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Skin α-synuclein deposits differ in 
clinical variants of synucleinopathy: 
an in vivo study
V. Donadio   1, A. Incensi1, O. El-Agnaf2, G. Rizzo   1,3, N. Vaikath2, F. Del Sorbo4, 
C. Scaglione1, S. Capellari   1,3, A. Elia4, M. Stanzani Maserati1, R. Pantieri1 & R. Liguori1,3

We aimed to characterize in vivo α-synuclein (α-syn) aggregates in skin nerves to ascertain: 1) the 
optimal marker to identify them; 2) possible differences between synucleinopathies that may justify the 
clinical variability. We studied multiple skin nerve α-syn deposits in 44 patients with synucleinopathy: 
15 idiopathic Parkinson’s disease (IPD), 12 dementia with Lewy Bodies (DLB), 5 pure autonomic failure 
(PAF) and 12 multiple system atrophy (MSA). Ten healthy subjects were used as controls. Antibodies 
against native α-syn, C-terminal α-syn epitopes such as phosphorylation at serine 129 (p-syn) and to 
conformation-specific for α-syn mature amyloid fibrils (syn-F1) were used. We found that p-syn showed 
the highest sensitivity and specificity in disclosing skin α-syn deposits. In MSA abnormal deposits were 
only found in somatic fibers mainly at distal sites differently from PAF, IPD and DLB displaying α-syn 
deposits in autonomic fibers mainly at proximal sites. PAF and DLB showed the highest p-syn load with 
a widespread involvement of autonomic skin nerve fibers. In conclusion: 1) p-syn in skin nerves was the 
optimal marker for the in vivo diagnosis of synucleinopathies; 2) the localization and load differences of 
aggregates may help to identify specific diagnostic traits and support a different pathogenesis among 
synucleinopathies.

A common feature of synucleinopathies is the pathological accumulation of misfolded α-synuclein (α-syn) 
leading to neuron dysfunction and death1. Based on brain post-mortem studies different α-syn strains possi-
bly expressing specific molecular conformations have been proposed mainly in idiopathic Parkinson’s disease 
(IPD)2,3. In addition, a recent study demonstrated that α-syn strains extracted from the brain of Multiple System 
Atrophy (MSA) patients showed different prion properties than the strains extracted from the brain of IPD 
patients4. These findings may suggest that distinct deposits of pathological α-syn are involved in neurodegen-
erative diseases possibly providing the heterogeneity of synucleinopathies2,5 as described in prion disorders6. 
However, the pathogenetic mechanism underlying synucleinopathies is far from being fully understood because 
of the unavailability of a systematic study of α-syn aggregations in different clinical phenotypes and the lack of in 
vivo data allowing to analyse abnormal α-syn aggregates before the widespread diffusion and the late maturation 
of these deposits7.

Skin biopsy is a promising diagnostic tool for the in vivo diagnosis of synucleinopathies8–14 but a study simul-
taneously testing different α-syn epitopes to detect abnormal deposits in all clinical variants of synucleinopathy 
is lacking. Hypothesizing the involvement of different α-syn deposits raises the possibility that a single marker 
could be unsuitable for disclosing abnormal deposits in all clinical variants. Thus a systematic study of α-syn 
deposits distribution in clinical variants of synucleinopathy is also needed for diagnostic purposes and to support 
skin biopsy as a promising diagnostic tool for these disorders.

This study aimed to characterize abnormal α-syn deposits in skin nerves by immunofluorescence to ascertain 
the in vivo existence of different aggregates in variants of synucleinopathy. It may therefore contribute to clari-
fying in synucleinopathies: 1) the optimal diagnostic marker to disclose skin nerves α-syn deposits in different 
variants; 2) whether an in vivo different distribution of α-syn deposits may justify the clinical variability.
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Materials and Methods
We studied 44 patients with synucleinopathy including 15 IPD patients fulfilling established diagnostic criteria15, 
12 patients who met the clinical diagnostic criteria for probable dementia with Lewy bodies (DLB-5 of them 
presenting with orthostatic hypotension)16, 5 fulfilling diagnostic criteria for pure autonomic failure (PAF)17 and 
12 for MSA (5 MSA-P and 7 MSA-C)18 (Table 1 reports demographic data and the clinical profiles of the patients 
included in the study). Disease duration of recruited patients did not differ among different variants (p > 0.1). 
Recruited patients were well characterized since the clinical diagnosis was supported by abnormal laboratory tests 
showing cardiac postganglionic sympathetic denervation (123-I-MIBG)19, dopaminergic nigrostriatal abnor-
malities (123I-ioflupane-DatScan)20 or brainstem and cerebellum atrophy and/or the hot-cross bun sign (brain 
MR)21,22. Ten age-matched healthy subjects served as controls. The procedures used were approved by the local 
Human Ethics Committee (Comito Etico Indipendente-AUSL Bologna, cod. 13004) and followed the Helsinki 
Declaration regarding international clinical research involving human beings. All participants gave their written 
informed consent to be included in the study.

Skin biopsy.  Following a previously described protocol11,23 3 mm punch biopsies were taken from proximal 
and distal hairy skin sites. The proximal site included the cervical C7 paravertebral area whereas distal sites were 
located in the thigh (15 cm above the patella) and distal leg (10 cm above the lateral malleolus). Two samples were 
taken in each skin site 3–4 centimetres away11,23. According to previously published procedures15,24, skin samples 
were immediately fixed in cold Zamboni’s fixative and kept at 4 °C overnight. Skin sections were obtained using a 
freezing sliding microtome (HM550, Thermo Scientific, Walthan, MA, USA).

Immunofluorescence characterization of skin nerve α-syn aggregates.  Ten μm skin sections were 
double-immunostained overnight (unless differently specified) with a panel of primary antibodies against α-syn 
epitopes and the rabbit or mouse pan-neuronal marker protein gene product 9.5 (PGP). The correspondence 
between α-syn markers and PGP helped to verify the intraneuronal α-syn staining excluding non-specific dot-like 
staining often experienced in patients and controls inside membranes, sweat glands tubules or vessel endothe-
lium11. A rule to identify abnormal α-syn aggregates was the co-localization of PGP and antibodies against abnor-
mal α-syn epitopes expression of C-terminal post-translational modifications or amyloid fibrils. Furthermore, 
different primary antibodies against normal or abnormal α-syn and ubiquitin were also double stained to char-
acterize abnormal α-syn deposits. A triple combination of antibodies was not allowed because of only two dif-
ferent species of antibodies available (i.e. rabbit or mouse). Primary antibodies used in this study (reported in 
Table 1-supplemental file) included antibodies against the native form of α-syn (n-syn) or α-syn core (NAC) and 
against C-terminal α-syn epitopes involved in post-translational modifications such as rabbit or mouse (immu-
nostained for only 1 hour) phosphorylation α-syn at serine 129 (p-syn) and tyrosine 125 (pY-syn), nitration at 
tyr125–133 (nY-syn). Amyloid α-syn fibrils were characterized by using a non-commercial antibody (syn-F1)25, 
whereas advanced glycation end products (AGEs) residues that may be linked to abnormal α-syn deposits26 were 
disclosed by a specific marker. Furthermore, a specific mouse monoclonal antibody against full-length ubiquitin 
a.a. 1–76 (m-ub, 1:100, Santa Cruz, USA; cod. Sc-8017) was used to detect ubiquitin deposits often associated 
with α-syn fibrils27. We have tried an overnight incubation of primary antibodies25 but the final staining on skin 
sections was poor. In addition the final dilution of primary antibodies was established after testing a large range of 
dilutions. A non-commercial antibody to detect oligomeric forms of α-syn (syn-O)25 was also tested but it was not 
systematically used in this study because preliminary experiments showed a frequent co-localization with NAC in 
skin nerves of controls and patients in all dilution used (1: 5000 and 1:10.000, data not shown).

Sections were then washed and secondary antibodies were added for an incubation of one hour. As sec-
ondary antibodies, an anti-mouse or rabbit Alexa Fluor(R) 488 and anti-rabbit or mouse Jackson cyanine dye 

No.

IPD DLB PAF MSA Controls

15 12 5 12 10

Age

Mean ± SD years 70 ± 3 75 ± 6 67 ± 10 66 ± 9 70 ± 3

Sex

male:female 08:07 08:04 04:01 08:03 06:04

Dis. Dur.

Mean ± SD years 6 ± 4 4 ± 2 7 ± 1 5 ± 1 —

OH (%) 0 42 100 100 0

UPDRS 28 ± 8 11 ± 3 0 25 ± 3 (5°) 0

RBD (%) 15 80 0 82 0

Abnormal Cardiac MIBG (%) 100 (3) 100 (4) 100 0 (4) —

Abnormal DatScan (%) 100 100 (10) 0 60 (7) —

Brainstem abnormalities (MR) (%) 0 0 0 100 —

Table 1.  Clinical and laboratory findings of patients. Dis.Dur. = disease duration; UPDRS-III = motor 
examination; OH = orthostatic hypotension; RBD = rem behavioral sleep disorder; the number in brackets 
represents the number of patients in whom the test was performed; °patients with MSA-P variant.
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fluorophores 3.18 (1:200 or 1:400; Jackson ImmunoResearch, West Grove, PA, USA; cod. 715–545–150 and 711-
545-152 for mouse and rabbit AlexaFluor488 respectively and 715-165-150 and 711-165-152 for mouse and rab-
bit cyanine 3) were used.

Co-localization study.  Digital images were acquired using a laser-scanning confocal microscope and subse-
quently projected to obtain a 3D digital image by a computerized system (Nikon confocal microscopy, Eclipse Ti 
A1). The sections selected for the analysis include frames of 0.25 μm on a Z-stack plan at the appropriate wave-
lengths for secondary antibodies with a x400 or x600 plan apochromat objective. The co-localization between 
two different fluorescent signals was first judged absent or present on a single 0.25 μm frame by the agreement of 
two authors with major expertise in immunoflorescence analysis (DV and IA). As the co-localization was consid-
ered present it was calculated by NIS-elements Sofware (Nikon, Tokio, Japan) to obtain the Pearson’s coefficient 
(Rp) from −1 = the two signals changed in the opposite direction (absent co-localization) to 1 = the two signals 
changed in the same direction (perfect co-localization); a value of >0 was taken as significant co-localization28. 
The analysis was made for synaptic and non-synaptic fibers. Synaptic fibers were in proximity of terminal nerve 

Figure 1.  Abnormal intraneural p-syn aggregates in non-synaptic and synaptic fibers. Examples of 
phosphorylated α-synuclein aggregates in a non-synaptic fiber of a patient with MSA (A) and synaptic fibers of 
a DLB patient (B) disclosed by confocal microscope (x400). (A)Subepidermal plexus close to the epidermis as 
confirmed by an isolated epidermal free-ending PGP-ir fibers (arrow) was identified by a PGP staining (A). The 
plexus showed a positive phosphorylated α-syn (AI) as neuritic inclusion demonstrated by the merged image 
(AII). (B)Nerve fibers innervating a sweat gland tubule were depicted by PGP (B). Some of these fibers showed 
aggregates of p-syn (BI) as intraneural inclusions in the merged image (BII).

Figure 2.  NAC and syn-F1 co-localization in a healthy control. Confocal microscope images (X 200) showing 
a weak syn-F1 staining in sweat gland of healthy control. The syn-F1 staining co-localized with NAC (arrows 
in AII) demonstrating that this signal is likely a non-specific signal arising from native α-syn. The asterisks 
represents sweat tubules autofluorescence.
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endings directed to skin vessels (SV), sweat glands (SG) or in the muscle arrector pilorum (MAP), whereas 
non-synaptic fibers included axons of nerve plexuses distant from the innervation target (Fig. 1). Abnormal 
α-syn aggregates were characterized by using several antibodies in consecutive skin sections expressing the same 
aggregate because, as previously specified, we were unable to combine more than 2 different antibodies against 
α-syn in the same skin section.

Spatial characterization of α-syn aggregates.  The spatial distribution of abnormal aggregates was also analysed 
considering p-syn staining that showed the highest specificity in identifying these aggregates. The following 
parameters were considered:

P-syn sample rate.  It was expressed by dividing the total number of skin fibers positive for p-syn by the number 
of skin samples analysed in each patient. P-syn sample rate was calculated for synaptic and non-synaptic fibers.

P-syn occurrence in consecutive skin sections.  The p-syn immunoreactivity in skin nerves in a broad skin area was 
analysed considering 6 consecutive free-floating thick skin sections of 50 μm of the same skin sample (300 μm).  
The percentage of skin sections showing p-syn positivity was reported: 100% expressed a p-syn positivity 
throughout all 6 skin sections.

Proximal/distal p-syn gradient.  The p-syn positivity for each skin site (considering both skin samples) was cal-
culated in all patients with the same clinical variant and expressed as percentage: 100% represents the positivity 
in all patients.

Statistical analysis.  Statistical analyses were performed using SPSS 24.0 for Windows. For the analysis of 
continuous variables we used Kolmogorov–Smirnov test to verify the normal distribution of the data. One-way 
analysis of variance (ANOVA) followed by a post hoc Bonferroni test was performed for comparison of normally 
distributed data. The Kruskall–Wallis test was used to test whether significant intergroup differences occurred, 
when the variables were not normally distributed or the sample size was too small. Where significant differences 
were found, pair-wise comparisons were performed using a post hoc Mann–Whitney U-test, and resulting P val-
ues were corrected for multiple comparisons according to the Bonferroni method. We used χ2 test for the analysis 
of categorical variables. For all analyses, significance was assumed as corrected P < 0.05.

Results
Skin nerve α-syn deposits.  Controls.  NAC and n-syn were homogenously expressed in the dermal 
annexes’ innervation (MAP, SG, SV and hair follicles), whereas no staining was found in the epidermal fibers. 
Skin plexuses were usually devoid of native α-syn staining although occasionally a signal was found. NAC and 
syn-n showed essentially the same result. A weak co-staining was occasionally found between NAC and syn-F1 
in dermal annexes fibers (Fig. 2) whereas p-syn, AGEs, nY-syn and pY-syn staining were not found in controls.

Patients with synucleinopathy.  Abnormal α-syn deposits were found in all patients except 4 with MSA-C. A 
total of 185 skin nerve α-syn deposits were identified: 50 in IPD, 65 in DLB, 40 in PAF and 30 in MSA (Table 2; 
Fig. 1). P-syn staining showed the highest rate of positivity and specificity since it was never found in controls. 

IPD
No. 
deposits

syn-F1 co-localization NAC co-localization

% P.C. % P.C.

synaptic fibers 29 88 0.7 ± 0.2 42 0.3 ± 0.2

non synaptic fibers 21 92 0.8 ± 0.1 10 0.5 ± 0.1

Tot 50 Mean ± SD 90 0.8 ± 0.1 29 0.4 ± 0.2

DLB

synaptic fibers 54 82 0.8 ± 0.1 33 0.3 ± 0.2

non synaptic fibers 11 100 0.8 ± 0.1 5 0.2 ± 0.1

Tot 65 Mean ± SD 86 0.8 ± 0.1 32 0.3 ± 0.1

PAF

synaptic fibers 22 100 0.8 ± 0.1 39 0.3 ± 0.1

non synaptic fibers 18 82 0.8 ± 0.1 14 0.3 ± 0.1

Tot 40 Mean ± SD 90 0.8 ± 0.1 30 0.3 ± 0.1

MSA

synaptic fibers 0 0 0 0 0

non synaptic fibers 30 90 0.9 ± 0.1 18 0.3 ± 0.01

Tot 30 Mean ± SD 90 0.9 ± 0.1 18 0.3 ± 0.01

Table 2.  P-syn co-localization analysis in synaptic and non synaptic fibers. Values did not show a significant 
difference; P.C. = Pearson coefficient.
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Figure 3.  Abnormal α-syn aggregates characterized by a combination of different primary antibodies. Confocal 
microscope study (x400) of α-syn aggregates in patients with different variants of synucleinopathy based on a 
co-localization between p-syn and a neuronal marker (i.e. PGP) or antibodies against abnormal α-syn epitopes 
expression of C-terminal post-translational modifications or amyloid fibrils (syn-F1). (A) P-syn demonstrated 
an excellent co-localization with PGP (AI) in a nerve plexus supporting the intraneural deposition of abnormal 
α-syn aggregates (AII). (B) The co-localization in a nerve plexus between p-syn and syn-F1 (BI) found in 
the majority of analysed deposits supporting the fibrillar nature of these aggregates (BII). (C) Sudomotor 
fibers around a sweat tubule marked by NAC (CI) were co-localized with p-syn (arrow in CII) although other 
sudomotor fibers stained by p-syn were devoid of NAC staining (asterisk in CII). (D) NY-syn staining was 
occasionally seen in non-synaptic fibers (DI) and this staining co-localized with p-syn (DII). The four different 
coexistent fibrillar and non-fibrillar α-syn deposits found in skin nerves were similarly distributed among 
different clinical phenotypes. Nevertheless, these deposits showed important differences in specific variants of 
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Accordingly, p-syn staining was selected as the main marker to characterize abnormal skin α-syn aggregates in 
co-localization studies. P-syn deposits were often co-localized with syn-F1 (around 90% of deposits) and less 
with NAC (around 30% of deposits) in all variants of synucleinopathy (Table 2). Occasionally, syn-F1 showed a 
weak staining in autonomic nerve endings without p-syn but this represents a non-specific signal arising from 
native α-syn since it was co-localized with NAC and found also in controls (Fig. 2). nY-syn staining was occa-
sionally seen in non-synaptic fibers without differences among synucleinopaties (1 fiber stained in each dis-
order), whereas AGEs, pY-syn and ubiquitin did not stain any α-syn deposits. Co-localization studies showed 
four coexisting α-syn aggregates in consecutive sections (Fig. 3): a) non-fibrillar aggregates (i.e. stained only 
by p-syn; Fig. 3A); b) fibrillar aggregates (i.e. positive only for syn-F1 and p-syn; Fig. 3B); c) fibrillar aggregates 
showing native epitopes (i.e. positive also for NAC; Fig. 3C); d) fibrillar aggregates positive for nitrate α-syn but 
not for native staining (Fig. 3D). MSA showed abnormal aggregates only in somatosensory (i.e. non synaptic) 
fibers mainly of the subepidermal plexus (Fig. 1A) with usually a dot-like staining. This pattern differed from the 
remaining synucleinopathies (IPD, DLB and PAF) by showing p-syn deposits in autonomic fibers and plexuses 
close to autonomic annexes (Table 2; Fig. 1B) with a more homogenous staining, although autonomic fibers were 
differently affected in IPD showing p-syn deposits mainly around SV and PAF presenting with a widespread 
extension of deposits also involving GH and MAP. Abnormal aggregates in autonomic annexes showed an inter-
mediate degree of extension in DLB (Fig. 4).

Spatial distribution of α-syn deposits.  P-syn sample rate.  The amount of p-syn fibers per skin sample 
was higher in PAF and DLB than IPD and MSA (Table 3). Furthermore, MSA was characterized by absent p-syn 
deposits in autonomic synaptic fibers.

P-syn occurrence in consecutive skin sections.  Six different skin samples were analysed in PAF, 8 in DLB and MSA 
and 9 IPD. DLB and PAF showed the persistent occurrence of p-syn staining along skin nerves (Fig. 5), whereas 
in IPD and MSA p-syn deposits showed a lower occurrence (Table 3) suggesting a more irregular distribution 
along skin nerves.

Proximal/distal p-syn gradient.  Three different patterns of p-syn distribution were found: (1) the homogenous 
distribution of p-syn positivity in proximal and distal skin sites in PAF (Fig. 6A); (2) the higher positivity of p-syn 
in proximal sites, mainly C7 in IPD (corrected p < 0.01) and DLB (p = 0.05; corrected p = 0.1) (Figs 3 and 6B) 
the higher p-syn positivity in distal skin sites, mainly the leg in MSA although the difference was not significant 
(p > 0.4) (Fig. 6C).

Discussion
The main results of our study were: 1) p-syn as the most sensitive and specific marker of abnormal α-syn depos-
its in skin nerves for the in vivo diagnosis of synucleinopathies; 2) different coexistent fibrillar and non-fibrillar 
α-syn deposits were found in clinical variants of synucleinopathy; 3) MSA displayed a peculiar pattern of abnor-
mal deposits only found in somatosensory skin fibers and PAF-DLB showed the highest load of deposits with a 
widespread involvement of autonomic annexes. These differences may help to identify specific diagnostic traits 
and may support a different pathogenesis among synucleinopathies.

Abnormal deposits of α-syn in skin nerves were optimally disclosed by the antibody against 
α-syn phosphorylation at serine 129.  Skin biopsy by means of an immunofluorescence technique is a 
promising tool for the in vivo diagnosis of synucleinopathies since this technique is straightforward, inexpensive 
and minimally invasive with minor discomfort for the patient. However, a systematic study to test the sensitivity 
and specificity of different antibodies in disclosing misfolded, abnormal α-syn deposits, as reported in the brain 
of post-mortem studies2,29,30, is lacking in vivo. Our data demonstrated that the antibody against phosphorylation 
at serine 129 showed the optimal sensitivity and specificity in disclosing Lewy neuritis in skin nerves in different 
variants of synucleinopathy as previously reported by independent groups in single clinical entities9–14,23. The 
sensitivity in disclosing α-syn deposits was lower in MSA mainly because of MSA-C showing no skin deposits in 
the majority of analysed patients. However, a more focused study involving a larger cohort of patients is needed 
to confirm the difference in disclosing skin p-syn deposits between MSA-C and MSA-P. The antibody against 
α-syn fibrils (syn-F1) presented with a comparable sensitivity in disclosing the abnormal synuclein deposits but 
it was less specific than p-syn since it was also found in controls. The other antibodies against α-syn that we have 
tested did not show appreciable sensitivity in disclosing abnormal deposits in the skin nerves differently from 
post-mortem brain studies and their use is not recommended for the in vivo diagnosis of synucleinopathies by 
skin biopsy. These data were supported by previous works showing that α-syn phosphorylation at ser129 was a 
diffuse pathological event in synucleinopathies30, whereas α-syn nitration and glycation were found mainly asso-
ciated with brain Lewy body31. Skin α-syn deposits did not show a positive staining for ubiquitin suggesting that 
ubiquination which may promote the degradation of deposits by targeting them for proteasome32,33, could occur 
in different compartments of the neuron such as the cell body where the ubiquitin-proteasome system mainly 
works. However, since we are unable to stain brain tissue we cannot exclude that a different staining of antibodies 

synucleinopathy such as their localisation (i.e. only in somatosensory skin fibers in MSA - see Table 2) or the 
widespread involvement of autonomic annexes (i.e. in PAF and DLB - see Fig. 4). These differences may support 
a different pathogenesis among synucleinopathies helping to identify specific diagnostic traits.
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against AGEs, pY-Syn, nY-Syn and ubiquitin between brain and skin tissues could be due to a technical difference 
even if in the skin sections we have tested several immunofluorescence protocols reported to work in the brain 
sections.

Different coexistent fibrillar and non-fibrillar α-syn deposits were found in clinical variants of 
synucleinopathy.  Our data demonstrated that synucleinopathies showed four different coexistent aggre-
gates in skin nerves similarly distributed among different clinical phenotypes. Since investigated patients did not 
show different disease duration our data may support the conclusion that disease duration is correlated to the type 
of α-syn aggregates probably representing different stages of maturity of Lewy pathology23,34,35. However, future 
studies investigating patients with different disease duration are needed to confirm this conclusion since several 
lines of research are in disagreement with it: 1) distinct brain α-syn strains with different affinities to neurons, 
glial cells or astrocytes targeting specific cerebral circuits in human brain have been described29,36; 2) the injection 
in the mouse brain of structurally different α-syn strains (oligomers, ribbons and fibrils) demonstrated differ-
ential seeding propensity leading to distinct histopathological and behavioural phenotypes37; 3) α-syn strains 
extracted from the brain of MSA and IPD patients demonstrated different seeding properties4,38.

Nevertheless, important differences were achieved in different clinical variants related to the p-syn load and 
the cell-type specific distribution of p-syn aggregates: somatosensory fibers in MSA but autonomic fibers in the 
other variants of synucleinopathy. Interestingly these variants of synucleinopathy (i.e. PAF, DLB and IPD) showed 
a different load and widespread involvement of autonomic fibers in relationship to the presence of autonomic 

Figure 4.  Distribution of intraneural abnormal α-syn deposits in autonomic annexes. The pattern of p-syn 
distribution among autonomic annexes disclosed a non-significant difference of deposits around skin vessels 
(SV) in IPD, PAF and DLB. By contrast abnormal α-syn deposits were significantly higher in sweat glands 
(SG) and muscle arrector pilorum (MAP) of PAF than in IPD whereas DLB showed an intermediate degree of 
involvement. These results underlined a widespread extension of deposits in autonomic annexes of patients with 
autonomic symptoms such as PAF and DLB. ***p < 0.001; °p = 0.07.

IPD

P-syn sample rate Serial p-syn occurrance

fiber/sample %

synaptic fibers 0.4 ± 0.3 40

non synaptic fibers 0.6 ± 0.5 45

Mean ± SD 0.4 ± 0.3*^ 85

DLB

synaptic fibers 0.5 ± 0.4 30

non synaptic fibers 1.5 ± 0.9 70

Mean ± SD 0.7 ± 0.4 100

PAF

synaptic fibers 0.3 ± 0.1 40

non synaptic fibers 4.1 ± 1.9 60

Mean ± SD 1.2 ± 0.6 100

MSA

synaptic fibers 0 0

non synaptic fibers 0.5 ± 0.3 83

Mean ± SD 0.5 ± 0.3 83

Table 3.  Spatial distribution of p-syn skin fibers *p < 0.05 IPD vs DLB; ^p < 0.05 IPD vs PAF.
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symptoms (i.e. orthostatic hypotension-OH). The widespread involvement of autonomic annexes, i.e. SV, GH 
and MAP, characterized patients with OH such as PAF whereas p-syn deposits were lower and mainly localized 
around SV in patients without OH (i.e. IPD). DLB displayed an intermediate involvement of autonomic annexes 
and OH was found in approximately half of those patients.

MSA showed a peculiar pattern of skin misfolded α-syn aggregates.  MSA showed a selective 
involvement of somatosensory fibers as already recently reported14 and presented a peculiar pattern of abnormal 
aggregates in comparison to other synucleinopathies since OH was not associated with the involvement of auto-
nomic fibers. These findings may support a selective cell/neuronal vulnerability in synucleinopathies possibly 
related to the genetic profile of the patients (i.e. host) predisposing the deposition of misfolded aggregates of 
α-syn in specific cells39,40 as described in prion disorders41. This conclusion was suggested by considering that 
similar types of abnormal aggregates were found in different skin cells and patients with different clinical variants. 
The specific p-syn deposits in skin somatosensory fibers may be a useful biomarker helping to differentiate MSA 
from other synucleinopathies even in the early stages of the disease when an isolated sleep symptom is present, 
i.e. REM sleep behaviour disorder (RBD). In fact, the majority of patients with RBD without motor dysfunctions 
showed abnormal p-syn deposits in skin nerves42,43.

This work had the following limitations.  (1) abnormal α-syn deposits were characterized in consecutive 
thin (10 μm) skin sections. The assumption being that the same deposits may not change immunofluorescence stain-
ing in consecutive thin sections. Similar results achieved in all clinical variants underlined that our data are repro-
ducible and the assumption is accurate; (2) no antibodies against N-terminus α-syn epitopes were used. A recent 
work showed that N-terminus antibodies efficiently differentiated misfolded α-syn deposits in MSA from other clin-
ical variants supporting a different conformation of misfolded deposits44. A future in vivo study targeting N-terminal 
epitopes is needed to ascertain this important point; (3) the number of PAF patients recruited for this study is limited 
but the number of aggregates studied is similar to the other variants of synucleinopathy; 4) although we studied a 
high number of abnormal intraneural α-syn deposits investigated subjects were fewer. For this reason this study 
should be considered as a pilot study and our main results need to be confirmed in a larger cohort of patients.

Figure 5.  P-syn occurrence in consecutive skin sections of a PAF patient. Immunoreactivity of α-synuclein 
phosphorylated at serine 129 (p-syn) in a single nerve fiber in a broad skin area was analysed considering 6 
consecutive free-floating thick skin sections of 50 μm of the same skin sample. A patient with PAF showed a 
persistent occurrence of p-syn staining in all consecutive skin sections supporting a regular distribution along 
skin nerves.

Figure 6.  Proximal/distal p-syn gradient. The figure illustrates the different pattern of p-syn distribution 
throughout proximal and distal skin sites in clinical variants of synucleinopathy. (A) PAF showed a homogenous 
p-syn positivity in proximal and distal sites. (B) IPD (corrected p < 0.01) and DLB (p = 0.05; corrected p = 0.1) 
displayed a p-syn proximal-distal gradient with higher positivity in proximal sites, mainly the cervical area. 
(C) MSA showed an opposite pattern of skin nerve p-syn with higher positivity in distal skin sites although the 
difference was not significant (p > 0.4).
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