conditions. Like the chamber
investigations, they have also reported moderate to excellent R’ values (0.77—0.94); except for
Borrego et al. (2016) who reported R as 0.12 for the MICS 2610 sensor, which seems due to
sensor malfunctioning. Interestingly, the same sensor model also perform poorly in the chamber
investigation by Spinellea et al. (2016) as mentioned in the previous paragraph. Piedrahita et al.
(2014) conducted a measurement campaign at an air quality monitoring station, and tested eight
identical MOS sensors (MICS 2611), and reported that the median value of the root mean
squared error (RMSE) was 6.1 ppb. The S300 sensor has also been evaluated under different
outdoor conditions, and reported to have SE values between 5—6 ppb (Bart et al., 2014; Williams
et al., 2013). Overall, the laboratory and field testing of the MOS Oj; sensors generally show good

comparisons between the sensors and reference measurements.
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The performances of EC Oj sensors have been tested by a few investigation (Table 4). Spinelle
and co-workers (Spinelle et al., 2015a; Spinelle et al., 2015b) assessed the performances of two
different EC sensors under chamber and field conditions. During the chamber study, the R’ was
greater than 0.99 for both the sensors (Spinelle et al., 2015a). However, when those sensors were
calibrated under field conditions, the R° was 0.02 and 0.84-0.88 for the O3B4 and O3 3EIF
sensors, respectively (Spinelle et al., 2015b). Thus, it seems that the O3B4 sensor was faulty, and
we don’t discuss additional results for this sensor obtained by Spinelle et al. (2015b). To better
calibrate the O3 3EI1F sensor, they used multiple linear regression models by including the
concentration of NO, as an additional predictor, which improved the R’ values (0.85-0.94). The
linear models were then tested for 4.5 months of field deployment of the O3 3EIF sensor in the
validation phase of the study. During this phase, the sensor performance deteriorated
significantly, and the R’ was between 0.67-0.81 and 0.58-0.82 with the simple and multiple
linear regression models, respectively. This indicates that the response curves of the sensors were
time variable possibly due to sensor aging and/or dust accumulation. Borrego et al. (2016)
reported R’ = 0.13—0.70 during field testing of the O3B4 sensor when it was deployed as a part of
three different platforms under identical conditions. The different sensor platforms might use
distinct signal processing techniques for converting the raw sensor response to the O3

concentration, which might be the reason for the high variations in the R’ values.

-20-



435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

3.2.2 Repeatability, reproducibility, stability, limit of detection, and response times

The repeatability characteristics of different MOS and EC Os sensors have been studied by a few
chamber investigations, by quantifying the standard deviations (SD) of their outputs obtained
under identical conditions (Table 4). Spinellea et al. (2016) reported good repeatability
characteristics for three different MOS sensors at 100 ppb O3 (SD = 0.2-3.3 ppb); however the
SP-61 MOS sensor was found to have poor repeatability (SD = 19.8 ppb) under similar
conditions. Williams et al. (2014c) found variable repeatability characteristics (SD = 2.6-46.2
ppb) for different MOS sensors depending upon the sensor model, O3 concentration, humidity,
and temperature. However, they did not report the O3 concentration range under which the
different values were obtained, which makes it difficult to judge the relative measurement
uncertainties. For the EC Os sensors, the SD values range from 0.4—-1.9 ppb at 100 ppb Os (Table
4). Overall, it appears that both MOS and EC Oj; sensors have similar repeatability traits, and the
measurement uncertainty would typically be less than 5% at 100 ppb Os concentration if the

sensors worked perfectly.

The reproducibility of MOS O3 sensors has been quantified by a few studies (Moltchanov et al.,
2015; Piedrahita et al., 2014) through the computation of R’ between the responses of several
identical sensors under similar conditions. Moltchanov et al. (2015) reported high reproducibility
between sensors (R’ = 0.85-0.98), whereas Piedrahita et al. (2014) reported variable
reproducibility (R’ = 0.21-0.98). We did not find studies that reported reproducibility

characteristics for the EC O3 sensors.

The stability of four different MOS sensors and two different EC sensors was studied by Spinella

and co-workers under laboratory conditions (Spinelle et al., 2015a; Spinellea et al., 2016). They
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reported that the sensor drifts ranged from —0.009 to 0.081 ppb Os/day and 0.016 to 0.142 ppb
Os/day for the MOS and EC sensors, respectively, during their six months testing. This translates
to —2 to 15 ppb and 3 to 26 ppb difference in sensor outputs for the MOS and EC sensors,
respectively, in six months. Thus, there does not seem to be a significant difference between the
stability characteristics of the MOS and EC Oj; sensor. However, the different models of the
EC/MOS sensors exhibit different drifts values, meaning that the sensor manufacturing process

might be playing a role in their stability.

A few field investigations have also reported the stability characteristics of the low-cost O3
sensors. For the O3 _3E1F EC sensor, Spinelle et al. (2015b) reported a significant decrease in R’
values between the sensor response and the reference measurements from the calibration phase to
the validation phase, indicating poor stability. Moltchanov et al. (2015) reported that the
regression coefficients of the calibration curve of SM50 MOS sensor changed with time possibly
because of aging and/or dust accumulation in the sensors due to episodic events (e.g., rain and
dust storms). However, Jiao et al. (2016) did not find any association between the response of
SM50 sensor and the “days of use” during their field campaign, suggesting that episodic dust
accumulation might be the causing the response changes reported by Moltchanov et al. (2015).
For the S300 MOS sensor, Williams et al. (2013) reported their long-term stability characteristics
in monitoring campaigns conducted at several outdoor sites (Table 4). The sensor response was
generally stable over several months of operation; however, at a heavily industrial site, significant
sensor drift was observed due to dust accumulation at the inlet filter (Williams et al., 2009).
Clearly, sensor stability is an important consideration, if long term Os; measurements are to be

conducted.
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The LOD for different MOS and EC O3 sensors were reported by a few investigations (Table 4).
For the MOS sensors, the LOD values reported by Spinellea et al. (2016) were 0.5-2.3 ppb,
which are much lower than the LOD values (5.1-23.4 ppb) reported by Williams et al. (2014c),
due to the different methods employed for computing those values by the two investigations. For
the EC sensors, the LOD ranges from 1.8-6.8 ppb, as obtained by a method identical to
Spinellea et al. (2016). Thus, the LODs for the EC and MOS O3 sensors seem comparable when
same estimation method is used. Furthermore, the LODs are much lower than the typical ambient
O3 concentrations found in EU countries (Figure 2), meaning that the sensors seem suitable for

measuring ambient Os.

The response times of four different MOS and two different EC O3 sensors were reported by
Spinellea and co-workers (Spinelle et al., 2015a; Spinellea et al., 2016). They reported the tgo
values, which is defined as the mean of ty 9o (the time needed by a sensor to reach 90% of the
final stable value) and too_ (the time needed by a sensor to reach zero concentration). The tog was
4.4-89 min and 1.4-1.8 min for the different MOS and EC sensors, respectively. Williams et al.
(2014c) reported the ti,, (time interval between a step change in input concentration and the first
observable corresponding change in measurement response) and t;s (time interval between the
initial measurement response and 95% of final response after a step increase in input
concentration) times for three different MOS sensors. The ti,e and tiisc were between 1-3 min and
2-8 min, respectively (Table 4). Thus, the t9g can be roughly calculated to be around 10 minutes
(by summing the ti,, and tys) for the different sensors, which is within the range of values
reported by Spinellea et al. (2016) for the MOS sensors. Overall, the response times of the MOS
O3 sensors seem to be about 5-10 times that of EC sensors, meaning that EC sensors are

preferable if the high temporal resolution is required in O3 measurements.
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3.2.3 Impact of environmental factors and gaseous cross-sensitivities on sensor output

Environmental factors such as temperature and relative humidity have been found to significantly
affect the outputs from MOS and EC Oj; sensors (Table 4). During the chamber testing by
Spinellea et al. (2016), responses of the four different MOS sensors were found to decrease by
0.7-3.86 ppb O;3 per 1°C increase at temperatures ranging from 12 to 32 °C. In those chamber
tests, relative humidity was also found to impact the response of the MOS sensors with the
change being —0.65 to 0.84 ppb O3 per percentage point increase in relative humidity. However,
during field testing negligible/little association has been observed between the responses from
three different MOS sensors and temperature or humidity (Bart et al., 2014; Jiao et al., 2016; Lin

etal., 2015).

Environmental factors were found to affect outputs of EC O3 sensors with the responses of
different sensors changing by —0.022 to 1.28 ppb O3 per percentage point increase in relative
humidity and by 0 to 1.3 ppb O3 per 1°C increase in temperature under laboratory testing (Lewis
et al., 2016; Spinelle et al., 2015a). However, Spinelle et al. (2015a) did not find any influence of
humidity or temperature on the response of EC sensors during their field campaign. The
differences between field and chamber measurements are attributed to the inability of field
measurements in isolating the effect of a particular factor (such as temperature) on the sensor’s

response from other confounding factors (e.g., gaseous interferences and sensor aging).

Gaseous cross-sensitivity refers to the false response obtained from a sensor because of its
sensitivity to gaseous co-pollutants that commonly exist with the target pollutant. We found a
few chamber investigations that reported the cross-sensitivities to CO, CO,, NO, NO,, SO,, and

NH; for different MOS and EC Oj; sensors (Table 4). From the table, it is clear that NO,
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interference is a big problem for the EC sensors since the sensor response increases by 0.76—1.0

ppb of O3 per 1 ppb of NO».

The other cross-sensitivities seem negligible at first glance. However, to fully understand their
impact on a sensor’s response, we should know the concentration of the co-pollutant gas since the
sensor response is a product of the gaseous cross-sensitivity with its corresponding concentration.
Thus, we estimated the change in sensor response by multiplying the gaseous cross-sensitivities
with their corresponding ambient concentrations. For CO, NO,, and SO, concentrations, we used
the EU specified limits; we used a representative value for background urban sites for CO; (400
ppb), NO (15 ppb), and NH3 (30 ppb). The estimated changes in MOS sensor outputs were very
low (2.4 ppb to 2.0 ppb) for interferences by CO,, NO, NO,, and NHj3;. However, CO
interference caused a significant change in the MOS sensor outputs (—6.8 ppb to 20 ppb),
meaning that cross-sensitivity to CO could be important for such sensors. For EC sensors, the
estimated changes in outputs were low for interferences by CO, CO,, NO, NH3, and SO, (—3.77
ppb to 0.048 ppb); however, NO; interference causes a significant increase in sensor outputs (16—
21 ppb). We also found a few field investigation that reported the negligible influence of gaseous
cross-sensitivities on a MOS O3 sensor under urban ambient concentrations (Bart et al., 2014; Lin
et al., 2015). However, under such conditions several co-pollutants will be present, meaning that
the overall sensor cross-sensitivity will a combination of the individual cross-sensitivities. If the
individual cross-sensitivities cancel each other, the sensor will appear to suffer from no cross-
sensitivities problems. Thus, we recommended that the sensor manufacturer/user should first
evaluate its cross-sensitivity coefficients (to anticipated levels of co-pollutants) under laboratory

conditions, and then perform field calibration under the conditions of actual deployment.
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3.3 Performance assessment of NO, sensors

We found that three MOS and five EC NO; sensors have been tested by scientific studies. Their

performance traits are summarised in Table S3 and discussed below.

3.3.1 Comparisons with reference measurements

Figure 4 shows the R’ values between the measurements from the MOS and EC NO, sensors and
reference instrumentation under laboratory and field conditions. Figure 4 is similar to Figure 3,
and the low-cost NO; sensors show excellent performance under laboratory conditions. However,
their performance gets significantly deteriorated under real-world conditions due to similar
reasons as discussed in the case of O3 sensors. Furthermore, there is considerable variation in R’
values, reported by the different field investigations. For example, the two studies that used MOS
NO; sensors have conflicting results. Jiao et al. (2016) obtained extremely poor performance (R’
<0.1 between the sensor outputs and the reference measurements) from the MICS-2710 sensor,
which was a part of the Air Quality Egg platform. Conversely, Piedrahita et al. (2014) reported
reasonable measurement errors (RMSE = 6.9-9.5 ppb) with the same sensor by using a multiple
linear regression model for calibration that accounted for temperature and humidity effects on the

sensor’s response.

Of the studies that tested EC NO, sensors, a few have reported R° =0.90 between the sensor
response and the reference measurements after applying correction algorithms for interference by
O; or humidity (Lin et al., 2015; Mead et al., 2013; Sun et al., 2016). Duvall et al. (2016)
reported R° = 0.01 for the CairClip NO, sensor; however, the poor sensor performance was
attributed to low NO, concentrations (5.5 ppb hourly averaged value). Castell et al. (2016) tested

24 EC NO, sensors as part of the AQMesh platform and reported R° = 0.04-0.52 during a
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collocation campaign at a reference station. Their results clearly show that even for identical
sensor and platform, drastically different results can be obtained, calling for careful quality

control in the manufacturing process for both sensors and platforms.

We found a few field investigations that have simultaneously tested MOS and EC NO, sensors.
The investigation by Borrego et al. (2016) tested one MOS sensor and two EC sensors as part of
six different sensor platforms. The MOS sensor performed poorly with R’ <0.1 between the
sensor and the reference measurements, whereas the performance of EC sensors was variable
with R? = 0.06-0.89 depending on the sensor and platform models. Spinelle et al. (2015b)
performed a long-term assessment of two MOS and three EC NO, sensors. They reported low R’
for the MOS (0.20-0.21) and EC sensors (0.00-0.46), by using a linear regression model for
calibration. However, the R’ could be considerably improved (R’ = 0.52-0.79 and R’ = 0.35-0.77
for the MOS and EC sensors, respectively) by using multiple linear regression models with
additional predictors such as the concentrations of co-pollutants, humidity, and temperature.
Those models were then tested for 4.5 months during the validation period. It was found that the
performances of both the simple and multiple linear regression models were very poor during the

validation period with R? <0.2 for all the sensors probably due to sensor aging.

From the above discussion, we conclude that the best performance under real-world conditions
has been achieved by performing on-site calibration of the sensors and accounting for the
different factors that affect their outputs, rather than relying on manufacturer’s calibration. This is
because the calibration conditions used by the manufacturer might be drastically different from

the actual deployment conditions. Furthermore, sensor aging and manufacturing variability also
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stand out as important factors that need to be accounted for when conducting measurements using

low-cost NO, sensors.

3.3.2 Repeatability, reproducibility, stability, limit of detection, and response times

The repeatability characteristics of different MOS and EC NO; sensors have been studied by only
a few investigations (Table S3). The SD of repeated measurements ranged from 1.2—7.5 and 4.6—
23.3 for MOS and EC NO; sensors, respectively, as reported by Williams et al. (2014¢) under
different chamber conditions. However, they have not reported the NO, concentration at which
the measurements were conducted, meaning the relative errors cannot be estimated. Spinelle et al.
(2015a) and Castell et al. (2016) have reported SD ranging from 0.8-2.9 for different EC NO,
sensors at 100 ppb NO, concentration, meaning that 1-3% measurement error can be expected

even under ideal measurement conditions.

Regarding the reproducibility of the low-cost NO; sensor outputs, we noted in the previous sub-
section that the R’ values ranged from 0.04-0.52, when 24 identical NO2-B4 EC sensors were
tested as part of the AQMesh platform by Castell et al. (2016). This demonstrates poor
reproducibility characteristics of this sensor platform. However, Mead et al. (2013) found good
reproducibility between two pairs of identical NO2-A1 EC sensors (R’ = 0.94-0.95). Similarly,
Piedrahita et al. (2014) also reported good reproducibility (R° = 0.88-0.98) between
measurements from eight identical MICS-2710 MOS sensors. Overall, we found insufficient
investigations on sensor reproducibility, and further studies are required to better understand this

1Ssue.

Sensor stability is a concern for low-cost NO; sensors, as demonstrated by Spinelle et al. (2015b)
for both EC and MOS sensors, and discussed in the previous sub-section. The sensor drifts for
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EC NO; sensors are reported to be between —0.497 to —0.065 ppb/day (Table S3). This would
cause a significant decrease in the reported NO, concentration (by 12—-89 ppb) for a six-month
monitoring campaign. Clearly, this effect needs to be considered when conducting long-term

campaigns with EC NO, sensors.

The LOD for the different MOS and EC sensors are plotted in Figure 2 along with the typical
NO; concentration in EU countries and its corresponding EU specified limit. Almost all the LOD
values lie above the minimum measured concentrations, showing that the sensors should not be
used in places with very low concentrations of NO, (<10 ppb or <20 pg/m’). From the Figure 2,
it also appears that the LOD for the MOS sensors is higher than that for the EC sensors.
However, the LOD values for the MOS sensors have only been reported by Williams et al.
(2014c), who used a different method for estimating LOD as compared to that used by other
investigations, thereby reporting much higher values. This is also the reason for the outlier

present in EC sensors: NO2-A1 with LOD equals 12-29.4 ppb.

The sensor response times for the different MOS and EC NO; sensors are also given in Table S3.
For the MOS sensors, we can approximate too (as the sum of tia; and tsse) to vary between 6 and
34 min. For the NO2-A1 EC sensor, the ty is estimated as 9—19 min. For the other EC sensors,
the tgo equals 1.3—1.6 min, except the abnormally high value for the CairPol CairClip sensor (too =
38.42 min) possibly due to the presence of an Oj; filter and/or a humidity buffer in that sensor.
The inter-comparison between the MOS and EC sensors is not feasible due to limited

investigations that have studied this sensor trait.
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3.3.3 Impact of environmental factors and gaseous cross-sensitivities on sensor output

As discussed above, some field investigations have reported improvements in R’ values between
sensor outputs and reference measurements, if factors such as humidity, temperature, and gaseous
co-pollutants are included in the calibration equation. However, there are also others that show
insignificant improvements in R, when those factors are included in the calibration equations
(Table S3). As previously mentioned, field investigations are unreliable to draw such

conclusions, and chamber investigations are preferred.

The effects of environmental factors on EC NO, sensor outputs have been reported by a few
chamber investigations; however, no such investigations were found for the MOS sensors.
Spinelle et al. (2015a) found that the sensor response increased by 0.093—-0.47 ppb of NO; per °C
increase in temperature from 12—-32 °C for three different EC sensors. However, Sun et al. (2016)
did not detect any influence of temperature (15-21°C) on the NO2-B4 sensor’s response. Their
temperature range is only 6°C, and we can estimate an increase in the sensor output by only 2.8
ppb based on 0.47 ppb NO; per °C, reported by Spinelle et al. (2015a), which was probably left
undetected by Sun et al. (2016). The impact of humidity on EC sensor outputs was reported to be
between —0.057 to 0.13 ppb of NO, per % RH increase in humidity (40-80% RH) for three
different sensors by Spinelle et al. (2015a). Sun et al. (2016) also found that humidity ranging
from 40-70% RH increased the sensor output for the NO,-B4 sensor; however, Lewis et al.
(2016) did not observe any influence of humidity for the same sensor model. Overall, we find
conflicting results regarding the effects of humidity and temperature on the response of low-cost
NO, sensors, which might be arising due to differences in sensor models or manufacturing

variations between same sensor types.
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For the gaseous cross-sensitivities, both field and laboratory studies report that the responses
from MOS and EC NO; sensors are predominantly affected by Oz concentration (about 1.0-1.5
ppb NO; reported by the sensor per ppb of O3), unless the sensors are equipped with Oj filters
(Table S3). Williams et al. (2014c¢) reported the cross-sensitivity to SO, for two different MOS
and one EC sensor; however, the SO, concentration in their study was very high (>200 ppb), and
unlikely to be found in the outdoor environment. For the other gaseous co-pollutants, cross-
sensitivity data is only available for EC NO; sensors. We computed the estimated change in
sensor response due to those cross-sensitivities by using the procedure described in the section on
gaseous cross-sensitivities for ozone. The outputs from EC sensors were estimated to change by
—3.3 to 1.3 ppb NO3 due to cross-sensitivities to CO, CO,, NO, NH3, and SO,. Thus, it seems that

these gaseous interferences can be neglected for EC NO; sensors.

3.4 Performance assessment of CO sensors

We found that only two MOS CO sensors have been tested by the scientific community. The
MICS-5525 CO sensor was tested by two investigations, and both reported poor comparisons
between the sensor output and reference measurements (Table S4). Piedrahita et al. (2014) also
reported that the MICS-5525 sensor’s response decreased linearly when the temperature was
increased from 19°C to 40°C during chamber testing. The MICS-5525 sensor’s reproducibility
was moderate with R’ between 0.38 to 0.60 (Piedrahita et al., 2014). Another MOS sensor (model
MICS-4514) was tested by Spinelle et al. (2017) under field conditions. They reported good
agreement (R’ = 0.76-0.78) between sensor response and reference measurements when it was
calibrated by using simple or multiple linear regression models. However, the same models

performed poorly during the 4.5 months validation phase (R° <0.1). Like low-cost O3 and NO,
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sensors, it seems that aging is also an important factor for MOS CO sensors, and should be

accounted for before making long-term measurements.

Three different EC CO sensors have been tested in both chamber and field conditions. In
chamber conditions, there is an excellent agreement between the sensor output and reference
measurements with R° > 0.99 (Castell et al., 2016; Mead et al., 2013; Sun et al., 2016). However,
the field investigations report significant deterioration and variations in sensor performances
(Figure 5). Two field studies reported moderate to excellent R’ values (0.53—0.97) for the CO-B4
sensor (Borrego et al., 2016; Sun et al., 2016). However, two other field studies have reported
poor R’ values (0.17-0.45) for the CO-B4 and TGS-5042 sensors, when calibrating them with
reference measurements (Castell et al., 2016; Spinelle et al., 2017). The differences in sensor
performances could be attributed to the differences in testing conditions and methods. Note that
sensor aging is also important for EC CO sensors since the sensor calibration curve can change

significantly over time (Castell et al., 2016; Spinelle et al., 2017).

Figure 2 shows the LOD values for the EC CO sensors (LOD = 4-21 ppb from Table S4), which
lie well below the typical concentration range of CO in EU countries, meaning that these sensors
seem suitable for measuring ambient CO. Mead et al. (2013) reported high sensor-to-sensor
reproducibility for the CO-AF sensor (R’ = 0.86-0.95). Sun et al. (2016) reported that the CO-B4
sensor was unaffected by humidity and temperature changes during chamber testing. Lewis et al.
(2016) reported that the CO-B4 sensor’s response will increase by 0.532 ppb CO per percentage
point increase in humidity, meaning that the maximum variation in output would be 53.2 ppb
(when RH changes from 0 to 100%), which is quite low compared to typical CO concentrations

in Europe. Popoola et al. (2016) found that the CO-AF sensor’s baseline response was slightly
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affected by temperature during chamber tests. Thus, it seems that humidity and temperature
influences might not be important for EC CO sensors. We computed that the cross-sensitivities to
NO,, O3, NO, CO,, and SO, would only change the response of the CO-B4 sensor by —1.7 to 1.8
ppb from the data given by Lewis et al. (2016) by following the procedure discussed previously.
The other investigations (Table S4) also show that the response from EC CO sensors does not

seem influenced by gaseous co-pollutants.

3.5 Recommendations for end-users

Two types of low-cost sensors are available in the market for measuring gaseous air pollutants:
EC sensors and MOS sensors. From the above discussion, we find that both the sensor types
seem to share many performance traits; however, a few significant differences also exist (Table
S5). MOS sensors are typically cheaper than EC sensors; however, they also consume much
higher power. For O3 measurements, MOS sensors are preferable over EC sensors since they
seem to provide better agreement with reference measurements, and do not suffer from a
significant cross-sensitivity to NO,. However, note that the EC O3 sensors seem to have a faster
response time, meaning they can achieve higher temporal resolution. For NO, and CO
measurements, both sensor types seem to provide similar levels of comparisons with reference
measurements. However, we did not find enough studies that compared the two sensor types for
other performance characteristics. Thus, recommending a particular sensor type is not feasible at

this stage for NO, and CO measurements.

Like the low-cost PM sensors, the gaseous sensors are also available as stand-alone sensors or
sensor kits such as AQMesh and Air Quality Egg, and an appropriate choice can be made

depending on the end user's expertise in data-handling tasks. Note that a few sensor kits (such as
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AQMesh) have a proprietary data processing algorithm, and caution must be exercised while
using them since they have not been calibrated and tested for the end user's test conditions. Thus,
to judge the data quality obtained from such kits, it is essential to compare their outputs with the
corresponding reference measurements under deployment conditions. For the stand-alone sensors
and user-calibrated sensor kits, it is recommended to calibrate them under conditions as close to
final deployment as possible. Furthermore, frequent calibration is recommended depending on

the sensor’s stability.

4. CONCLUSIONS AND FUTURE OUTLOOK

The most important hindrance in deploying low-cost sensors at a large scale is regarding quality
control of the data. While many scientific studies have utilised low-cost PM and gaseous sensors
in a variety of air pollution monitoring activities, only a few have reported sensor performance
characteristics and the associated data quality. To further exacerbate the matter, performance
assessments have been done by using different experimental setups, reference equipment, and
environmental conditions, making it extremely difficult to make inter-comparisons between them
and draw generalised conclusions regarding the data quality. Thus, to deploy a large-scale sensor
network and meaningfully use the plethora of data generated, it is imperative to formulate
standard guidelines for assessing the short and long-term performance of low-cost sensors, which
can be used by all. The onus should ideally be on sensor manufacturers to provide the end-user
with information about the data quality expected from a sensor since the manufacturers are best

positioned to ensure standardisation of the sensor manufacturing and calibration process.

Improper sensor calibration seems to be another issue plaguing the data quality. The sensor
response is largely impacted by environmental conditions, particle characteristics (for PM

sensors), and gaseous cross-sensitivities (for gas sensors). Thus, calibration methods that don’t
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include these factors are bound to produce erroneous data. The sensor manufacturer should
ideally provide a calibration equation by using laboratory testing and identify the major factors
that affect their sensor’s response. The calibration curve can then be improved by the end-user
through testing the sensor under actual conditions of deployment (Williams et al., 2013).
Advanced calibration techniques such as neural networks could also be considered since they
might be more effective than regression modelling (De Vito et al., 2008; De Vito et al., 2009; De

Vito et al., 2015; Esposito et al., 2016; Spinelle et al., 2015b; 2017).

In the case of large sensor networks that might be used for making high-resolution spatiotemporal
air pollution maps, frequent in-situ calibration might not be practically possible. In such
scenarios, advanced statistical techniques for sensor fault detection and data quality verification
could be utilised. These include using data consistency checks (Bart et al., 2014), principal
components analysis (Harkat et al., 2006; Harkat et al., 2005), network correlations (Alavi-
Shoshtari et al., 2013), and algorithm-based mobile quality checks (Hasenfratz et al., 2012;
Talampas and Low 2012), some of which have been successfully exploited for managing large-

scale ozone sensor networks (Bart et al., 2014; Miskell et al., 2016; Weissert et al., 2017).

Once the data obtained from low-cost sensors has met the expected quality criteria (such as the
ones specified in the EU Air Quality Directive 2008/50/EC or a user-specified criteria), it can be
utilised for its intended purpose. Currently, the sensors are unsuitable for indicative monitoring
purpose in EU since they generally cannot meet the data quality objectives as specified in the
2008/50/EC directive (Castell et al., 2016; Spinelle et al., 2015b; 2017). The sensors seem to

perform better at high pollutant concentrations (Castell et al., 2016), which could present an
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enhanced opportunity for using such sensors in highly polluted areas (developing countries);

however, more studies are required to test the sensors under such conditions.
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Figure 1. Comparisons of the low-cost PM sensors with the reference instruments under
laboratory and field conditions based on the R’ (coefficient of determination) values. Note that
the bars denote the range of R’, as obtained in the studies referred by the alphabets on y-axis

(given in Table S1) under laboratory and field conditions.

Figure 2. Limit of detection (LOD values as presented in Tables 3—4 and S3-S4) of low-cost
pollutant sensors along with the typical pollutant concentrations found in EU as well as the
corresponding EU specified reference values (yearly averaged limit for PM,s and NO,, daily
averaged limit for PM;o, maximum daily 8-hour averaged target for Oz, and maximum daily 8-
hour averaged limit for CO). PM;s and NO, ranges are computed from the minimum and
maximum values of the annual mean concentrations reported by each EU member state
(Guerreiro et al., 2016). Similarly, PM;, and O3 ranges are computed from the minimum and
maximum values of the 90.4 percentile of the daily mean concentration and 93.2 percentile of
maximum daily 8-hour mean concentration, respectively (Guerreiro et al., 2016). Likewise, CO
range is computed from the minimum and maximum values of the maximum daily 8-hour mean

concentration (Guerreiro et al., 2013).

Figure 3. Comparisons of the low-cost ozone sensors with the reference instruments under
laboratory and field conditions based on the R’ (coefficient of determination) values. Note that
the y-axis refers to the different sensor models and the bars denote the range of R’, as obtained by

the different studies given in Table 4.
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Figure 4. Comparisons of the low-cost nitrogen dioxide sensors with the reference instruments
under laboratory and field conditions based on the R’ (coefficient of determination) values. Note
that the y-axis refers to the different sensor models and the bars denote the range of R’, as

obtained by the different studies given in Table S3.

Figure 5. Comparisons of the low-cost carbon monoxide sensors with the reference instruments
under laboratory and field conditions based on the R’ (coefficient of determination) values. Note
that the y-axis refers to the different sensor models and the bars denote the range of R’, as

obtained by the different studies given in Table S4.
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Table 1: Summary of review articles focused on the applications of low-cost sensors for

monitoring air pollution.

Author (year)

Study Focus

Aleixandre and Gerbolesb
(2012)

Reviewed available commercial sensors for gaseous pollutants and compared their
detection ranges with those specified in the European Directive on air quality 2008/50/EC.

White et al., (2012)

Highlighted the synergistic opportunities available between the sensor and wireless
communication technologies for reducing human exposure to air pollutants.

Castell et al., (2013)

Reviewed potential application areas of sensor technologies for air quality management.
The article also provided a critical analysis of commercially available sensors for gas
measurements and emphasised the need for performance assessment of emerging sensor
technologies under real-world conditions. Finally, the article summarised 24 different air
quality management campaigns based on emerging sensor technologies.

Snyder et al., (2013)

Discussed the changing paradigm of air pollution monitoring due to the emergence of
portable air quality sensors. The paper also illustrates a few application areas for such
sensors in managing air quality issues together with key challenges and possible solutions.

Jovasevic¢-Stojanovi¢ et al.,
(2015)

Assessed low-cost sensors for monitoring PM, including their specifications and general
performance characteristics. They also reported measurements and modelling results to
show validation methodology of a particular low-cost PM sensors.

Koehler and Peters (2015)

Reviewed personal exposure assessment to particulate air pollution by using novel sensors
developed over last 5-10 years. They also discussed new metrics (that go beyond
traditional mass measurements) for evaluating the relationship between particulate matter
and its health impacts.

Kumar et al., (2015)

Reviewed the emergence of low-cost sensing technologies for managing air pollution in
cities with respect to its need, state-of-the-art, opportunities, challenges, and future
directions.

Zhou et al., (2015)

Reviewed state of the art and future perspectives for different types of chemosensors for
monitoring gases involved in environmental exhausts (CO,, SO,, NOx, VOCs), biological
signalling (H,S, NO, O,), and toxic use (nerve gases, sulphur mustard).

Bhanarkar et al., (2016)

Reviewed the issues and challenges in the design and deployment of wireless sensor nodes
for outdoor air pollution monitoring.

Kumar et al., (2016a)

Focused on solving the typical problem of deteriorating indoor air quality (IAQ) in
building management programs aimed at conserving energy by proposing to use real-time
sensing.

Kumar et al., (2016b)

Highlighted the needs, benefits, challenges, and future outlook of monitoring indoor air
quality (IAQ) using real-time sensors. The review also critically analysed the currently
available sensor technologies available for monitoring different types of gaseous and
particulate air pollutants.

Thompson (2016)

Reviewed current and emerging areas of analytical chemistry and sensor technology
suitable for the development of a low-cost sensing platform for monitoring air quality
together with a summary of recent crowd-sourced sensing efforts.
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1074 Table 2 Specifications of the different PM sensors as given by their respective manufacturers.

Maximum Concentratio Performance
Model Size (mm) ‘Weight Power current Cost Detectable particle n range of tested in
[€3) supply consumption (US $) size s scientific
measurement .
(mA) literature
Sharp B s
GP2Y1010AUOF 46x30x18 15 5V DC 20 10 Greater than 0.5pm 0-600 pg/m Yes
Sharp 3
DN7C3CA006 50x44x20 52 5V DC 180 ~20 0.5-2.5pm 25-500 pg/m Yes
Samyoung ~ - R
DSM501A 59x45x20 25 5V DC 90 15 Greater than 1.0 pm 0-1400 pg/m Yes
Shinyei 0-28
PPD42NS 59x45%22 24 5V DC 90 ~15 Greater than 1.0 pm particles/cm’® Yes
Shinyei 0-70
PPD60PY 88x60x20 36 5V DC NA ~250 Greater than 0.5 pm particles/cm’® Yes
Dylos DCT100 76114576 544 110V AC NA 300 0>25umand0.5- 0-106 Yes
Pro 10 um in two size bins  particles/cm
DylosDC 1700 178x114x76 544  L10VAC NA 400 05-25pmand0.5- 0-106 Yes
or battery 10 pm in two size bins particles/cm
Plantower PMS 0.3-1.0 um, 1.0-2.5
65x42x23 NA 5V DC 120 ~20  pm,and2.5-10 pmin  0-500 pg/m’ Yes
1003 T
three size bins
Plantower PMS 0.3-1.0 um, 1.0-2.5
65x42x23 NA 5V DC 120 ~20  pm,and2.5-10 pmin NA Yes
3003 T
three size bins
Novafitness
71x70%x23 ~ 0.3—2.5 pym and 0.3— g 3
SDS011 NA VDC 80 35 10 pm in two size bins 0-1000 pg/m No
Novafitness
42x32x24 ~ 0.3—2.5 pym and 0.3— g 3
SDS021 NA >V De 70 33 10 pm in two size bins 0-1000 pg/m No
Novafitness
59%x45%20 N 0.3—2.5 pym and 0.3— g 3
SDS018 NA >V De 70 40 10 pm in two size bins 0-1000 pg/m No
Novafitness
73x73x20 ~ 0.3-2.5 ym and 0.3— g 5
SDL607 120 >V De NA 120 10 pm in two size bins 0-1000 pg/m No
Novafitness
71x70%23 N B 0-20000
SDS198 NA 5V DC 80 80 1-100 pm wg/m? No
Novafitness
204x100x36 ~ 0.3—2.5 pym and 0.3— g 3
SDL301 >80 > Ve NA 250 10 pm in two size bins 0-1000 pg/m No
Alphasense OPC- . .
75%64x60 105 5V DC 175 mA 500 0.38-17 pm in 16 size 0.1—15003,000 Yes
N2 bins pg/m

1075 NA stand for not available.

- 46 -



Table 3: A summary of performance characteristics of low-cost PM sensors

Comparison with

Repeatability Limit of Effect of particle Effect of particle
reference . 2o . c o Effect of temperature on sensor
Model ¢ and detection  composition on sensor size on sensor Effect of humidity on sensor output tout
me"‘s‘(‘;E;“ ents Reproducibility (pg/ms) output output outpu
Alphasense OPC-N2 R’ =0.94-099° CVr=4.2-16%"* NA Spc = 30, estimated 1N4=0.83-1.01" NA NA
from Sousan et al.,
(2016a).
Dylos models 1100 R’,,=0.97-099"  CVg=14-80%° <1° Spc < 20, estimated MNa=0.6-1.1, Na = 0. 5-4.8, estimated from Han et NA
Pro and 1700 R’ =0.64-0.95 © R’=0.67-0.98" from Sousan et al., estimated from al., (2016). No correlation between sensor output
R%=091-098¢ nRMSE =13.4— (2016b). Sousan et al., Slight correlation between sensor and temperature (R =0.03) .
R%,=0.81-0.99° 46.1% © Spc < 3, estimated (2016b). output and humidity (R? = 0.18) 7. Sensor response probably not
R%=0.58-099 ° from Northcross et al.,  1a=0.254.0, Seems affected by humidity ™. dependent on temperature ®.
R’a=0.70-0.90 (2013). estimated from
Rzﬂ,, =0.48-0.78 ¢ Did not seem to affect Han et al., (2016).
Rp=0.40-045" the sensor output under
Rzﬂd =0.74-0.84" ambient conditions &
R =0.557
Plantower PMS 1003 R%;;=0.82-0.93 R7=099F 0.721- NA NA Slight correlation between sensor No correlation between sensor output
R’ =0.69-099 ¢ 10.5* output and humidity (R”=0.09-0.17)*.  and temperature (R’ <0.02) *.
Plantower PMS 3003 R%,;=0.73-0.97 % NA NA NA NA NA NA
Samyoung R%5=0.88-0.90" CVr =2-28%" 428-1147 §pc < 8, estimated from  8ps < 18, estimated  Srm.pm < 2.8, estimated from Wang et Srpm < 1.2, estimated from Wang et
DSM501A Ri=050™ nRMSE =22.3— 10+ Wang et al., (2015). from Wang etal,  al., (2015). al., (2015).
R =0.58-097¢  52.7%° (2015).
R’y =0.07-046"
Sharp R’ =098-099¢  CVg=08-71%° NA Spc <2, estimated from  NA NA NA
DN7C3CA006 Sousan et al., (2016b).
Sharp R, =0.42-0.99 © CVg = 5-25%"T 26.1-2697  3pc < 6, estimated Ops <24, Srupm < 1.5, estimated from Wang et Srpm < 1.5, estimated from Wang et
GP2Y1010AUOF Ri»=095-099¢  CVg=09-59%1 from Wang et al., estimated from al., (2015). al., (2015).
R%5=0.98-0.99" nRMSE =2.6— (2015). Wang et al., Baseline response linearly
R%»=092-098 ™ 118.2% ¢ Spc < 4, estimated from  (2015). proportional to temperature °.
Rp=072" Sousan et al., (2016b). Seems unaffected by temperature *.
R%pa=0.99°
Shinyei PPD42NS R’ =0.66-0.997  CVg =4-28%' 4.59-6.447  §pc < 18, estimated Ops <24, estimated  Spmpm < 8.0, estimated from Wang et Srpm < 1.6, estimated from Wang et
RY=093-096' R’=091-094° 1°® from Wang et al., from Wang etal.,  al, (2015). al., (2015).
Rm<0.16" R’=025-044" (2015). (2015). Seems affected by humidity 9. Seems affected by temperature %.
Rzﬂd =0.53-098 1 dps <13, estimated ~ Slight correlation between sensor No correlation between sensor output
Rzﬂ,, =0.55-0.94° from Austin etal,  output and humidity (R’ =0.01-0.27)°.  and temperature (R>=0.01) °.
R%=0.50-0.80* (2015).
Shinyei PPD60PV R =043" R°=098-10" NA NA NA Seems unaffected by humidity . Seems unaffected by temperature .

R? and CV are the coefficients of determination and variance, respectively. The subscript is lab or fld when referring to comparison between sensor and reference measurements under laboratory or field conditions, respectively;
( %ZL,(MArMBi)Z
nZi Mai tMg;
measured by sensors A and B, respectively, and n is the number of measurements. dpc, dps, Srepm. S1.pm is the change in sensor response due to change in particle composition, particle size, relative humidity, and temperature,
respectively, measured at the same mass concentration. It is defined as 8x = Yuign/Yiow, Where the subscript x is PC, PS, RH-PM, and T-PM when refereeing to particle composition, particle size, relative humidity, or temperature,
respectively. Viign and Viow are the different (high and low) sensor responses under different conditions. NA stands for not available. The alphabets refer to the following studies- a: (Sousan et al., 2016a), b: (Northcross et al., 2013),
c: (Manikonda et al., 2016), d: (Sousan et al., 2016b), e: (Holstius et al., 2014), f: (Steinle et al., 2015), g: (Han et al., 2016), h: (Jiao et al., 2016), i: (Jovasevi¢-Stojanovi¢ et al., 2015), j: (Williams et al., 2014a), k: (Kelly et al.,

2017), I: (Wang et al., 2015), m: (Alvarado et al., 2015),n: (Olivares and Edwards 2015), o: (Olivares et al., 2012), p: (Austin et al., 2015), q: (Gao et al., 2015), and 1: (Zikova et al., 2016).

subscript is Rt or Rr when referring to repeatability or reproducibility, respectively. nRMSE is the normalised root mean square error, which is define as nRMSE = , where My; and Mg; are the i® values
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Table 4: Performance characteristics of low-cost Oj sensors

Model Comparison with It{i:s(zgs: Repeatability Cross sensitivity (in ppb of Oy/ppm for CO, a.nd Effect of humidity temEpgeacttu:i on Stability
reference . LOD (ppb) ppb of Os/ppb for other gases, unless otherwise on sensor output .
(sensor type) measurements tiag, and (SD in ppb) mentioned) (5xa in ppb/ %RH) sensor output (8¢ime in ppb/day)
t,ise in Min) (81 in ppb/°C)
Aeroqual SM50  R77;=0.82-0.94" NA NA NA NA Seems unaffected Seems unaffected ~ Seems unaffected by usage
(MOS) R%=0.77-094" by humidity. * by temperature *.  duration *.
Seems afhfected by usage
duration °.
UnitecSens Resiay <2.0 ppb © too=152°¢ 33¢ 23°¢ 0.015 to NO,, —0.061 to NO, 2.3x107 to CO, Oru=—0.65 ¢ dr=-3.86° Stime =0.070 ©
3000 (MOS) —0.076 to CO,, and —1.1x107 to NH; ©.
SGX MICS Resiay < 3.1 ppb © too=9.8¢ 20° 15°¢ 0.014 to NO,, —1.9x10~° to NO, —=7.9x10™* to CO, Oru=—0.02 ¢ 8r=-0.7°¢ Stime =0.081 ©
0Z-47 (MOS)  R*=077° 2.2x107 to CO,, and 8.0x10™* to NH; ©.
SGX MICS Resyp < 13.3 ppb © too=4.4° 02° 0.5° 0.081 to NO,, —0.016 to NO, —3.5x10" to CO, Sru=0.84°¢ dr=-31° Stime = —0.009 ©
2610 (MOS) Rp=012¢ 1.9x107 to CO,, and —1.0x107> to NH; ©.
SGX MICS R’ =0.88-0.95° te=1-3°  6.5-462° 5.1-11.7°¢ Response equivalent to 0 ppb O3 at >200 ppb of NA NA NA
2611 (MOS) RMSEg=4.2-154 trise = 5-8 ¢ SO, ©.
ppb’
FIS SP-61 Resiay <4.2 ppb © too =89 ¢ 19.8¢ n.a 0.024 to NO», 0.13 to NO, 9.9x10~* to CO, Opu=—0.46 ¢ dr=-23°¢ Stime =—0.007 ©
(MOS) —1.2x1072 to CO,, and 3.0x107> to NH; ©.
AGT R’ >0.98° tag=1° 2.6-13.6 ¢ 15-23.4° Response equivalent to 7.5 ppb Os at >200 ppb of ~ NA NA NA
Environmental tise =3-6° SO, ©.
Sensor (MOS)
Dynamo Sensor R > 0.97 © tg=1° 33-7°¢ 15-17.6°¢ Response equivalent to 2.9 ppb and 15.6 ppb of O;  NA NA NA
(MOS) tise = 2-3 € at >200 ppb of SO, and NO,, respectively ©.
Aeroqual S500  R%,=091° NA NA NA Seems unaffected by ambient gaseous species © Seems unaffected Seems unaffected NA
(MOS) by humidity f. by temperature ©.
Alphasense R’y >0.99 & too=14% 048 6.8¢ 0.92 to NO,, —0.042 to NO, —6.6x10™ to CO, Oru=0.40 & dr=0¢8 Stime <0.016 8
03B4 (EC) R%a=002" 2x10* to CO,, and 2.5x10™* to NH; &.
R’z =0.13-0.70 ¢ No cross-sensitivity to NO, and CO .
Citytech R’ >099 ¢ to=1.80% 0.6° 2.7¢ 0.76 to NO,, —0.011 to NO, 7.0x10™" to CO, Oru=—0.022 g. dr=13¢ Btime < 0.142F
0O3_3EIF (EC) RZ/M =0.84-0.88" 3.5x107 to CO,, and 1.6x107> to NHs &. Seems unaffected Seems unaffected ~ Seems affected by usage
by humidity ™. by temperature ®.  duration ™.
Alphasense R’=099" NA 19 18* 1.0 to NO,, —0.251 to NO, 0 to CO, 0.22 to CO,, 1.28, estimated NA NA
0X-B421 (EC) RZ/M =0.01-0.66" and —0.036 to SO,, estimated from Lewis et al., from Lewis et al.,
(2016). (2016).
No cross-sensitivity to NO and CO *.
Aeroqual S300  SE;» = 3-8 ppb’ NA NA NA Unaffected by ambient NO *. Slightly affected by ~ NA Stime < 0.067
(MOS) SEgq =5 ppb’ humidity *. Stable response for 4 months .
SEaq=6ppb © Significant sensor drift within 2

months .

R’ is the coefficient of determination, Res the residual (sensor measured value minus reference value), SE the standard error, RMSE the room mean squared error, too the mean of to_o (the time needed for a sensor to reach 90% of
the final stable value) and tooo (the time needed by a sensor to reach zero concentration) ti, the time interval between a step change in input concentration and the first observable corresponding change in measurement response,
tise the time interval between the initial measurement response and 95% of final response after a step increase in input concentration, SD the standard deviation of repeated measurements, dzy the change in sensor response in ppb
per percentage point increase in relative humidity, 8t the change in sensor response in ppb per °C increase in temperature, and . the change in sensor response in ppb per day. The subscript is lab or fld when referring to
comparison between sensor and reference measurements under laboratory or field conditions, respectively. MOS stands for metal-oxide-semiconductor sensor, EC for electrochemical sensor, LOD for limit of detection, RH for
relative humidity, and NA for not available. The alphabets refer to the following studies- a: (Jiao et al., 2016), b: (Moltchanov et al., 2015), c: (Spinellea et al., 2016), d: (Borrego et al., 2016), e: (Williams et al., 2014c), f: (Lin et
al., 2015), g: (Spinelle et al., 2015a), h: (Spinelle et al., 2015b), i: (Castell et al., 2016), j: (Williams et al., 2013), k: (Bart et al., 2014), and I: (Piedrahita et al., 2014).
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