
J
H
E
P
0
5
(
2
0
1
9
)
0
2
8

Published for SISSA by Springer

Received: January 3, 2019

Revised: March 28, 2019

Accepted: April 22, 2019

Published: May 6, 2019

Event generation for beam dump experiments

Luca Buonocore,a,b Claudia Frugiuele,c Fabio Maltoni,d,e Olivier Mattelaerd

and Francesco Tramontanob

aPhysik Institut, Universität Zürich,
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Abstract: A wealth of new physics models which are motivated by questions such as the

nature of dark matter, the origin of the neutrino masses and the baryon asymmetry in

the universe, predict the existence of hidden sectors featuring new particles. Among the

possibilities are heavy neutral leptons, vectors and scalars, that feebly interact with the

Standard Model (SM) sector and are typically light and long lived. Such new states could be

produced in high-intensity facilities, the so-called beam dump experiments, either directly

in the hard interaction or as a decay product of heavier mesons. They could then decay

back to the SM or to hidden sector particles, giving rise to peculiar decay or interaction

signatures in a far-placed detector. Simulating such kind of events presents a challenge,

as not only short-distance new physics (hard production, hadron decays, and interaction

with the detector) and usual SM phenomena need to be described but also the geometry

of the detector has to be taken into account for a reliable estimate of the event yield and

distributions. In this work, we describe a new plugin to the MadGraph5 aMC@NLO

platform, which allows the complete simulation of new physics processes relevant for beam

dump experiments, including the various mechanisms for the production of hidden particles,

namely their decays or scattering off SM particles, as well as their far detection, keeping

into account spatial correlations and the geometry of the experiment.
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1 Introduction

Experiments at the LHC have yet not reported any sign of physics Beyond the Standard

Model (BSM). Nevertheless, the problem of reconciling our description of the fundamen-

tal interactions and particles with long-standing problems, such as the matter-antimatter

asymmetry in the Universe, the evidence for dark matter from many astrophysical and

cosmological observations and the origin of the neutrino masses, becomes ever more press-

ing. Many ideas have been proposed, some of which addressing one problem at the time,
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others, more ambitious, providing solutions to two or more open questions at the same

time. In this context, a recurrent theme is the hypothesis that a hidden sector involving

new light particles, might be coupled to the Standard Model via, for instance, one of the

three portals (scalar, fermion and vector) in a feeble way. Such scenarios can provide not

only dark matter candidates, but also other states, such as heavy neutral leptons, vectors,

scalars, which could be long-lived and also possibly decay back to SM particles.

To prove the existence and measure the properties of such elusive particles is extremely

difficult. The situation is in fact similar to neutrino production and detection:1 as the

energy does not pose a hindrance, one is lead to consider high-intensity facilities and design

experimental setups that maximise the rates. In short, one needs very intense beams and

then let such beams cross a heavy and instrumented target to detect their scattering or,

if necessary, to create a decay tunnel as long as possible to observe their decay products.

A first example is NA62 [3, 4] which can run in a beam dump mode and is expected

to collect data in this configuration soon. The DUNE [5] experiment will be operational

in 2026 to study neutrino oscillations. As a by-product it could also search for hidden

sector particles. The SHiP experiment [6, 7] has been designed on purpose to search for

such light and feebly interacting particles originated in interactions of 400 GeV/c protons

produced by the CERN SPS [8]. More recently, other proposals have been put forward to

also exploit proton collisions at the LHC experiments with detectors placed not very far

from the collision points, namely, the CODEX-b [9], MATHUSLA [10, 11], FASER [12, 13]

and AL3X [14] experiments.

In the present paper we address the issue of how to efficiently simulate the production

of a flux of particles belonging to the hidden sector and their subsequent interactions

and/or decays. In the following, we will generically call a Beam Dump Facility (BDF)

every experiment where a known flux of primary SM probes strikes on a fixed target and a

detector is placed in an optimal position with respect to the target, with the aim of detecting

either neutrinos or a new kind of feebly interacting particles produced off the primary beam

interaction. The case of a detector placed close to a collider experiment such as those

proposed in [9–13] can be equally treated within our framework without any modifications.

In practice, sensitivity studies of such experiments to new physics phenomena, rely on the

simulation of two distinct processes, one where the new particles are produced and the

other where the new particles (or their decay products) interact with a detector placed at

some macroscopic distance, from tens of meters to thousands of kilometers.

The production of a feebly interacting particle in a beam dump can proceed through at

least three phenomenologically different phenomena: i) its prompt production in the high

energy scattering of the primary beam particle with a nucleus in the target; ii) as the result

of the decay of SM particles produced in the primary collision or in the cascade process in

the target; iii) through the bremsstrahlung process of primary or secondary particles in the

target. The detection, on the other hand, will proceed either through the decay in flight

of new particle back to visible SM final states or directly through the scattering with the

matter in the detector.
1In this case, it is somewhat instructive to remind that even though we know a lot about neutrinos proper-

ties by now, τ neutrinos are still quite unknown; with nine charged current τ neutrino events identified by the

DONUT experiment [1] and 10 by the OPERA experiment [2] it is by far the least known of the SM particles.
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Figure 1. Schematic view of relevant processes that might happen at a BDF and can be comput-

ed/simulated within MG5aMC.

The aim of this paper is to provide an implementation that allows the simulation of

the complete chain of subprocesses, from the production to the final detection at a BDF

in one go. Our starting point are FeynRules [15–17] for the implementation of the new

physics model lagrangian and MadGraph5 aMC@NLO [18, 19], MG5aMC for short,

for providing the necessary short-distance physics elements, the automatic production of

particle-level unweighted events and the framework. To achieve maximal flexibility we

provide the implementation as a MG5aMC plugin, in line with other recently developed

applications [20–22]. Figure 1 shows a sketch of the elements of the simulation which are

automatically combined in our implementation. These functionalities are available so that

samples of unweighted events in a standard format can be generated in a single step and

eventually passed to the simulation of the detector response. For the rest of the paper

we dub the MG5aMC plugin for the simulation of hidden particle effects at beam dump

facilities with the short-hand name MadDump.

An important aspect of our implementation is that it provides the elements of the

simulation that are related to BSM physics in a single framework. This entails a number

of advantages. First, it eliminates the possibility of making mistakes in the generation or

in the combination of event samples for the production and the detection stages. This

is particularly relevant when scanning over the parameters of a BSM model, where, al-

though every step is simple in principle, the combinatorics and the bookkeeping would

make the whole construction cumbersome. Second, by using functionalities already present
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in MG5aMC it allows to fully automate the scanning over the BSM parameters. Third,

once implemented in FeynRules and available in the UFO format, the same BSM model

and parameter points can be constrained in different contexts within the same framework,

for instance, in collider physics using MadAnalysis5 [23–25] recasting capabilities or in

MadDM [22, 26, 27].

In MadDump the primary flux of Standard Model probes that can generate the hidden

particles has to be provided by the user. As shown in figure 1, it can be either the original

beam hitting the target, or the flux of hadrons following the hard interaction that can

produce the hidden particle through their decays. In the former case, the user has just to

provide the specific particle code of the probe and its energy in the laboratory frame, while

for the latter case the flux can be given as an event file featuring the decaying particle

momenta and specifying the particle identifier. Note that, for the case of hidden particles

generated in the target from meson decays, our approach is more flexible than just directly

linking event generators like Pythia8 [28, 29] or HERWIG7 [30] as it allows, in principle,

to later include other effects, such as the cascade production of secondary particles which

in some cases could be relevant. MadDump is able to handle event files in all formats of

the most used event generators like LHE or HEPMC. Another important ingredient is the

geometry of the BDF, which is provided by the user in a dedicated file.

The paper is organised as follows: in section 2 we introduce the algorithms at the core

of MadDump. In section 3 we present illustrative examples of possible applications, con-

sidering physics cases relevant for the SHiP experiment. Conclusions and the perspectives

of the present work are given in section 4. In three appendices A, B and C we provide

many details on the numerical techniques employed and the associated uncertainties, while

appendix D documents the scripts that produce the results presented in section 3.

2 Approach

The first important aspect of our implementation is the idea of considering the beam dump

experiment as a two-step process:

• Production: hidden particle flux generation upon interaction of the beam with the

target;

• Detection: interaction of the hidden particles (or their decay products) in the (pos-

sibly far-placed) detector.

While both steps depend on the details of the new physics model and therefore they have

to be considered together, it is possible to factorise the simulation into two independent

steps: the results of the Production phase simulation are used to build a (two-dimensional)

parametrisation of the incoming hidden particle flux hitting the detector and leading to

different signatures in the detector. By disentangling the Production from the Detection

phase and the corresponding event generation into two subsequent steps, the possibility of

following the full history, from production to the final signature in the detector, of each

event is lost. However, the gain in efficiency in the event generation is enormous, an element

which is a key aspect in the simulation of a high-intensity experiment.
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The second important aspect of MadDump is that it has been designed as a plugin of

MG5aMC. In other words, it heavily relies on already existing modules which are at the

core of MG5aMC, such as the phase space integration provided by MadEvent and the

decay package MadSpin [21], integrating them with functionalities that are specifically

required for BDF’s, so the various steps of the simulation can be undertaken to obtain the

final result in one go. Among the key new functionalities, we stress

• the determination of doubly differential scatter data in the Production phase of non-

standard particle beams and their support in the Detection phase;

• the support of HepMC as input format with the aim of making easier the interplay

with other Monte Carlo generators like Pythia8 or HERWIG7.

The third aspect is the underlying idea of factorising SM physics from the BSM one,

whenever possible. The former, while accessible via standard MC tools, is in general

quite involved and needs the modeling of many effects. Being strongly dependent on the

particular experimental setup, a dedicated simulation of the target and/or detector effects

is almost always needed. However, while cumbersome, this part of the simulation does not

have any dependence on the new physics model considered and can be taken care once for

all. On the other hand, the new physics short-distance part by definition depends on the

details of the model and therefore has to be generated/considered for each different data

interpretation. Fortunately, it can be described quite easily from first principles and dealt

with by usual or especially developed MG5aMC modules.

2.1 Production

In a typical beam dump experiment, a collimated and mono-energetic beam of protons or

electrons impinges on a thick target, at rest in the laboratory frame. A copious number

of SM particles is generated both in primary and subsequent secondary interactions inside

the target, which is designed to maximise the particles yields. The production of hidden

sector particles may proceed according to different mechanisms. In the following, we focus

on two cases, i.e.,

• prompt production in primary or secondary beam interactions

• rare meson decays.

Without loss of generality, we consider the case of proton beam dump experiment, keeping

in mind that other situations can be dealt with by MadDump in a completely analo-

gous way.

Depending on the specific BSM physical case (model and parameter point of interest),

the prompt production may be described in perturbation theory and it can be treated

directly in MadDump. In this case, the main input is the BSM Lagrangian (in the UFO

format) which fixes the hidden sector model and its interactions with the SM particles.

For example, in a model where a new massive vector mediator couples to quarks and

Dark Matter (DM) fermionic particles, the main production mechanism resembles Drell-

Yan production and decay at fixed target experiments. This description must, however,
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be consistent with the typical scales characterising the model. For instance, in the above

example the mass of the mediator must be larger than the QCD scale for the computation

to be reliable.

As stated above, the main goal of MadDump is to handle BSM interactions and then

embed them consistently into a complete and modular simulation chain which can take into

account the rest of the SM interactions, possibly also using other inputs. In particular, an

accurate simulation of the cascade production of hadronic particles, mesons and baryons,

is expected to be handled by other MC tools or dedicated simulations, which can fully

include parton showers, hadronisation, nuclear effects, meson decays and so on. This part

can be very important if hidden particles are produced in the decays of mesons. In that

case, the meson production is assumed to be simulated independently. MadDump, on

the other hand, by parsing the event files2 describing the beam-target event takes care of

the decay of mesons into hidden particles, employing for example, an effective field theory

approach, which can also be implemented at the level of the UFO. In this way, mesons are

considered on the same footing of the elementary particles in the model and their decays

occur through interaction vertices that can be handled by MG5aMC in the usual way.

Examples of both prompt production and meson decay studies are given in section 3.

Either way, by the hard-interaction or via the decay of mesons, hidden particles are

created, which fly out of the target close to the forward direction. The hidden parti-

cles produced during the beam dump, however, do not form a standard collimated and

mono-energetic particle beam. On the contrary, they have a spatial distribution, they are

produced in different points inside the volume of the target, and a phase space, i.e., a non

trivial four-momenta spread, distribution. Assuming that the hidden particles travel freely

until they eventually enter in the active region of the detector, after macroscopic distances

that can go from meters to hundreds or thousands of kilometers, we can describe the beam

of hidden particles by means of a multi-differential flux function

φχ(E, ~x) =
dnDM

dEd~x
, (2.1)

where the vector ~x denotes the collection of all the other relevant kinematical variables

(angles, spatial distribution of the hidden particles production point within target, etc.),

but the energy. The flux function in general not known a priori and/or in an analytical form

since it represents the result of scattering/decay processes in the Production phase. This

distribution is implicitly determined by the simulation of the Production phase and in turn

it can be extracted from a sufficiently large sample of production events. In practice, since

the flux depends on the particular BSM model and the specific production mechanism, it

cannot be fit it once and for all (as for the proton pdf). An on-the-fly fitting procedure is

needed that is fast, robust and flexible.

2We remark the importance of having an easy way to interface MadDump with other generators. Indeed,

as we argued for the case of meson decay, MadDump can take as input the results of other tools in the

form of event files. This is the main reason why the HepMC format [31] for the input files was chosen as

an option for MadDump.
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2.2 Detection

The final detection of the hidden particles might occur according to the two distinct physical

processes

• the hidden particle interacts with the active volume of the detector, resulting in a

neutrino-like signature;

• the hidden particle decays to SM particles inside a dedicated decay tunnel (included

of what we dub “detector”), resulting in a “displaced vertex” signature.

The interaction of the hidden particle with the detector turns out to be the most difficult

part to simulate. One can exploit some approximations and different Monte Carlo tech-

niques to obtain a generator with a satisfactory level of accuracy. On the contrary, as we

will discuss later, in the displaced decay case, the same complications do not arise and the

situation is much easier to handle. Let us discuss first the interaction case.

2.2.1 Interactions of hidden particles in the detector

The outcoming flux of hidden particles from the Production phase, eq. (2.1), corresponds to

the incoming hidden particles flux of the Detection phase. Our strategy is to parametrise

the flux by using Production event samples and use it as a generalised partonic distribution

function (pdf) for the needed computations in the Detection phase. In doing so, we will

also able to parametrise not only the acceptance of the detector but also some of the

efficiencies/features that are model dependent.

The total interaction cross section with the fiducial volume of the detector is obtained

by convoluting of the flux function φχ(E, ~x) with the elementary cross section σ̂I for the

“partonic” sub-process

HP +X → HP +X ′, (2.2)

where X represents the SM matter particle in the detector and “HP” the hidden particle.

Our implementation is able to handle:

• elastic electron scattering, X = e−

• deep inelastic scattering of nucleons (DIS), X = u, d, s, c.

The geometrical detector acceptance sets the integration limits in the convolution integral.

This is equivalent to introduce a weight function W (E, ~x) which is 0 if the point does

not pass the acceptance cut and 1 otherwise. In this way, it is possible to restore the

integration limits to their full ranges. This simple idea is the basis of more sophisticated

re-weighting strategies in Monte Carlo integration. We can exploit these techniques with

the aim of modeling in a realistic way the detector efficiency. For example, due to its shape

and composition, the particles entering the detector may travel a longer or shorter path

inside its volume. Correspondingly, the probability that the particles interact inside the

detector will be greater or lesser resulting in an efficiency function depending on kinematical

variables of the incoming particles. We can effectively describe this effect giving a suitable

weight W (E, ~x) to each incoming hidden particle penalising those which will travel a shorter
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path. To this aim, we have introduced in our framework the possibility of introducing a

re-weighting procedure and we have extensively tested/used it to describe some common

detector effects. The user can easily customise the weight function in order to refine the

simulation at will.

Our master formula for the Detection cross section σD is given by:

σD =

∫
dE

∫
dnxφχ(E, ~x)W (E, ~x) σ̂D(E). (2.3)

The crucial point here is that the partonic cross section σ̂D does not depend on the other

variables but the energy, as it follows directly from the Lorentz invariance of the interaction

among point-like particles. Due to this property we are allowed to formally perform the

integral over the ~x vector before performing the convolution with the partonic cross section

leading to the introduction of an effective one-dimensional energy pdf:

φ̃χ(E) =

∫
d~xφχ(E, ~x)W (E, ~x) =⇒ σD =

∫
dEφ̃χ(E)σ̂D(E). (2.4)

Before proceeding further, we discuss some practical implications of the above formula.

The 1D-function φ̃χ(E) can be obtained through a simple 1D fit of the energy histogram

of the input DM production events, after having re-weighted them by the weight function

W (E, ~x). According to eq. (2.4), this is the only ingredient needed to compute the total

cross section, which in turn is crucial to extract the hidden particles yields in the detector.

Up to this point, the simulation of a collimated (along the beam axis) but not mono-

energetic beam of hidden particles particle impinging on the detector is achieved. However,

this is not sufficient to develop a full event generator of unweighted “interaction events”. A

complete event reconstruction that gives access to correlations (between energies, positions,

angles), may be of great importance. It can allow to study possible kinematical cuts with

the aim of maximising the signal yield with respect to the backgrounds, and to accurately

model detector effects. For example, due to different energy-angular correlations of the DM

particles with respect to the neutrino ones, it is possible to have a signal-enriched sample of

events for off-axis detector configurations, as pointed out in ref. [32]. Hence, in principle this

information might be useful to design optimised experimental configurations. Moreover, the

output events can be further post-processed exploiting for example parton shower programs

or other dedicated tools in order to have a better estimates of the detector efficiency.

In principle, given the “trivial” dependence of the partonic cross section on the pa-

rameters ~x, we can assign them a posteriori on a event-by-event base according to the

distribution

P (~x)d~x = φχ(E, ~x)W (E, ~x)d~x , (2.5)

at fixed E = E, where E is the energy of the current event. In practice, the procedure

underlying the above formula is limited by the computational issue of performing a robust

and reliable multi-dimensional fit, since the incoming particle flux is not known analytically.

As mentioned above, our fitting procedure relies on the point-like approximation of the

target in the primary interaction. In a typical beam dump experiment, the distance between

the production target and the near detector is greater than the characteristic size of the

– 8 –
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Figure 2. Production and detection of dark matter at a beam-dump experiment: a sketch of the

setup and the kinematics.

Figure 3. Input 2D-Scatter plot in the DM E − θ plan. As example, we consider DM particles

produced by a Dark Photon-like mediator, which enter a SHiP-like detector.

target, so that the point-like target approximation is a reasonable first approximation.

Under this assumption, the complexity of the problem reduces considerably. As depicted in

figure 2, just three kinematical variables are needed to describe the incoming flux impinging

the detector: the energy E, the polar angle θ and the azimuthal angle φ around the beam

axis. Furthermore, the physics occurring at the production point is invariant under a

rotation around the beam axis resulting in flat distributions for the azimuthal correlations.

Hence, the only relevant correlations are the E− θ ones. In figure 3 we show a typical plot

of the production scatter data, which enter into the neutrino detector, in the E − θ plane

for a SHiP-like configuration [6, 7].

In order to generate E, θ values distributed in the same way, we have developed a

numerical 2D-fitting algorithm which is fast, robust and automated. The main design

concepts are based on the adaptive algorithms exploited in Monte Carlo integrators like

VEGAS [33] and FOAM [34]. Our algorithm produces a 2D-mesh of bins for the 2D-

histogram of the input points in the (E, θ)-plane in such a way that the histogram heights

are flat. It is based on a deterministic procedure: we apply a sequence of alternate splittings,

one along the x-axis and one along the y-axis, according to a democratic principle of equal

weights. Further details on this technique can be found in appendix A. As an example, in

figure 4, we show the 2D-mesh associated to the scatter data in figure 3.
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Figure 4. Result of the fitting procedure. The area of the cells in the mesh is proportional to the

number of events in the cells.

Figure 5. Re-generated 2D-scatter plot starting from the fitted 2D-mesh. See figure 3 for the

comparison with the original plot.

Starting from this mesh, we can generate new E, θ points with the same distribution

as the original ones. The result is plotted in figure 5, where the goodness of the procedure

can be appreciated. The inspection of these plots does not replace quantitative estimators

as the one defined in the appendix B, but it can serve for a quick survey on the internal

machinery and as a sanity check. The flag testplot in the fit2D card.dat turns on

the print out the content of these plots in a table format. We pass now to describe the

generation of the azimuthal angle φ. As already stated above, at fixed θ, the φ distribution

of the flux is flat due to the symmetry with respect to the beam axis at the production point.

The only kind of angular correlations which can be introduced are of geometrical nature
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and depend on the shape of the detector. In the case of an off-axis detector, or even simply

of a detector on-axis with a rectangular surface exposed to the flux of a hidden particle, the

allowed angular region does not coincide with the full angular range [θmin, θmax]× [0, 2π]φ.

Since the distributions are flat in the azimuth φ, it is convenient to parametrize the surface

of the detector in terms of a single interval with constant endpoints in θ and θ-dependent

regions for the variable φ. Geometrically, this means that we first fix a value of θ and

consider the circular projection, which is obtained by varying φ in the range [0, 2π], onto

the transverse plane at the distance where the surface of the detector lies. Then, we

determine the φ regions for which the circumference is inside the surface of the detector.

For example, let us consider the case of an on-axis detector with a rectangular shape, as in

the SHiP experiment. For small values of θ, the circular projection will lie entirely inside

the rectangular surface so that all values of φ in [0, 2π] are accessible. On the other hand,

when we pick a θ value big enough, we get the situation in which the circular projection

intersects the rectangle in four (or even eight points). In this case, the allowed values of

φ lie in two (four) distinct intervals, which are completely determined by the given value

of θ. The choice of the above parametrization allows us to handle in a simple fashion the

unweighted generation within the geometrical acceptance only. As first step, we follow the

procedure outlined above to generate a θ angle. Then, we pick with uniform probability

one of the available regions for the azimuth and, finally, we generate a φ value inside that

region, again according to the uniform distribution. In figure 6, we compare the angular

correlations as obtained by the original scatter points which cross the detector surface and

the ones we reconstructed following our strategy. Again, the agreement is fairly good. We

stress that the above procedure is fully consistent with the re-weighting strategy outlined

at the beginning, which we summarise here:

1. we first build the one-dimensional energy pdf on top of the original (unweighted)

scatter points re-weighted by the effective function W , which takes into account, for

example, that for some θ values, there are φ values not allowed;

2. we then reconstruct the missing variables in their actual ranges.

We exploited the same re-weighting strategy to modeled the full 3D-geometry of the detec-

tor. Indeed, up to this point, the same weight has been assigned to each particle direction.

More technical details on this procedure are reported in appendix C. Depending on the

specific new physics model, the interaction between hidden particles and the SM matter in

the detector can be based on different types of processes:

• elastic scattering off electron;

• DIS-like scattering off nuclei;

• elastic and coherent scattering off nuclei.

In principle, the processes included in the above list can be easily simulated in our frame-

work if a suitable model file is supplied, at least for the first two cases.
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Figure 6. Comparison plot between the θ − φ correlation as given by the original input scatter

data (top panel) and by the re-generated points (bottom panel) obtained according to the procedure

outlined in the main text.

2.2.2 Displaced decays

In the case of displaced decays, the algorithm simplifies considerably. The decay process

does not require the regeneration of the events and then the issue of their full reconstruction

does not arise. Indeed, the decay can be generated event-by-event on top of the incoming

flux of the unweighted events. The probability that a given particle decays in a specified

decay channel i after having traveled a distance l from the production point is given by

Pi(l) = Bri × (1− e−l/λ), λ =
γβ

Γ
(2.6)

where Bri is the branching ratio for the i-channel, γ and β are, respectively, the Lorentz

factor and the velocity in the laboratory frame of the decaying particle, and Γ is its width.
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The displacement from the production to the decay point can be determined starting

from the partial decay widths. The latter, for the given BSM model, are computed on-

the-fly according to the actual parameters of the simulation (the so-called “auto-width”

option [35]). This feature in combination with the “auto-scan” mode [36], both provided

by MG5aMC, allows for a complete simulation scan over the relevant parameter space. In

the present version of MadDump, the displaced decay events are not forced to be generated

inside the actual decay vessel. It is only as the last step of the simulation, that a rejection

of the events that occur outside the detection volume happens. The algorithm could be

improved by reweighting each event according to the distance that the decaying particle

could actually travel inside the decay vessel.

2.3 Details of the implementation

In the procedure outlined above, we encoded all the details of the detector in the efficiency

function W , eq. (2.3). It acts as a weight function for each incoming dark matter par-

ticle event. Despite the general ground of the method, its actual implementation leads

unavoidably to some design choices, in particular regarding the user interface. Here, we

will present our design philosophy and we will give the main details of the implementation.

We followed a pragmatic approach. Indeed, while the full knowledge of the efficiency

function W is not available a priori (of course, it depends on the specific situation under

consideration), on the other hand, some basic aspects of the geometry of the detector can

be taken into account in a general manner. Our idea has been that of providing a collection

of standard detector shapes and configurations which can approximate the geometry of a

realistic experiment. The main settings can be found in the fit2D card.dat card file. Some

of them are shared by all of the possible configurations: the distance from the target to the

detector, the average density of detector, the Z/A ratio (which is important to determine

the correct number of electrons in the fiducial volume of the detector). They are set by

the following commands

s e t d t a r g e t d e t e c t o r value

s e t d e t e c t o r d e n s i t y value

s e t Z average value

s e t A average value

where value stands for the desired numerical value. For what concerns the units, it is

understood that all the lengths are in cm and all weights in g. Going to more specific cases,

we include the possibility to handle both on-axis (default choice) and off-axis configurations.

In the former case, we consider two possible shapes of the detector:

• parallelepiped with the axis parallel to the beam axis (default choice),

• cylinder with the axis parallel to the beam axis.
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Figure 7. Schematic view of the off-axis configuration implemented in MadDump.

They can be set by the following commands

1. s e t p a r a l l e l e p i p e d True

s e t x s i d e value

s e t y s i d e value

s e t depth value

In the above, x side, y side are the dimensions in the transverse plane, while depth

is the dimension along the beam axis.

2. s e t p a r a l l e l e p i p e d Fal se

s e t c y l i n d e r True

s e t theta max value

Here, theta max is the angular aperture (in radians), using as pivot the production

point, from the beam axis to the edge of first circular surface of the cylinder. In other

words, the radius of the cylinder is given by the formula

r = d target detector× tan theta max. (2.7)

For the off-axis mode, a beta version is available in the current release of the plugin. We

have implemented for the moment only the simplest geometry given by a truncated cone

with circular basis and with the lateral surface radial with respect to the production point,

as illustrated in figure 7. The list of commands to enable this mode is as following

s e t o f f a x i s t rue

s e t yc value

s e t rad iu s value

s e t depth value

In this case, using as reference figure 7, d target detector sets the distance between

the production point and the detector surface projected onto the beam axis (zc), yc is

the distance of the center of the first circular surface from the beam axis, radius (r) is

its radius and depth (d) is the distance among the two circular surfaces of the detector

projected along the beam axis.
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In this way, we provide the user with some basic control over the geometry of the

detector. In the language of the efficiency function W , we handled only the regions in

which W vanishes (sharp edges) while we still have uniform weights inside the geometrical

acceptance, i.e we are modeling the geometry but we are still considering an ideal detector

with efficiency equals to one. Different shapes of the detector can easily be handled by

considering their embedding into one of the available shapes and rejecting a posteriori the

events that fall outside the actual fiducial volume. For time being, we refrain ourselves

to add further options in the spirit to keep the interface as simple as possible. The full

specification of the efficiency function is possible by acting at the level of the plugin source

code. In the simple case the customize W function does not affect the available geometries,

the modification of the source code is restrict to code W in the function eff function which

is part of the python module meshfitter2D.py. In the general case, it is required a deeper

knowledge of the source code. Further technical details on this point, which are beyond

the general strategy discussed in the present paper, will be part of the documentation of

the plugin.

Before concluding, some remarks are needed. From our point of view, the strategy

outlined in the above should be of main interest for the phenomenologist and for the model

builder to have an effective and fast tool for their studies, which captures the main aspects

of the experiment under consideration. The most realistic simulation of the detector effects

is far beyond the scope of our plugin and it represents, in general, the result of the great

efforts of a whole experimental collaboration. In this context, we think that our tool is still

useful and appealing as it stands as a Monte Carlo events generator which can be easily

instructed to deal with new models. We stress that having access to the scattering events

makes it possible the interplay with dedicated tools (as Geant4) for the full reconstruction

of the visible track inside the detector.

3 Illustrative examples

In this section we provide some illustrative applications of MadDump, considering three

new physics models and making the corresponding predictions for the SHiP experimental

setup [7]. We stress that the SHiP facility configuration used in the following is based on the

one developed for the Technical Proposal in 2015 [7]. Since then, the SHiP Collaboration

has continuously improved its setup aiming at higher sensitivity in the different channels.

The newest setup as well as the corresponding background estimates are not yet available.

The analyses reported in this paper will have to be redone once the updated information

becomes available. Table 1 summaries the relevant input parameters which specify also the

geometry of the apparatus. In particular, we determine the number of detectable events for

each model in a typical run and then using the expected rates for the background processes

reported in [7] we estimate the experimental sensitivities at 99.73% confidence level, which

corresponds to the 3σ contour, and compare them with existing limits. Previous estimate

of SHiP sensitivity has been provided in [37] where a publicly available tool BdNMC to

simulate dark matter production and scattering at proton fixed target experiments was

also presented.
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parameter value

# proton-on-target 2 · 1020

detector configuration on-axis

distance target-detector 5650 cm

detector density 3.72 g/cm3

detector shape parallelepiped

x-side: 187 cm

y-side: 69 cm

z-side: 200 cm

detector efficiency 1

Table 1. Main input values used for the simulation of the SHiP detector geometry, as reported

in ref. [7].

3.1 Quark-DM scattering: leptophobic portals

Let us first consider the case where an hidden particle that could be a dark matter candidate

interacts with the visible sector via a new leptophobic force. This is a good benchmark

model to study quark-DM scattering, in particular we will focus on signatures of deep

inelastic scattering.

3.1.1 Vector portal: baryonic U(1)B

The simplest possibility for a leptophobic force mediated by a spin 1 particle is provided

by models where the baryon number U(1)B is gauged such as

LU(1)B = Lq + Lχ −
1

4
F ′µνF

′µν +
M2
Z′

2
Z ′µZ ′µ , (3.1)

where the actual mass generation mechanism is not relevant here. The quarks are the only

SM fermions charged under this new gauge symmetry thus:

Lq = +
gZ
2
Z ′µ ×

1

3

∑
q

qγµq , (3.2)

while for the DM particle χ

Lχ =


iχ̄γµ∂

µχ−mχχ̄χ+ gZ
2 Z
′µ × zχχγµχ

∂µφ
†
χ∂µφχ −m2

χφ
†
χφχ + gZ

2 Z
′µ × izχ

[
(∂µφ

†
χ)φχ − φ†χ∂µφχ

] , (3.3)

where the only important requirement on χ is that it is long-lived enough to reach the

detector. The U(1)B is anomalous and the cancellation of anomalies could lead to additional

strong constraints as discussed in [38, 39]. However, these constraints depend on whether

the anomalies are canceled by fermions chiral or not under SM gauge symmetries, hence

they are UV-dependent and we will not include them while comparing sensitivity of various

low energy probes.
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MZ′ [GeV] Nevt εga[%]

2 1.44 · 106 +1.5%
−1.5% 14.1

3 1.15 · 105 +2.5%
−2.5% 5.47

4 1.22 · 104 +4.3%
−3.2% 3.1

5 1.81 · 103 +4.0%
−4.1% 2.0

6 3.29 · 102 +4.6%
−5.0% 1.5

7 6.84 · 101 +5.6%
−5.7% 1.1

8 1.66 · 101 +6.3%
−5.6% 0.89

9 4.48 +6.7%
−6.9% 0.76

10 1.26 +7.0%
−7.3% 0.67

Table 2. Number of DIS dark matter scattering events (Nevt) as a function of the mass of the Z ′

mediator for the benchmark point reported in the listing in appendix D.2. εga is the geometrical

acceptance of the detector.

The existing bounds on the Z ′ coupling in the 1–10 GeV mass range come from the Z ′

exchange induced invisible decays of quarkonia such as Υ → χχ̄ and J/ψ → χχ̄ (see [40]).

Monojet searches at hadron colliders set a bound on gZ , the strongest one coming from

a CDF search [41, 42] at Tevatron, g2Z BR(Z ′ → χχ) < 1.4 × 10−2. Moreover, existing

and previous neutrino facilities like MiniBooNE (as off-axis detector for the 120 GeV Main

Injector beam) could have sensitivity to few GeV leptophobic Z ′ as discussed in [32, 43, 44]

where it is shown that a reanalysis of existing data could set the strongest bounds on an

ample region of the parameter space.

In this study, we exploited the prompt production mode of MadDump for the gener-

ation of dark matter particles in the s-channel for an almost on-shell Z ′. We use our own

version for the UFO file for this model, which is available in the MadDump directory. We

scan over the mass of the Z ′ (that is the only relevant parameter) in the range [2, 10] GeV

with equal steps of 1 GeV. For each point we have generated 2 M events for the Z ′ pro-

duction and decay and subsequently 10k dark matter nucleon DIS interactions. With this

statistics the errors on the inclusive number of scattering events in the detector, estimated

with the techiniques discussed in appendix B, turn out to be around 10%, as shown in

table 2. In this table we also show the fraction of events which passes the detector accep-

tance that ranges from ∼ 14% for MZ′ = 2 GeV to ∼ 0.6% for MZ′ = 10 GeV. Exploiting

a small workstation with sixteen cores, we have got the following timings for the complete

simulation of each benchmark point:

• production: ∼ 20′ (15′ in I/O operations for the combination of the partial results)

• fit: ∼ 1′

• interaction: ∼ 4′ .
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Υ->χχ
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Figure 8. Sensitivity plot to a GeV leptophobic force at a SHiP like experiment obtained with

MadDump assuming 9×105 neutrino deep inelastic background events [7]. The DM mass has been

fixed to 750 MeV.

Based on [7] we assume 9×105 background events. In figure 8 we present the potential sen-

sitivity of SHiP for 2×1020 proton on target (POT) to this scenario and we compare it with

the above mentioned existing constraints. The strongest constraints come from quarkonia

decays, while in this region of the parameter space the sensitivity of monojet searches is

not sufficiently sensitive to probe new regions. SHiP can explore new regions of the param-

eter space for Z ′ masses below 5 GeV achieving a sensitivity comparable to the projections

for MiniBooNE [32, 43, 44]. In the simulations we assumed mχ = 750 MeV, however we

checked that the dependence on the DM mass is negligible. For lighter Z masses other pro-

duction mechanism become relevant such as meson rare decay or proton-bremsstrahlung.

A strong sensitivity has been obtained by MiniBooNE collaboration performing an analysis

elastic DM-quark scattering running the experiment in beam dump mode [45]. It would

be interesting for a future work to explore the sensitivity of SHiP in this region of the

parameter space.

3.1.2 Leptophobic scalar and pseudo-scalar portal

Another interesting possibility to consider is a leptophobic force mediated by a scalar or

pseudo-scalar particle.

We consider the following simplified model

LS/a =
1

2
∂µS∂µS −

1

2
m2
SS

2 + S
∑
i

giS q̄iqi − Sχ̄χ+ iχ̄γµ∂
µχ−mχχ̄χ, (3.4)

with i = u, d, s, c, b, t; as before, χ is a Dirac fermion stable or long-lived enough to cross

the SHiP detector. In the case of a real scalar S the interaction with quarks could arise
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via the renormalisable interaction

LS ⊃ gSSH†H , (3.5)

which induces a singlet-Higgs mixing sin θ such as the singlet S inherits couplings to the

SM fermions:

giS = yi · sin θ , (3.6)

where yi is the SM Yukawa coupling of the fermion i. A different flavor structure from the

SM for the singlet-fermion coupling could be arranged via the dimension five operators,

that is:

LS ⊃
∑
i

(
g̃qiqiS

Λ
SHcQ̄

i
Ld

i
R + h.c.

)
(3.7)

and

giS =
g̃qiqiS v

Λ
, (3.8)

where Λ is the cutoff above which either extra Higgs bosons or vector-like leptons are

expected. Depending on the origin of the interaction among S and the quarks, bounds

from Higgs invisible decay and/or electroweak precision measurements could be relevant.

However, we will not discuss them due to their dependence on the UV-completion. More-

over, we assume that CP is a good symmetry of the Lagrangian (see for instance [46] for

a discussion of possible constraints).

We consider the benchmark scenario where the scalar S couples to up and down quarks

(see [46]). We rely on the general dark matter model given in ref. [47] and the corresponding

UFO file for the simulation. We scan over the relevant parameter, the mass of the scalar

mediator S, in the range [2, 10] GeV with equal steps of 1 GeV. We have generated 100 k

events for the scalar mediator production and decay events and subsequently 10 k dark

matter nucleon DIS interactions. This statistics leads to errors around 10% for the inclusive

number of scattering events in the detector, as reported in table 3. In the same table we

report also the fraction of dark matter events which cross the detector surface, which ranges

from ∼ 16% for mS = 2 GeV to ∼ 4% for mS = 10 GeV. In this case, we get the following

timings (running on the same workstation as in the previous example):

• production: ∼ 4′

• fit: ∼ 1′

• interaction: ∼ 4′ .

In figure 9 we show the sensitivity at SHiP considering as before DIS as signal events. In

this case the only existing bounds come from the CDF monojets bounds [7, 41] and we

notice that SHiP could constrain new regions of the parameter space with this proposed

analysis. The analysis suggested in [32, 43, 44] for MiniBooNE could also in principle

achieve a similar sensitivity, but a detailed study in this regard is still missing. As for the

previous study, we fixed mχ = 750 MeV, but the χ dependence is negligible. For lighter S

mass it would be necessary to perform a new study considering different production modes

such as rare meson decay (i.e. ρ) or proton-bremsstrahlung.
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MZ′ [GeV] Nevt εga[%]

2 11.6+7%
−2% 16.3

3 2.01+7%
−5% 8.5

4 3.41 · 10−1 +2%
−12% 6.2

5 7.05 · 10−2 +7%
−10% 5.1

6 1.78 · 10−2 +6%
−10% 4.5

7 5.09 · 10−3 +7%
−11% 4.2

8 1.52 · 10−3 +11%
−8% 3.9

9 5.13 · 10−4 +10%
−9% 3.7

10 1.83 · 10−4 +10%
−8% 3.7

Table 3. Number of DIS dark matter scattering events (Nevt) as a function of the mass of the

scalar mediator S for the benchmark point reported in the listing in appendix D.2. εga is the

geometrical acceptance of the detector.

Monojet CDF

SHiP
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Figure 9. Sensitivity plot to a GeV scalar mediator at a SHiP like experiment obtained with

MadDump assuming 9×105 neutrino DIS events compared to existing bounds from CDF [7, 41].The

DM mass has been fixed to 750 MeV.
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3.2 Electron-DM scattering: the dark photon

As benchmark model to study DM-electron scattering we consider a new gauge boson

associated to an abelian gauge symmetry U(1)′, A′, kinetically mixed with the photon [48],

namely a dark photon (DP). The relevant Lagrangian corresponds to:

LA′ = −1

4
F ′µνF

′µν +
m2
A′

2
A′µA′µ −

1

2
ε F ′µνF

µν , (3.9)

where ε is the DP-photon kinetic mixing. We further assume the existence of a particle χ

either a scalar or a fermion charged under the new gauge symmetry U(1)′ and stable at

least compared to the scale of SHiP, hence we also add the following Lagrangian:

Lχ =


iχ̄γµ∂

µχ−mχχ̄χ+ gDA
′µ × χ̄γµχ,

∂µφ
†
χ∂µφχ −m2

χφ
†
χφχ + gDA

′µ × i
[
(∂µφ

†
χ)φχ − φ†χ∂µφχ

]
,

(3.10)

We choose as benchmark point mχ = mA′/3 and αD =
g2D
4π = 0.5 as in [49].

For this case study, we have used the decay-interaction mode of MadDump. The

incoming meson fluxes has been generated with Pythia8, having care to store only the

final state mesons which decayed directly in photons. This means that in a decay chain

η → 3π0 → 6γ only the 3π0 are stored, while a η meson is stored in the list if it decayed

directly into 2γ. With this caveat, we can limit ourselves to consider only one decay channel

for each of the mesons included in our analysis:

• π0 → 2γ;

• η → 2γ;

• ω → γπ0.

We exploited the general UFO model for spin-1 as reference model for the DP [47, 50]. The

meson decays has been modeled applying a standard effective field theory (EFT) approach.

Indeed, for the most interesting case in which the DP is almost on shell, the decay process

can be approximated by the tree-level vertex depicted in figure 10 at first order in the

EFT expansion. We added the meson particles and the minimum set of new interactions

required to deal with their decays directly in the UFO file, on top of the reference model. We

simulated 100 k POT events, which, in terms of meson yields/POT, resulted in: ∼ 6/POT

for pions, ∼ 0.3/POT for η’s and ∼ 0.07/POT for ω’s. For electron scattering events,

according to the SHiP technical proposal [7], we consider the following selection cuts:

• 1 GeV ≤ Ee ≤ 20 GeV

• 10 mrad ≤ θχ−e ≤ 20 mrad

where θχ−e is the angle between the incoming DM particle and the outgoing electron. In

table 4, for the case of pions decays, we compare the fraction of events passing the cuts

on the recoiling electrons with our setup and increasing the statistics on the interaction
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Figure 10. Effective field theory approach to production of DP from rare meson decay.

MA′ [MeV] εcuts(10 k)[%] εcuts(100 k)[%]

10 1.74 1.64

20 6.67 6.44

30 12.9 12.7

40 18.8 18.9

50 23.5 24.0

60 28.3 28.0

70 30.9 31.3

80 34.1 33.3

90 35.0 34.5

100 34.9 35.3

110 34.8 35.6

120 35.7 36.0

130 36.0 35.7

Table 4. Fraction of dark matter-electron scattering events εcut passing the cuts on the recoil

electrons as a function of the mass of the DP A′ for the benchmark point reported in the listing

in appendix D.3. We compare the results obtained by incresing the statistics on the requested

interaction events from 10 k to 100 k.

events to be generated. The results show that, for this analyses, the original statistics is

sufficient to reach the 10% accuracy goal. We considered one meson species at time, and

scanned over the relevant parameter space, for masses of the DP below the corresponding

meson mass. For the case of the pions, which are the most numerous particles, the time

per scan point has been ∼ 20′ on a 4-cores CPU. The most time consuming tasks are the

I/O operations related to the meson decay process, which took ∼ 14′ of the whole time per

benchmark point.

In figure 11 we present in the (mA′ , ε) plane the SHiP sensitivity compared to existing

bounds, described in details in [49]. In the region of interest, the strong experimental

constraints come from the monophoton BaBar search [51] and NA64 [52] via a missing en-

ergy analysis. Assuming αD = 0.5, experiments looking at electron-DM scattering such as

MiniBooNE [53], LSND [54], and E137 [55] achieve a better sensitivity than NA64 so their

reach is also presented here. An even stronger reach for mA′ . 300 MeV could be reached

by NOνA experiment at Fermilab by recasting existing data as shown in [56]. We assume

284 electron-neutrino scattering events as background following [7]. We simulated events

both for electron-φχ scattering and DIS events comparing their sensitivity in figure 11.
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Figure 11. SHiP sensitivity for a Sub-GeV dark photon emitted by rare meson decays of π0, η and

ω obtained with MadDump. For all production modes both electron-DM scattering and DIS are

considered considering respectively 284 and 9000 background events. The gray region is excluded

by current probes, the strongest are BaBar mono-photon search [51] and MiniBooNE [53]. The

dark gauge couplings is chosen to be αD = 0.5 and the ration between DP and DM mass is 3.

As expected, the electron sensitivity is significantly better than the one achievable with

DIS since for mχ . ΛQCD the electron-DM scattering rate is comparable to the DM-quark

scattering rate and it has the advantage of a reduced neutrino background. Our prediction

here is conservative because we do not include potentially important contributions to the

production stage like the decays from mesons produced in the cascade process and the

prompt production. For sub-MeV A′ masses, the SHiP sensitivity stays flat. However,

such a light dark photon is disfavored by cosmology and important constraints arise from

the Borexino and LSN experiments as discussed in [57]. Furthermore, in this region of

the parameter space, χ could not represent the dominant DM candidate due to strong

cosmological constraints as discussed in [58].

4 Conclusion

In this paper we have presented a new MG5aMC plugin called MadDump that allows for

the generation of events where the production of a particle and its detection are separated

by a long distance. In order to install it, it is enough to type “install maddump” within

MG5aMC.3 The main input provided by the user are the geometry of the experiment

and the physics model under investigation. With these ingredients event generation corre-

sponding to one or more benchmark scenarios can be performed automatically. We have

shown illustrative examples based on different BSM scenarios and production/detection

3For further details, please refer to https://launchpad.net/maddump.
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mechanisms and computed the corresponding number of events that would be produced

at the SHiP experiment. The framework is fully general and can be applied to any BSM

model and experiment at a beam dump facility that aims to test it. Our tool could be

employed for a number of studies, from the search of new feebly interacting particles to the

study of elusive SM processes like tau neutrino cross section at present and future beam

dump experiments.
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A Techniques for event generation

Consider the problem of generating unweighted points in a 2D-space according to the

distribution

P (x, y)dxdy = f(x, y)g(x, y)dxdy , (A.1)

where g(x, y) is a modulation function whose expression is supposed to be known analyti-

cally. More precisely, we are mainly interested in the problem of generating unweighted y

values given a fixed x = x according to the profile function

φχ(y)dy = P (x, y) dy . (A.2)

When the function f(x, y) is given in closed form the problem reduces to generating points

according to a given function P (x, y) and it can be accomplished by standard Monte Carlo

techniques, using for example the classic hit-or-miss algorithm. Here we consider the more

interesting situation in which the function f(x, y) is only available numerically indirectly

from sample of events.

One can re-interpret it as a fitting problem. The function f(x, y) is given in an ap-

proximated way, with a level of precision which can be in principle reduced at will (by

generating more points) but at each step it is finite, as a 2D histogram built out of events.

In its standard formulation, the task of obtaining a fit from an histogram consists basically

of two different parts:

• the choice of the model, i.e. an n-parameter family of functions together with the

cost function of the fit;

• minimisation of the cost function.
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In so doing the result is given by a function supplemented with extra information on the

accuracy of the fit (covariance matrices, goodness of the fit, etc). Fitting a function, even

in the “simple” 2D case, is however not always trivial. In particular, aside the technical

aspects underlying the minimisation procedure, a certain amount of knowledge of the

function to be fitted is required (in order to choose a reasonable class of models). For

our purposes, no a priori assumptions can be formulated on the behavior of the function

f(x, y), as, in general, it can result from very different classes of physical processes. For

this reason, we look for a procedure that allows to automatize the process.

Though an analytical fit has advantages (including also the possibility of smoothing a

discrete data sample in to continuous distribution), such a level of accuracy is not strictly

required in order to perform the generation of the unweighted events and we do not adopt

it. Our approach is based on importance sampling and variance reduction methods imple-

mented in Monte Carlo integrator algorithms. The strategy is based on the flattening of

the integrand function via a numerical adaptation of the integration grid. Moreover, once

the grids are available, they can be used to regenerate unweighted points according to the

integral function.

In our implementation, we have devised a complete deterministic procedure to con-

struct a grid, very closely the above concept of adaptive grid. In what follows, we will give

a detailed description of our algorithm together with some validation examples.

A.1 Grid construction

As a first example, let us consider the case in which the modulation function g(x, y) reduces

to the identity map. As simple as it may appear (in this case P (x, y)dxdy = f(x, y)dxdy

and an unweighted generator for that distribution is assumed to be known), it allows us to

clarify a few useful points. First, it may happen that generating events with the grid is more

efficient (for what concern both time and space resources), or more usable in some sense,

than exploiting the original generator. This is in fact the case in our applications, in which

the unweighted generator has a very complex structure and the 2D events we interested

in are a tiny part of the whole result. For this reason, it is not only an illustrative case,

leading to a clearer illustration of the basic concepts, but it is relevant per se.

We assume to have at our disposal a sample of N unweighted points (x, y) distributed

according to the function f(x, y). Our aim is to generate unweighted events distributed

according to the same distribution. Starting from the available points, the profile of the

function f(x, y) is given by the heights of a 2D histogram with bins of equal size. The idea

is that of resizing the bins in such a way to flatten the histogram, or, equivalently, to have

the same number of points lying in each bin. In this way, the distribution of the bins will

follow the behavior of the function: they will be denser and smaller near the region where

f(x, y) is peaked and sparse and bigger where it is flat. The resulting 2D map will retain

almost the full information of the 3D plot, and it is very similar to the idea of a contour plot.

In order to obtain such a parametrisation, we employ a decision-tree-like algorithm,

which is very simple and efficient. Before describing it, a technical remark is needed.

Adaptive grids are often constructed with lines parallel to the axis coordinates. This is
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efficient in all the situations where the function can be expressed in the factorised form

f(x, y) = f1(x)f2(y).

A great improvement is given by an approach in which irregular grids, made of cells of

different sizes, are allowed, as in the case of the FOAM algorithm [34]. The cells adapt

better to the behavior of the function reproducing it in a more faithful way, for example

near circular peaks. The cell represents the basic object of our algorithm. A cell can be

split in two cells along the x-direction (horizontally) or the y-direction (vertically). Given

these basic ingredients, the algorithm proceeds as follows:

1. start from a cell containing all the available points;

2. alternate an horizontal split and a vertical split, in such a way that, in each of the

two splits, half of the point fall in a subcell and half in the other one;

3. repeat step 2 for each subcell until the number of point for cell is lesser/equal than

a prefixed value (exit condition parameter).

It is clear that the above procedure gives the grid we are looking for. The exit condition

parameter nmin controls the grain of the mesh. The choice of its value is based on the

compromise between having it small for a finer grain and having a sufficient number of

points per bin to be statistical significant.

We now restore the proper role of the modulation function g(x, y), which as mentioned

above, can be arbitrary yet to be expressed in an analytical form. It can be viewed as a

reweighting of the original sample of points:

(xi, yi, 1)→ (xi,yi, g(xi, yi)) ,

where we have conventionally set to 1 the common weight of the unweighted sample.

We have

〈P 〉uniform =

∫
g(x, y)f(x, y)dxdy =

∫
g(ξ, η)dξdη = 〈g〉f

where the notation 〈·〉pdf denotes the average with respect to the pdf in the subscript.

Under the hypothesis f(x, y) is a distribution function, a well-defined change of variables

is implicitly given by the relation

f(x, y)dxdy = dξdη

where the function f is the Jacobian of the transformation. Furthermore, if also g has a

definite sign it is possible to perform an extra change of variables

〈g〉f =

∫
g(ξ, η)dξdη =

∫
dsdt = 〈1〉fg.

This relation proves the equivalence between unweighted generation of the product distri-

bution f ·g and the generation reweighted by g starting from a sample of unweighted points

generated according to f .
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We are now ready to generalise the previous case. We require that the rebinning

procedure leads to a grid with (almost) the same weight w for each bin, with the definition

of the weight w(b) of the bin b given by

w(b) =
∑

(xi,yi)∈b

g(xi, yi).

The generalisation of the algorithm is straightforward

1. start from a cell containing all the available points;

2. alternate an horizontal split and a vertical split, in such a way that, in each of the

two splits, each subcell have half the weight;

3. repeat step 2 for each subcell until its weight is greater than the prefixed value w

(exit condition parameter).

The exit condition parameter can be chosen of the form

w = α
wtot

N
× nmin

where nmin has the same meaning as before and α is a dimensional factor which can be

adjusted in the direction of refining the grain or increasing the number of points per bin.

By construction, the above procedure cannot handle distributions which vanish on

some regions inside the fitted domain. This limitation is particularly severe in the case

the distribution presents a falling-down tail and vanishes inside the fitted region. Indeed,

even if the cells become larger and larger when approaching the tail, there is always a

non null probability to generate points inside them, also in the empty regions. In this

way, unphysical points are generated. In order to milder this limitation, we implemented

a further refinement step after the mesh has been constructed. The peripheral cells, i.e.

the cells which share a side with the frame of the fitted regions, are reshaped in a such a

way to limit the cell to the actual region populated by the input points. We refer again to

figure 4 in section 2 to appreciate the reliability of this improvement.

A.2 Example

As a validation example, we consider the situation in which both the function f(x, y) and

the modulation g(x, y) are given analytically in order to show that the algorithm works

correctly. Furthermore, we test its robustness considering a highly non-trivial case in which

the modulation affects and distorts in a severe manner the original function. We take a

simple Gaussian function, (see figure 12a):

f(x, y) = e−(x
2+y2)

with the following modulation

g(x, y) = 2
√
x2 + y2 cos2(2y) + 1.

The product function is shown in the 3D plot in figure 12b.
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(a) Simple gaussian distribution as f function. (b) Full distribution after modulation is applied.

Figure 12. 3D-plot of the analytical distributions occuring in the validation example.

In figure 13a and figure 13b we report the corresponding 2D meshes obtained with our

algorithm for 100 k and 1 M input points respectively. We stress that the starting point has

been the generation of a sample of unweighted points distributed according to the Gaussian

function. We have reweighted the points according to the modulation function and then

we have applied our algorithm for weighted events. The algorithm reproduces faithfully

the behaviour of the function with a level of accuracy which, as expected, improves with

the number of input points.

A.3 Generation of unweighted events

Generating a 2D sample starting from the 2D mesh with the same distribution as f(x, y)

is trivial. By construction

• the probability of generating a point in a given cell is proportional to the inverse of

its area,

• inside a cell, the probability of generating a point is uniform,

and therefore it is enough to generate an equal number of points uniformly in each cell.

Let us now turn to the issue of generating a y value according to the profile function

eq. (A.2) at a given x = x point. We introduce a small resolution parameter related to the

x variable ε such that the x = x value is fixed within the interval [x− ε, x+ ε]. Then, the

thin stripe centered in x = x with width 2ε and parallel to the y-axis will intercept the

mesh in a subset S of cells.

We associate a normalised weight to each cell in S proportional to the ratio of the

overlapping area between the stripe and the cell over the total area of the cell. Then,

we pick a cell according to the value of these weights by generating a uniform random

number in the interval [0, 1]. Finally, we generate a uniform y value within the cell. This

construction solves our problem, i.e. the y values are distributed according to the profile

function φχ. The procedure is independent of ε in the limit ε→ 0. In practice, this means

that magnitude of ε should be chosen as a fraction of the minimum x-width of the cells of

the mesh.

– 28 –



J
H
E
P
0
5
(
2
0
1
9
)
0
2
8

(a) 100 k input points.

(b) 1 M input points.

Figure 13. 2D mesh obtained with our algorithm for increasing number of input points.

A.4 Example

Since an example of the generation of the entire 2D sample has been already shown in

section 2, here we focus on the constrained one-dimensional generation. Let us consider

again the previous example and fix a x value, for instance x = 0. We generate y values

distributed as the profile function (A.2) according to the above procedure. In figure 14, we

plot the comparison between the generated points and the analytical profile function φχ
using our meshes with 100 k points (14a) and 1 M points (14b). The generated histograms

are in good agreement with the analytical curve and they reproduce well also the sharp deep

in y = 0. The result improves by exploiting the mesh with a greater number of points giving

a solid indication that the procedure is asymptotically converging to the true distribution.
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(a) Using the 100 k mesh. (b) Using the 1 M mesh.

Figure 14. Generation of an unweighted sample according to the 1D profile function at x = 0.

The distribution is normalised to 1.

B Systematic uncertainties

In summary, our fitting procedure is a way to approximate the probability density function

associated to a given 2D scatter data with a piecewise function, i.e. a histogram, with an

automatic choice of the bins. In the example of the previous section, we have provided a

non-trivial numerical proof of concept of it. Moreover, since in that case, the analytical

distribution is known a priori, we have a full control on the systematics uncertainties and

the convergence of the method.

This is not the case in the practical applications, where the probability distribution is

available only in the form of scatter data. As a consequence, estimating the systematics of

the approximation becomes more difficult. We follow a pragmatic approach which should

provide a guideline for the user to tame the systematics according to his own scopes.

Despite the fact that this systematics can be made smaller and smaller by providing more

and more statistics (initial input events), in practice a compromise between the accuracy

goal and the actual computational resources needs to be found.

Let us start from some basic and general considerations. First, one can always separate

the prediction of the total rates (including the geometrical acceptance of the detector)

from those of more exclusive observables, as the angular distributions. Since the physical

interaction cross section depends only on the energy, the inclusive total rates depend only

on the effective dark sector particle energy distribution introduced in section 2.2.1 eq. (2.4).

In our approach, we do not rely on the 2D fit to obtain this quantity. Instead, we perform

a dedicated 1D fit exploiting a smoother class of functions. In this way we have a better

control on the result and also on its uncertainties. Indeed, a 1D fit is a simpler operation

and, since we are integrating over angles, we have access to a higher level of statistics.

The 1D fit works as follows. Starting from the input weighted data, we first build a 1D

histogram and we assign to each energy bin the usual Poisson uncertainty. We then fit the

histogram using a weighted cubic splines fitting. In order to assess the error on the fit, we

add the possibility to vary the values within the histograms uncertainty bands. This can

be done by setting the parameter rescale fac in the fit2D card card file, which takes

values in the interval [−1, 1], where 0 stands for the central value, 1 for the upper limit, -1

for the lower one. A realistic study case is given in the following subsection.
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We pass now to discussing the case of the 2D fit. At a fixed number of input events,

the algorithm depends mainly on a unique parameters which gives the exit condition of the

splitting loop. Naively, it represents the number of points which lie in each bin. Hence,

there is a competition between choosing it small, to have a better description of the shape

of the distribution (more bins with a smaller size), or choosing it large, to avoid to be

overwhelmed by the statistical fluctuations (less bins with a larger size). The user can

change this parameter by setting the value of the npoints cell variable in the fit2D card

card file (the default value is 50). We have introduced in the code a consistency test (that

can be enabled by setting to True the flag fit syst, again in the fit2D card card file)

which compares the mesh obtained by varying the central value of this parameter by a

factor of 1/2 and a factor of 2. To this aim, we consider the classifier

D(x) =
P1(x)

P1(x) + P2(x)
, (B.1)

where x represents a generic event, and Pi, i = 1, 2, are the probability densities we are

comparing. The values of D ranges over the interval [0, 1]. An average value D ∼ 1 means

that P2(x) underestimates P1(x), while for D ∼ 0 we have the opposite. For P1(x) = P2(x),

D(x) = 1/2. Hence, in the case the average value D ∼ 1/2 and its standard deviation σD
is small, we cannot distinguish between the two probability functions. The study of the D

classifier put on a quantitative foot the qualitative results given by the visual inspection of

the mesh grids. Its mean and standard deviation give us a measure of the global goodness of

the fit. Furthermore, we can perform also a more local comparison of the angular shape at

fixed value of the energy variable. We postpone a more detailed discussion to the following

subsection in which we apply the above analyses to a realistic case study.

B.1 Study case: leptophobic model

As a study case, we consider the example of the leptophobic model presented in the main

part of this work, given by the Lagrangian in eq. (3.1)–(3.3). Since the generation of the

input DM events can be simulated directly internally in MadDump, we have a direct access

to input samples of different number of events. Our setup is outlined in the script reported

in the listing appendix. We select the value MZ′ = 2 GeV for the mass of the DM mediator.

We analyse first the uncertainties on the total rates. We reported the predictions for the

DM yields in table 5 for input samples of increasing statistics. The uncertainties on the

predictions correspond to the 1D fit variation around the histogram error bars, as stated

above. The three results are consistent within their uncertainties and, as expected, the

accuracy improves increasing the statistics. We observe, that in this case, for a sample

of 100 k input events, which corresponds to 100 k ×0.28 = 28 k DM particles passing the

geometrical acceptance, we already get a result accurate at the few percent level. Note

that here we absorb the multiplicity factor of 2 within the definition of the geometrical

acceptance ε.

The default value of the npoints cell parameter is 50. We study what happens

by varying it by a factor of 1/2 and a factor of 2. We briefly explain the strategy we

followed for the comparison. We produce the three meshes corresponding to the three
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#evts ε #DM evts

10 k 0.27 25100+18%
−15%

100 k 0.282 27700+4.9%
−4.7%

1 M 0.282 28900+1.0%
−1.7%

Table 5. Estimates of the total DM yields for increasing numbers of input events. The uncertain-

ties refer to the variation around the 1D fit error bars as explained in the main text. The number of

input here does not include the geometrical acceptance ε, which is reported in the second column.

values npoints cell = 25, 50, 100. We use the result corresponding to the central value as

our reference point and we denoted by P (x) the corresponding probability density. This

means that we evaluate P starting from the 2D mesh as follows

P (x) =
1

ncells

1

A(x)
(B.2)

where ncells is the number of cells of the mesh and A(x) is the area of the cells in which

the point x lies. We build the two classifiers

Df (x) =
P (x)

P (x) + Pf (x)
, f = l, h , (B.3)

where Pl and Ph are the probabilities densities corresponding respectively to the lower and

the higher values of npoints cell. We generate random (uniformly distributed) points

x = (E, θ) and compute the mean and standard deviation of the two classifiers. We consider

the simple unbiased estimator given by the uniform average

〈D〉u =
1

N

N∑
i=1

D(xi), σu =

√√√√ 1

N − 1

N∑
i=1

[〈D〉u −D(xi)]2. (B.4)

We reported our results in the third and fifth columns of table 6, respectively for Dl and

Dh. All the mean values are fairly consistent with 0.5, which is the indication that the

different meshes are consistent among themselves. The standard deviation is lower for Dh,

which is what is indeed expected since, with a lower npoints cell, the fit is more sensitive

to the statistical fluctuations of the original scatter data. Furthermore, we observe that

the standard deviation decreases increasing the statistics from 10 k to 100 k events but,

then, there are not any improvements from 100 k to 1 M. The explanation for this behavior

is related to the vanishing tail of the distributions. Indeed, since we are fitting using

piecewise functions, the accuracy of the method is worse in the long vanishing tails, where

we decided to exploit a cut prescription instead of spreading uniformly the weights on a

very big cell. Then, the error is dominated by the fluctuations near the boundary regions,

where, however, the probability densities is approaching zero. To test quantitatively this

argument, we re-weight the events accordingly to our reference probability P (x), and we
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#evts ε 〈Dl〉u ± σu 〈Dl〉w ± σw 〈Dh〉u ± σu 〈Dh〉w ± σw
10 k 0.27 0.55± 0.20 0.54± 0.03 0.48± 0.12 0.549± 0.013

100 k 0.282 0.54± 0.12 0.525± 0.015 0.50± 0.08 0.518± 0.005

1 M 0.282 0.55± 0.13 0.511± 0.005 0.47± 0.09 0.510± 0.004

Table 6. Comparison of the classifiers Df , with f = l, h calculated as weighted and unweighted

averages.

consider the weighted estimators

〈D〉w =
N∑
i=1

D(xi)w(xi), σw =

√√√√ N∑
i=1

[〈D〉w −D(xi)]2w(xi), (B.5)

where the weights are given by

w(x) =
P (x)∫
P (x)dx

. (B.6)

The results are reported in the fourth and sixth columns of table 6. The errors drop

significantly and for the largest input sample we see that it is not possible from the practical

point of view to distinguish the probability densities given by the three meshes, so that

one, for instance, might choose to use the mesh corresponding to npoints cell=25 since

it is the finest (it has more cells with respect to the other two).

Another important aspect concerns the convergence of our method to reproduce the

original data set. With this, we mean the minimum number of regenerated events Ngen

needed to have a distribution which is consistent with that of the input data. Indeed,

for Ngen small, we expect the regenerated distribution is dominated by the statistical

fluctuations. On the other hand, we expect that after having reached the desired level

of agreement, further generations of events will not spoil the convergence. The naive

expectation would be to have Nmin
gen & Ninput. For a quantitative analysis, we rely again on

the classifiers introduced above. In the following, we outline our strategy. We fix the mesh

associated to the central value npoints cell=50 as our reference for the 2D-dimensional

data distribution. Starting from this mesh, we regenerate samples of events with increasing

statistics. We perform a second fit on top of each regenerated sample obtaining new meshes.

We assume that these meshes represents the approximate bi-dimensional distributions of

the samples, according to eq. (B.2). We finally compute the two averages for each of the

classifier Df (x), where now f = Ngen labels the regenerated samples. We report our result

for the input sample of 100 k events. In this case, the effective number of input data events

is 30 k, i.e. the events passing the geometrical acceptance cuts of the detector. The results

are reported in table 7. They confirm on the quantitative ground our naive expectations

Nmin
gen & Ninput, leading to the prescription Nmin

gen ∼ 2–3Ninput.

We conclude this discussion on the fit systematics showing some lesser inclusive results

at the level of differential distributions with respect to the polar angle. We adopted the

following strategy. We select an energy value E. Then, we pick the cells in the 2D mesh

fit in which E is included. We consider as energy resolution parameter some multiple (the
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Ngen 〈D〉u ± σu 〈D〉w ± σw
1 k 0.24± 0.24 0.27± 0.23

3 k 0.31± 0.20 0.35± 0.19

6 k 0.31± 0.16 0.34± 0.17

10 k 0.38± 0.16 0.43± 0.15

30 k 0.48± 0.10 0.50± 0.11

60 k 0.48± 0.10 0.50± 0.10

100 k 0.50± 0.07 0.51± 0.08

300 k 0.54± 0.07 0.55± 0.07

Table 7. Comparison of the classifiers D (calculated as weighted and unweighted averages) as

function of the regenerated number of events Ngen.

default is 2) of the minimum energy width of the selected cells. This allows us to consider an

energy bin centered in E with width given by the resolution parameter. Then, we consider

the input data and the regenerated ones which lie in this bin and we compared their

angular distributions given by standard 1D-histogram. Our choice of the energy bin size

guarantees that the statistics is comparable for any starting E values. We have analyzed

and compared the results obtained with the two input samples 100 k and 1 M. They are

shown in figure 15. In both cases, we have used regenerated samples with Ngen = 300 k.

We found a good agreement both between data distributions for different statistics and

between data and our fits which is of the order of ∼ 25–30% for the 100 k case and ∼ 10%

for the 1 M one. As expected, in the region corresponding to the bulk of the events, the

corresponding energy bin size are smaller. For example, in our study case, we observe

that in the central energy range 40 GeV < E < 150 GeV the energy bin size is of order

∼ 1 GeV for the 100 k input sample and the situation fairly improves for the 1 M one. On

the contrary, for the value E = 20 GeV which lies on the tail of the distribution, we need

a bigger bin size, ∼ 16–18 GeV.

The analyses performed in this section are encoded in MadDump and the user can

reproduce the same studies for his particular situation. As a rule of thumb, to take cum

grano salis, 500 k events entering the detector can be consider a reasonable amount of input

statistics. Together with the default settings of the internal MadDump parameters and

the choice of Nmin
gen ∼ 2–3Ninput this should lead to an uncertainty of 1% for the total rates

and 5–10% on the angular distributions, which is usually lesser than the other systematics

of the simulation.

C A method to take into account the depth of the detector

Consider the scattering of a flux of incident particles impinging on a thick target. Let us

fix the geometry of the problem and consider for instance a parallelepiped shape for the

fiducial volume of the target. In general, the incident flux is neither collimated nor mono-

energetic. For the sake of simplicity, we consider the flux to be originating from a point-like

source placed on the target axis and mono-energetic. Consider a cartesian 3D reference
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Figure 15. Normalized angular θ-distributions for different energy bins for the case of 100 k inputs

events (left panels) and of 1 M inputs events (right panels). The blue band represents the original

data with the associated Poissonian uncertainties. The orange line represents the histogram of

the points regenerated with the 2D mesh. The energy bins size is automatically determined by

MadDump in a such a way to have comparable amount of statistics in each bin.

frame in which the z-axis is along the “depth” of the target and x and y are parallel to the

other dimensions. Let us subdivide the target in thin sheets along the z-axis. The number

of scattered events in each sheet is given by

dN(z) =

∫
S(z)

dxdy
∂2F

∂x∂y
(x, y, z)ρ(x, y, z)σ(z)dz , (C.1)
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where S(z) is the surface of the shell at z, F is the flux of incident particles impinging

on the sheet, ρ is the number density of the target particles and σ is the interaction cross

section. In the formula above, we assumed that the cross section is constant all over the

surface of the sheet. Furthermore, we assume that the cross section is constant over the

whole fiducial volume of the target and we consider a uniform target. Then, integrating also

over the depth of the target, we get the master formula for the number of scattered events

N = ρσ

∫ z1

z0

dz

∫
S(z)

dxdy
∂2F

∂x∂y
(x, y, z). (C.2)

We are interested in the situation in which the cross section is very small, i.e. we can

neglect (at least in first approximation) the variation of the flux F due to the scattered

particles. This means that the dependence of ∂2F/∂x∂y on z is purely geometrical: from

a given configuration at a point z∗ it is possible to construct the flux at a new z point

by prolongating the flying direction of the particles in the flux. For this reason, in the

above example, even though the surface of the sheet is constant, the number of particles

impinging on the different sheets along the z-axis is different:∫
S
dxdy

∂2F

∂x∂y
(x, y, z) = n(z) . (C.3)

In Monte Carlo integration/generation this translates in employing different weights for the

bunch of events describing the incident flux. It is still possible to use unweighted events if

one considers a variant of the hit-or-miss rejection method. Here, by “unweighted events”

we mean that the points have been generated according to the dxdy ∂2F
∂x∂y distribution. Since

the integrand is positive definite, enlarging the integration region we obtain the inequality

S(z) ≥ S =⇒
∫
S
dxdy

∂2F

∂x∂y
(x, y, z) <

∫
S(z)

dxdy
∂2F

∂x∂y
(x, y, z) ≡ n∗(z) . (C.4)

In particular, we can choose S(z) such that the above integral n∗ is constant. This means

that we enlarge the surface according to the radial projection starting from the point-source

of the flux. Then, for the new integral, we can employ unweighted events for the flux:

N = ρσn∗
∫ z1

z0

dz = ρσn∗(z1 − z0) . (C.5)

A full event is given once a z variable or equivalently a travel distance along the flying di-

rection of the event is generated uniformly between the minimum and the maximum value

inside the largest volume. Then, we accept or reject the event whether it lies or not in the

true fiducial volume.

While correct, this method is not efficient as generated events can be rejected. An

alternative approach entails applying a simple reweighting procedure. Intuitively, we just

have to penalize the events that would be produced by particles crossing the fiducial volume

of the detector over smaller paths. Indeed, a given event may contribute or not to n(z) in

eq. (C.3) depending whether at z it is inside or not the integration region:

∂2F

∂x∂y
(x, y, z) =

{
∂2F
∂x∂y (x(z), y(z), z0), z < d(x, y)

0, z > d(x, y)
(C.6)
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where we denoted with d(x, y) the z-distance after which the event goes out of the inte-

gration region. However, the weights retain a dependence on z due to the presence in

the argument of the function of (x(z),y(z)), which represent the coordinates of the particle

when it crossed the sheet at z0. If we replace x, y-coordinates by angular ones (θ, φχ) which

gives the flying direction of the events, the weight will not have any residual dependence

on z but the theta function Θ(z − d(θ, φχ)). This can be simply taken into account by

reweighting the events as
∂2F

∂x∂y
(θ, φχ)× d(θ, φχ)

(z1 − z0)
. (C.7)

In terms of the travel distance inside the fiducial volume of the detector r(θ, φχ), we have

d(θ, φχ) = r(θ, φχ) cos(θ). (C.8)

Then, using this reweighting strategy, we can reconstruct the full event by generating

uniformly the z or, equivalently, the traveled distance variable according to the actual

minimum-maximum allowed by the geometry of the target.

Notice that the number of scattered events in the two cases is given by:

N =

{
ρσ(z1 − z0)(n∗ − nrejected)

ρσ(z1 − z0)〈n(z)〉,
(C.9)

which implies the integral condition:

(n∗ − nrejected) = 〈n(z)〉. (C.10)

D Listings

In this appendix we report the input script files used for the examples presented in the

main text.

D.1 Leptophobic GeV mediator

import model DMZB

generate production p p > chidmsc chidmsc~

define darkmatter chidmsc

add process interaction @DIS

output leptofobic

launch

set nevents 100k

set ebeam1 400.

set ebeam2 0.938

set use_syst False

set flux_norm 19663072216.4

set prod_xsec_in_norm True

set d_target_detector 5650.0

set detector_density 3.72

set parallelepiped True

set x_side 187.0

set y_side 69.0

set depth 200.0

set testplot True

set mchidm 75

set mchidmsc 0.75

set mzb scan:[i for i in range(2,11,1)]

set wzb auto
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D.2 Scalar GeV mediator

import model DMsimp_UFO-full

generate production p p > xd xd~ /y1

define darkmatter xd

add process interaction @DIS /y1

output scalar

launch

set nevents 100k

set ebeam1 400.

set ebeam2 0.938

set use_syst False

set flux_norm 19663072216.4

set prod_xsec_in_norm True

set d_target_detector 5650.0

set detector_density 3.72

set parallelepiped True

set x_side 187.0

set y_side 69.0

set depth 200.0

set testplot True

set gsxr 0.0

set gsxc 0.0

set gsxd 1.0

set gpxd 0.0

set gsd11 1e-3

set gsu11 1e-3

set gsd22 0.0

set gsu22 0.0

set gsd33 0.0

set gsu33 0.0

set gpd11 0.0

set gpu11 0.0

set gpd22 0.0

set gpu22 0.0

set gpd33 0.0

set gpu33 0.0

set gsg 0.0

set gpg 0.0

set gvxc 0.0

set gvxd 0.0

set gaxd 0.0

set gpxd 0.0

set gvd11 0.0

set gvu11 0.0

set gvd22 0.0

set gvu22 0.0

set gvd33 0.0

set gvu33 0.0

set gad11 0.0

set gau11 0.0

set gad22 0.0

set gau22 0.0

set gad33 0.0

set gau33 0.0

set mxd 0.75

set my0 scan:[i for i in range(2,11,1)]

set wy1 auto

set ymdo 2.462206e+02

set ymup 2.462206e+02
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D.3 DP from pion decays

import model DM_mesons_2

#import the input file events ’’MesonFulx.hepmc’’

import_events decay ./MesonFlux.hepmc

decay pi0 > y1 a, y1 > xd xd~

define darkmatter xd

add process interaction @DIS

add process interaction @electron

output DP_electron

launch

set flux_norm 2.0e20

set prod_xsec_in_norm false

set d_target_detector 5650.0

set detector_density 3.72

set Z_average 82

set A_average 207

set parallelepiped True

set x_side 187.0

set y_side 69.0

set depth 200.0

set ncores 16

set testplot True

set gvd11 -3.333333e-4

set gvu11 6.666666e-4

set gvd22 -3.333333e-4

set gvu22 6.666666e-4

set gvd33 -3.333333e-4

set gvu33 6.666666e-4

set gvl11 -1.000000e-3

set gvl22 -1.000000e-3

set gvl33 -1.000000e-3

set my1 scan1:[0.01*i for i in range(1,14)]

set mxd scan1:[0.01/3.*i for i in range(1,14)]

set wy1 auto

Open Access. This article is distributed under the terms of the Creative Commons

Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in

any medium, provided the original author(s) and source are credited.
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