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Abstract: The process of adopting innovation, especially with regard to precision farming (PF), is 
inherently complex and social, and influenced by producers, change agents, social norms and 
organizational pressure. An empirical analysis was conducted among Italian farmers to measure 
the drivers and clarify “bottlenecks” in the adoption of agricultural innovation. The purpose of this 
study was to analyze the socio-structural and complexity factors that affect the probability to adopt 
innovations and the determinants that drive an individual’s decisions. Preliminary results found 
high levels of adoption among younger farmers, those that had a high level of education, those with 
high intensity of information, with large farm sizes, and high labor intensity. A logit model was 
used to understand the role played by labor intensity and perceived in the adoption process. In light 
of the Common Agricultural Policy Reform post 2020, the findings suggest relevant policy 
implications, such as the need to increase awareness of PF tools and foster dissemination of 
information aimed at reducing the degree of perceived complexity. 
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1. Introduction 

Precision Farming (PF) or “site specific management” emerged in late 1980s as a way to “do the 
right thing, at the right time, at the right point” [1]. PF employs a large set of innovation technologies 
such as sensors, information systems, enhanced machinery, and informed management [2]. The 
combined use of these tools allows for the monitoring of the temporal and spatial variability in the 
field, by adapting inputs to the real needs of the soil and the cultivated plants. Applications of site-
specific management lead to an increase in profitability, improvements in the yield quantity and 
quality, a reduction in costs and environmental impacts [2–4].  

PF tools, commercially available since the 1990s, provide a considerable support to farm 
management in various fields such as crop farming, horticulture, viticulture and zootechnics [5,6] 
and contribute to the Climate Smart Agriculture framework launched in 2009 which addresses the 
complex issue of how to achieve sustainable agricultural growth for food security under climate 
change [7,8]. Despite these applications, a low rate of adoption in Europe demonstrates that PFTs are 
applied less frequently than expected [9,10] due to strong barriers [11]. Adoption is not an immediate 
activity but depends on a large range of variables such as farmer characteristics, farm structure, 
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location, organizational and institutional factors and those related to information. This complex 
scenario employs a widely explored conceptual framework of drivers and barriers.  

As reported by many studies, it is mostly young, well-educated and full-time farmers in large 
farms that are interested in PF. The highly recognized barriers are the high initial investment of PF 
equipment and high learning costs. Precision farming tools (PFTs) require high level of capabilities 
and skills to manage the large amount of information (big data) collected from PF tools [11–15]. In 
actual agricultural innovation systems, PF assumes the meaning of information-based management 
and characterizes a technological phase called Farming 4.0.  

Precision farming was the main objective of the European Commission legislative proposal 
published on 1 June 2018 in view of the post-2020 Common Agricultural Policy (CAP), having 
captured the attention of political decision-makers [16]. Following Rogers’ theory of “Diffusion of 
innovations”, this study fits into the furrow of scientific research concerning the analysis of the 
individualistic aspect of farmers in the adoption of PFTs [17–21]. 

In line with the above-mentioned studies, and to fill a gap in the literature, the present study 
aims at (i) analyzing the factors / drivers that stimulate an aware farmer, as defined by Adinolfi et al. 
[22] and Vecchio et al. [23], to adopt PFTs and (ii) determining the barriers that prevent the adoption 
process. 

2. The Evolution of Innovation Process in the Agricultural Context 

Klerkx et al. [18] identified four main approaches to agricultural innovation. Technology 
Transfer (TT), a technology-oriented approach, characterized the period of agricultural 
modernization (the 50s–80s). TT reflects the idea of knowledge transfer taking place through 
processes of a “top-down” type from researchers to farmers. In this period, the researchers’ main 
purpose was to enable rapid technological progress and increase agricultural productivity. This 
approach was strongly disconnected from the socio-political and institutional contexts where new 
technologies were operating [18,24].  

After this period, the researchers’ studied in depth system-oriented approaches, such as Farming 
Systems (FS), Agricultural Knowledge and Information System (AKIS), and Agricultural Innovation 
System (AIS) [25–27]. 

The lack of attention to specific contexts (socio-economic, cultural and agro-ecologic) was 
observed in the 80s within the FS approach. This approach attributed a new role to farmers, which 
shifted from simple users to adopters of knowledge and technologies [18,24,28–32]. In the 90s, the 
transition from the top-down to bottom-up approach reflected in AKIS, where mechanisms of 
innovation were no longer considered a simple transfer of technology, but the exchange of 
knowledge and information between actors. The increasing importance attributed to the institutional 
and political components of the process of innovation also fostered a broader vision of the innovation 
system, in which the AKIS is a sub-set of a more complex framework, named AIS [18,33]. Compared 
to AKIS, AIS highlights the institutional and political dimensions of the innovation processes 
[18,34,35]. The goals of this system were to optimize the exchange of knowledge and interactions 
between actors and institutions that modeled the innovation process inside and outside the 
agricultural sector [36–39]. From this new conceptualization, different paths of analysis were 
developed. Vellema [40] describes it statically as “innovation support infrastructure”. A more 
dynamic analysis is provided by Hall and Clarks [41] and Klerkx et al. [37], where innovation systems 
are a co-evolution and networking process connected to the development of emerging technology 
(novelty) in a dominant production system. Hekkert et al. [42] proposed a third interpretation, no 
longer focused on the structure of innovation systems, but on the dynamics of innovation processes 
(labelled as “functions of innovation systems”) at the micro level. Starting from this view, a clear 
understanding of innovation mechanisms and the heterogeneous role of actors is required. From the 
description of the AIS approach, it emerged that new proposals such as learning platforms and 
networks could be the key to creating a scenario conducive to innovation, stimulating interactions 
and bringing further innovations to the agricultural sector [19,37,43–52]. 
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3. Precision Farming Adoption Process  

In the context of agriculture, Rogers’ theory of innovation provides the most supported and 
influential theoretical basis for the technology adoption process [21]. Rogers’s view of the innovation 
process comprehends three stages: innovation invention, development, diffusion and adoption. In 
his theory, adoption is described as a sub-process of diffusion. The adoption process refers to the 
individual’s decision to integrate (or not) innovation into his or her life and “diffusion describes the 
adoption process across a population over time” [9,53]. Rogers [54] identified four components of the 
process. The first component is innovation itself, characterized by five attributes: relative advantage 
(perception of an individual that innovation will be better or worse than similar ideas), trialability 
(degree of experimentation with the innovation), observability (perception of how available and 
visible an innovation is to an individual), complexity (perception of how difficult to comprehend 
what an innovation is), and compatibility (perception that a particular innovation is similar to 
existing or past ideas). The second refers to communication channels, mechanisms by which 
information about innovation passes from one individual to others. The third element is the social 
system that refers to the context, culture and environment in which innovation operates and 
individuals are involved. The fourth component is time. The diffusion process, represented as a 
normal curve, identifies different types of adopters [9]: innovators, early adopters, early majority, late 
majority, late adopters or laggards [55,56]. Categories of adopters differ for socio-economic 
characteristics, personality variables and communicative behaviors. It is assumed that innovators are 
risk and change takers; the late majority are skeptical, and laggards are traditionalists. Among the 
socio-economic characteristics of innovators/early adopters, there is a higher level of education, high 
social status, and larger and more specialized activities [14,54,55]. Furthermore, they are more 
rational, oriented towards obtaining results, have a higher degree of social participation, and have 
more contacts with technical assistants and access to information [55]. When an individual 
approaches a new idea, he hardly adopts it immediately. The adoption decision is, in fact, preceded 
by a learning period in which an individual acquires information or eventually experiments with the 
innovation for a limited period of time [2,57,58]. The decision to adopt is not a discrete event, but the 
result of a multistage process [59,60]. Rogers [54]1995) recognized five stages of the adoption process: 
(i) awareness: the individual learns about the existence of the new practice/idea; (ii) interest: the 
individual develops an interest and seeks more information on it; (iii) evaluation: the individual 
mentally applies it to his own context; (iv) trial: the individual applies it, usually on a smaller scale; 
(v) adoption: the individual decides on a continued use of the innovation in the future. Numerous 
criticisms were raised against this model with regard to serious shortcomings reported in the field of 
scientific validation [61]. First of all, there is no clear scientific evidence that the adoptive behavior 
(early adopter, later adopter, etc.) remains completely coherent over time. The characteristics of the 
innovation cannot explain the adoptive behavior of individuals because they influence the adoption 
process based on how they are perceived by individuals [62,63]. These criticisms led Rogers and 
Schoemaker [64] and later Rogers [54] to modify the description of the adoption process, suggesting 
the “decision-innovation process” as an alternative. This process is divided into five phases: (i) 
knowledge (the individual is first exposed to the innovation and receives some information on it); (ii) 
persuasion (the individual forms a favorable or unfavorable attitude towards innovation, by gaining 
enough knowledge about the innovation’s characteristics); (iii) decision (the individual decides to 
adopt or not, weighing advantages/disadvantages of using innovation), (iv) implementation (the 
individual employs the innovation to a varying degree depending on the situation), (v) confirmation 
(the individual reflects on his or her decision and re-evaluates whether to continue or not).  

The two processes, the first theorized in 1962 and the second in 1995, both underline as a first 
stage the phase in which the individual first “heard of” the existence of new technologies. It seems 
logical that this phase can be described as the “awareness phase”. The “knowledge phase” comes in 
a second stage, only after awareness, through a learning process in which the farmer acquires 
information about the technology [57,59,65,66]. Some researchers [14,55,65–71] focus on weighing the 
role of awareness in adoption. Diagne [67] and Diagne and Demont [65], going beyond the “static” 
analysis of adoption, and found that being aware is a precondition of adoption. Diagne and Demont 
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[65] and later Simtowe et al. [68] provide empirical evidence that “when a technology is new and the 
target population is not universally exposed to it, the observed sample adoption rate is not a 
consistent estimator of the true population adoption rate”. Daberkow and McBride [14] verified that 
stages are differently affected by farm and operator characteristics. Awareness and adoption 
(conditioned by awareness) are positively affected by farm size, education, full-time farming, and 
familiarity with computers. Their results show the “unaware” farmers manage small farms, are often 
less educated, are mostly older, and have less access to credit. Lambrecht et al. [71] consider 
“adoption, conditioned by awareness and try out phases” and find that younger farmers are more 
likely to “try out” a new technology, whereas older and more experienced farmers are well-oriented 
to the continued use (“adoption”), if they have already “tried it out”. There is a large overlapping 
between factors, affecting both awareness and adoption: they influence differently in every stage of 
the adoption process. This result show that factors hindering adoption in the initial phase of the 
diffusion cycle (early adopters) may not represent an obstacle later [72–74]. 

A large number of recent scientific literature identify multi-stakeholder engagement and 
networking, within Innovation Platforms (IPs), as the key factor to making farmers aware of and 
stimulating them to adopt new knowledge (technological or other) in the farming innovation 
development process [27,52,75]. Starting from these considerations, this study provides an empirical 
analysis of Italian farmers, considering awareness as a precondition of the adoption of precision 
farming tool with the aim to reveal and analyze both factors affecting the probability to adopt and 
determinants driving an aware individual not to adopt.  

4. Data Collection and Methods 

This research comprised of a pilot study, aimed at identifying the behavioral, normative, and 
control beliefs likely to determine farmers’ intentions to adopt (or not) precision farming tools, and a 
main study aimed at investigating the contributions of each factor in affecting the PFTs’ adoption 
process. 

4.1. Pilot Study 

The pilot study is aimed at identifying the most important elements linked to farmers’ intentions 
to adopt (or not) precision farming tools. This exploration was conducted in line with the scientific 
literature in this field [76] through face-to-face interviews with a random sample of 35 farmers. Filling 
of an open questionnaire was supported by a research assistant. 

During the interviews, the knowledge and beliefs that each farmer had regarding precision 
farming were investigated. The respondents indicated their opinion regarding: (i) the advantages and 
disadvantages of precision farming tools that could affect their decision to adopt them; (ii) the 
contextual conditions that may encourage vs. discourage their decision; and (iii) the events or 
situations potentially able to facilitate vs. hinder the adoption of precision farming tools. From the 
pilot study, it was possible to identify the dimensions of the main study analysis, which focused on 
the relationship between the farm’s socio-structural dimensions, the perceived complexity, and the 
adoption of precision farming tools.  

4.2. Main Study 

4.2.1. Sample 

The main study was conducted on a non-random sample of farms operating in different Italian 
regions. The questionnaire was administered to over 200 farmers. Of the potential participants, 174 
completed the questionnaire in full. This number is in line with previous literature [76,77] and can be 
considered valid for empirical analysis. Extant research has indeed ascertained that farmers are 
generally unwilling to spend their time completing surveys [77] and sharing data and/or information 
on themselves and their activities [4]. The sampling was carried out at national fairs dedicated to 
precision farming. Following the intentional sampling approach [78], we included in the survey only 
those farmers who affirmed that they knew precision agriculture so that they had answers that were 
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influenced by knowledge of the subject. The limits of this approach were subjectivity and 
generalization [79], but it allowed the implementation of an exploratory analysis [80]. 

4.2.2. Questionnaire 

The questionnaire was structured in two sections. In the first part, the socio-structural 
dimensions of the farms that were found to be relevant to the pilot study survey were investigated, 
i.e. farmer’s age, farm size, labor intensity, intensity of information and level of education. In the 
second part, five questions were asked on different aspects concerning precision farming to build a 
variable of perceived complexity: 

 efficiency effects: introduction of PFTs leads to efficiency gains at the farm level; 
 institutional effects: introduction of PFT requires farmers’ engagement in stakeholders’ and 

networking platforms; 
 organizational effects: introduction of PFT requires organizational and structural 

adjustments that are difficult to implement; 
 effects on agricultural practices: PFT requires radical change in agricultural practices; 
 financial exposure effects: introduction of PFT requires investments to be recovered in the 

long term. 
The measure of farmer perception was done on a Unipolar Likert scale [81]. A 6-point unipolar 

Likert scale was used, with a value of 0 indicating “I do not agree, it is not an element of complexity” 
and 5 pertaining to “I agree, it is an element of complexity”. The maximum value achievable from 
the combined questions was 25. The variable was calculated based on the following Equation (1):  𝑦 = ∑ , (1)𝑦 assumes values between “0” and “1”. The value of “1” refers to the perception of high 
complexity by respondents. 

Cronbach’s 𝛼 was used to test internal consistency. This index is a measure of reliability of the 
test, that is, how a set of items are related as a group. A high value of this index does not necessarily 
ensure that the scale is unidimensional, but the latter could be tested through exploratory factor 
analysis. The function of standardized Cronbach’s 𝛼 is as follows (2): 𝛼 = 𝑁 ∙ 𝑐̅�̅� + (𝑁 + 1) ∙ 𝑐̅ (2)

where 𝑁 is the number of the items, 𝑐 is the average inter-item covariance among the item, and 𝑣 represents the average variance. 
In this study, there was no strong correlation (greater than 0.6) among the five elements of 

complexity, and the mono-dimensionality of the scales was tested through exploratory factorial 
analysis, which extracted only one factor. Subsequently, Cronbach’s 𝛼  showed good results of 
consistency (over 0.81), which added to the result of factorial analysis, allowing us to affirm that the 
perceived complexity variable has been built on a robust quantitative justification. 

4.2.3. Logit Regression 

Most ex-post papers on the adoption of precision technologies generally use logit models to 
explain the adoption behavior of farmers [12,13]. Logit regression analysis is employed when faced 
with the binary adoption choice and a small sample. Notwithstanding binary logistic regression 
modelling can be extended to categorical outcomes, using multinomial logistic regression. The 
principles are very similar, but with the key difference being that one category of the response 
variable must be chosen as the reference category. The analysis of this study is based on associating 
the different probabilities with which the modes of the dependent variable are presented, to the 
changing of independent ones. The logit model can be represented by three equations: predictive, 
stochastic, and systematic. The predictive part remains unchanged in the model, unlike the other 
components. The parameter to be estimated is   , where 𝑖 corresponds to the 𝑁 cases considered. 
It is calculated through a linear expression of 𝐾  variables 𝑋 , called regressors, as illustrated in 
Equation (3): 
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 =  + ∑ 𝑥 𝛽                             (3)

  is the value of   when all the regressors are equal to 0, whereas   measures the variation 
of   for each unit increasing with the corresponding regressor 𝑥 . The stochastic component, on the 
other hand, varies in the model. The dependent variable 𝑦   categorically imposes different 
assumptions on the random variable 𝑌 . In the case of binomial logistic regression, the variable 
dependent 𝑦  is binary. It is associated with a random variable 𝑌 , which has a Bernoullian 
distribution and is characterized by the parameter 𝜋 , 𝜋 which indicates the probability that a certain 
event will occur; (1 −  𝜋 ) represents the opposite probability (4): 

yi ∈ Yi ∼ Bernoulli (πi)                               (4)

The systematic component, therefore, underlines the logistic function, which binds the 
probability distribution of 𝑌  to independent variables and allows for the linking of the parameter to 
estimate   to the predictive equation (5): 

 = 𝑒𝑥𝑝( )/(1 + 𝑒𝑥𝑝( ))                                  (5)

The 𝛽  coefficient, which produces a variation of 𝜋  between 0  and 1 , represents the 
parameter to be estimated and describes effects of the independent variables on the dependent one. 
The Wald test examines whether an independent variable has a statistically significant relationship, 
and therefore if there is an effect with the dependent variable. The Wald statistic is equal to the ratio 
between the logistic coefficient and its standard error, squared. To express whether the relationship 
between two categories varies as a function of another variable, the interpretation of 𝛽 must be done 
in terms of an odd ratio. This index is obtained by making a ratio between the odds. Odd is expressed 
by 𝜋 /(1 − 𝜋 ). Indeed, the standard outputs of the regression analysis model are represented by 𝑜𝑑𝑑 𝑟𝑎𝑡𝑖𝑜 or 𝑒𝑥𝑝(). In the case of the binomial logistic regression, the maximum likelihood (𝑀𝐿) 
algorithm is used to estimate the parameters. The log-likelihood function indicates how probable it 
is to obtain the expected value of the 𝑌 values of independent variables. For mathematical reasons, 𝑀𝐿 is multiplied by −2 and is expressed as −2𝐿𝐿. In the model containing both the intercept and 
independent variables, the value of the −2𝐿𝐿 statistic represents the part of data variability that is 
not explained by the model: large and positive values indicate a low predictive capacity of the model. 
Another measure of adaptation of the model similar to the expected one is Chi-squared or   (6). 

 = ∑ (   )                                         (6)

If   coincides with 0, the observed frequencies correspond to the expectations. To check if 
there is a correlation between the observed and theoretical frequencies, and therefore to be able to 
exclude the null hypothesis (which means there is no correlation but is due to chance),   must be 
higher than the tabular value present in the   distribution tables for a p-value and degrees of 
freedom established. The degrees of freedom are expressed as (𝑘 − 1). Other indices for “goodness 
fit” are: 𝑅  of Cox and Snell, which relates the likelihood of the model with the only intercept to the 
likelihood of the current model; 𝑅  of Nagerkelke, which is standardized to have a maximum of 1 
(by comparing 𝑅  of Cox and Snell obtained on the current model to 𝑅  of Cox and Snell 
maximum). Higher values of 𝑅  are the evidence that observed frequencies almost correspond to 
those predicted. 

In this study, the software used for data processing is SPSS v.25 (SPSS Inc., Chicago, IL, USA). 
The stepwise forward logistic regression analysis, consisting of a selection of independent variables 
per step with insertion test based on the significance of the score statistic and with removal test based 
on the probability of the Wald statistic, considering farm size, labor intensity, farmer’s age, intensity 
of information, level of education, and perceived complexity of the adoption process as independent 
variables. 
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5. Results and Discussions 

5.1. Pilot Study 

The data collected through the pilot study were content-analyzed to identify the behavioral, 
normative, and control beliefs underlying farmers’ awareness in adopting precision farming tools. 
Two research assistants repeatedly read the respondents’ answers and proposed a list of concepts 
potentially useful in creating a coding scheme. The assistants discussed each concept and modified 
their lists to converge on a common scheme that they used to codify all collected data. This analysis 
ultimately identified a set of beliefs that defined the variables of the model. Specifically, respondents 
noted that farm size, labor intensity, age, level of education, and information could affect, one way 
or the other, the adoption of precision farming tools. As for the events and/or situations that could 
facilitate vs. hinder adoption (complexity), respondents most frequently mentioned operational 
factors on the one hand; and on the other hand, the lack of knowledge and information that could 
help farmers to ensure a proper awareness in the adoption of precision farming. 

5.2. Main Study 

5.2.1. Descriptive Results 

A preliminary analysis showed that 28.7% of the respondents adopt PF technologies. 
The reasons this value is higher than those estimated in other European countries, i.e. United 

Kingdom, Denmark’s rate is 10–15% [82], can be found in the type of sample interviewed. The 
respondents were all aware and interested in seeking information about precision farming 
technologies.  

The descriptive analysis showed different characteristics between adopters and non-adopters 
(Table 1).  

Table 1. Characteristics of the interviewed farmers and their farms. 

Variable Adopters Non-Adopters 
Farmer’s age 43 years 48 years 

Level of education   
Middle school 2% 7.3% 
High school 12% 40.3% 

Bachelor’s degree 24% 22.6% 
Master’s degree 62% 29.8% 

Farm size 143.36 ha 33.39 ha 
Labor intensity   

> 25 day/ha 0% 43.5% 
25 ≤ day/ha <50 4% 44.4% 
50 ≤ day/ha <75 42% 12.1% 
≥ 75 day/ha 54% 0% 

Intensity of information   
< 4h 10% 29.8% 

4 ≤ h <8 2% 54% 
8 ≤ h <12 52% 12.9% 
≥ 12 36% 3.2% 

The adopters were characterized by an average farm size of 143 ha, whereas non-adopters 33.39 
ha. The results show that PFTs’ adopter farmers are more likely to manage big farms. PFTs fit the 
model of a capital-intensive technology. In fact, they are characterized by high entry costs, overly 
“long payback period” (ROI); large fixed transaction ones, and other ‘hidden costs’, such as 
educational and informational ones [11,83–85]. Furthermore, if a farm has a technology system 
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installed, the “switching cost” to a new technology might be onerous especially for small farms 
[11,14,59,86]. Larger farms that have a strong capacity to absorb costs and risks and are able to invest 
large amounts of capital, time, and learning in technologies, are more inclined to use PFTs 
[12,59,84,87–90]. In addition, their higher degree of division of labor and professional management 
may foster the willingness to invest in new technologies [56]. Most studies find a positive relationship 
between size and adoption [17,84,87,91–95]. Small farms could become PF adopters thanks to 
contractors or cooperation [96]. 

Figure 1 shows that labor intensity has a positive impact on adoption behavior. As pointed out 
by De Rose [97], the indicator of intensity of labor allows for the distinction between the areas where 
manual labor continues to be an important component of the production process in agriculture, and 
those where labor has been more widely replaced/flanked by automation. PF includes many 
automation and robotics technologies [98]. A high value of labor intensity is accompanied by a high 
level of PF adoption, where the role of technologies allows for the reduction of manual labor on the 
farm.  

 

Figure 1. Percentage of precision farming tool adopters and non-adopters per labor intensity. 

The farms conducted by precision farming adopters report a higher intensity of labor (mainly 
>50 days/ha) compared to that of the non-adopters (mainly <50 days/ha), upholding the important 
role of technology in reducing labor hours.  

Age was found to have a negative impact on PFT adoption. Adopters were characterized by an 
average age of 43, whereas non-adopters had an average of 48 years. Several authors have verified 
that increasing age reduces the likelihood of PFT adoption. Young farmers, with longer planning 
horizons, may be more involved in more innovative farming [17,88,91,94,99,100]. 

The positive relation between the level of education and PFT adoption is also demonstrated in 
Figure 2. Adopters are characterized by a high level of education; specifically, 62% of them had a 
master’s degree. In the scientific literature, it has been found that a high level of education (which 
can be measured in the number of years of formal education or ordinary education levels) is 
positively correlated with adoption [14,93,94,99–102]. PFT required a high level of human capital in 
term of capabilities and skills to manage and adapt better innovations for the specific farm levels 
[12,17,83,86,101,103]. This result is related to the previous one: young individuals are better educated 
and more technologically savvy in using high-technological practices for management decisions. 
They were found to have a greater capacity to decode new information and search for suitable tools 
to support production [99–101,104]. Older farmers that are less educated and more experienced, feel 
less necessity to invest or acquire information on emerging technologies [56,105].  

> 2 5  d a y / h a

2 5  ≤  d a y / h a  < 5 0

5 0  ≤  d a y / h a  < 7 5

≥7 5  d a y / h a

Adopters

Non-adopters
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Figure 2. Percentage of PFT adopters and non-adopters per education level. 

Figure 3 shows that adopters are well-informed, and they spend more than eight hours/month 
on information and formation activities; non-adopters dedicate less than that. “Precision Farming is 
an information intensive activity” [106]. A farmer might opt for quick adoption if he is more likely to 
receive new information providing PFT. It is not easy to quantify the information intensity degree of 
farmers. It can be measured by considering access to information from a source (mass media or 
interpersonal communication such as consultants or extension services), or how often an individual 
receives the information within a period [83].  

 
Figure 3. Percentage of PFT adopters and non-adopters per number of hours spent on information or 
formation activities. 

5.2.2. Logit Regression Results 

Table 2 shows a significative (<0.01 Pearson Correlation Index) relationship between 
independent variables, confirmed by the Pearson’s Chi-square test of socio-economic variables 

Table 2. Correlation analysis results. 

Variables Perceived 
complexity 

Labor 
intensity  

Age Education 
Intensity of 
information 

Perceived complexity 1 −0.672 ** 0.276 ** −0.449 ** −0.704 ** 
Labor intensity    1 −0.299 ** 0.423 ** 0.628 ** 

Age   1 −0.228 ** −0.329 ** 
Education    1 0.604 ** 

Intensity of information         1 
Correlation indices are statistically significant at the 1% level (**). 

M i d d l e  s c h o o l

H i g h  s c h o o l

B a c h e l o r ’ s  D e g r e e  

M a s t e r  D e g r e e

Adopters

Non-adopters

< 4 h

4  ≤  h  < 8

8  ≤  h  < 1 2

≥1 2

Adopters

Non-adopters
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The dependent variable is binomial and assumes value “0” if the farmer is a non-adopter, and 
value “1” if the farmer is an adopter of precision farming technologies. The classification table with 
intercepts only (Step 0) shows that 50% of the observations are correctly classified (Table 3). 

Table 3. Classification table (Step 0). 

Category Predicted Percentage 
Observed Non adopters Adopters  

Non adopters 0 50 0 
Adopters 0 50 100 

Overall Percentage   50 

On testing the model by including independent variables, the percentage of fairness increases. 
In fact, the model, whose prediction depends on the variables, correctly classifies 95% of the 
observations (Table 4). 

Table 4. Classification table (Step 1). 

Category  Predicted Percentage 
Observed Non adopters Adopters  

Non adopters 47 3 94 
Adopters 2 48 96 

Overall Percentage   95 

Table 5 shows the estimates of the parameter 𝐵 of the logistic model, standard error (S.E.), Wald 
level of significance, and 𝑒𝑥𝑝(𝛽) (defined as odd ratio). Based on the Wald test, the logic forward 
model selected up to two significant variables (<0.01) in two steps: perceived complexity and labor 
intensity. The probability of an individual to be an adopter is higher the lower the value of the 
perceived complexity variable is. As labor intensity increases, the probability of being an adopter 
increases. Indices of “goodness fit” of the model confirm that observed frequencies almost 
correspond to the predicted ones. Chi-squared has a statistical significance <0.001. The value of R2 
emphasizes on good fit to the data and, and therefore a good overall model fit. 

Table 5. Output of logit model. 

Variable  B S.E. Wald Sig. Exp(β) 
Perceived Complexity −16.359 6.464 6.404 0.011 0 

Labor intensity  4.386 1.263 12.067 0.001 80.291 
Constant −0.201 3.639 0.003 0.956  

Summary statistics      
Likelihood ratio 24.586     𝑅  Cox and Snell 0.68     𝑅  Nagerkelke 0.907     

Chi-squared 114.043   0.000  

S.E. is the standard error of the parameter B; Sig. indicates the level of significance. 

The results show that a lower perceived complexity by farmers regarding different economic 
and organizational aspects, such as initial investment, long pay-back periods or role of expectations 
of farmers, and compatibility with traditional machinery, practices and management is associated 
with a greater adoption of Precision Farming Tools.  

The multi-step adoption process is influenced by many factors: socio-economic, agro-ecological, 
organizational, and institutional. Complexity is associated on one hand with organizational 
compatibility of new technologies to existing systems, and on the other with high initial investments 
and farmer expectations to get back the invested capital in a short time. The conducted analysis, 
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filling a gap in the literature regarding PFT, shows that a greater perception of complexity can lead 
an aware individual not to acquire further information on new technologies and not to adopt it. The 
results also emphasize that labor intensity positively affects the adoption process. In high labor-
intense farm, PFTs can serve as a complementary workforce that reduces the hours of manual work, 
leading the farmer to play other different roles and carry out greater tasks. Other factors, such as age, 
education, and intensity of information were not significant predictors in the analysis. The reason for 
this is the strong correlation between independent variables. Although the strong correlation, 
adequately tested, prevents the logit model from identifying all variables as significant, the 
descriptive results showed important different characteristics between adopters and non-adopters. 
As already demonstrated in recent scientific literature, young farmers with a high level of education, 
well-oriented to gathering information on PFTs, and with large farm sizes, are more likely to adopt 
or to continue to embrace PFTs [107–110]. 

6. Conclusions 

The results of this study highlight the endogenous role of awareness in the adoption process. 
The latter primarily depends on factors influencing awareness, which is a prerequisite for adoption. 
Awareness mainly depends on the availability of information sources and on the quality of 
information provided to farmers [14,22,23]. A pertinent information policy will be key in ensuring a 
higher rate of PFT adoption among farmers. Agricultural policies will be decisive in promoting new 
measures that support information systems and networks or projects involving both small and large 
farms. New information-oriented political measures will lead to the increase in skills in agriculture 
and greater availability of technical professionalism and consultants. Greater levels of information 
among farmers can also reduce the perception of complexity involved in the adoption process. As 
the results of the study demonstrate, this perceived complexity has a significant role to play in 
convincing farmers to use PFTs, and is strongly linked to the level of information and education 
provided. Improving this level of information can help the farmer to understand the advantages and 
opportunities associated with precision agricultural instruments. Awareness of PFT benefits (e.g., 
reducing manual labor) can propel the farmer to adopt the technology. Policies over the years have 
pushed for adoption of innovation with economic incentives. This study confirms that while 
economic support is useful and important, especially in the Italian context characterized by small-
medium farms (usually family-owned), other factors need to be taken into consideration. Future 
research should focus on innovations and solutions that offer environmental sustainability [111]. The 
combined actions of stakeholders in strengthening the role of information in the adoption process 
and proposing measures to foster dissemination of that information through innovation platforms 
[75] could help farmers gain more awareness of PFTs and their benefits, reduce the perception of 
complexity, and embrace the adoption.  
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