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Graphical abstract 

 

Abstract  

Green infrastructure (GI) in urban areas may be adopted as a passive control system to reduce 

air pollutant concentrations. However, current dispersion models offer limited modelling 

options to evaluate its impact on ambient pollutant concentrations. The scope of this review 

revolves around the following question: how can GI be considered in readily available 

dispersion models to allow evaluation of its impacts on pollutant concentrations and health risk 

assessment? We examined the published literature on the parameterisation of deposition 

velocities and datasets for both particulate matter and gaseous pollutants that are required for 

deposition schemes. We evaluated the limitations of different air pollution dispersion models 

at two spatial scales – microscale (i.e. 10-500m) and macroscale (i.e. 5-100km) - in considering 

the effects of GI on air pollutant concentrations and exposure alteration. We conclude that the 

deposition schemes that represent GI impacts in detail are complex, resource-intensive, and 

involve an abundant volume of input data. An appropriate handling of GI characteristics (such 

as aerodynamic effect, deposition of air pollutants and surface roughness) in dispersion models 

is necessary for understanding the mechanism of air pollutant concentrations simulation in 
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presence of GI at different spatial scales. The impacts of GI on air pollutant concentrations and 

health risk assessment (e.g., mortality, morbidity) are partly explored. The i-Tree tool with the 

BenMap model has been used to estimate the health outcomes of annually-averaged air 

pollutant removed by deposition over GI canopies at the macroscale. However, studies relating 

air pollution health risk assessments due to GI-related changes in short-term exposure, via 

pollutant concentrations redistribution at the microscale and enhanced atmospheric pollutant 

dilution by increased surface roughness at the macroscale, along with deposition, are rare. 

Suitable treatments of all physical and chemical processes in coupled dispersion-deposition 

models and assessments against real-world scenarios are vital for health risk assessments. 

Keywords: Microscale model; Macroscale model; Green infrastructure; Deposition velocity; 

dispersion-deposition coupled model; Air pollution health risk assessment 

 1. Introduction 

  Green infrastructure (GI) is broadly intended a combination of green,  manufactured or 

natural elements such as green roofs, green facades, grasslands, hedges, individual trees or 

plants at species-level that can be implemented in real urban environments to improve aesthetic 

appearance of the environment where we live in, improve the possibility of amenities but also 

to potentially improve environmental health conditions. The term GI may have different 

meanings in different contexts. For instance, eco-friendly construction that has a low-carbon 

footprint and increased energy efficiency are also often defined as green 

buildings/infrastructure in structural engineering. At the same time, in Geo-environment 

engineering, GI is a group of trees and plants used to limit soil erosion. Benedict and McMahon 

(2002) defined GI “as an interconnected network of green space that conserves natural 

ecosystem values and functions and provides associated benefits to human populations”. For 

urban air quality, the most important forms of GI are street trees, roadside hedges, green walls 

and roofs, parks and grasslands adjacent to the urban boundary where air exchange is 
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significant.  In this review, we focus only on forms of urban GI that includes groups of trees, 

plants and/or hedges with a large leaf area index (LAI; m2 m–2), with an aim to draw critical 

discussion points on how these GI forms could be considered in various readily-available 

dispersion models used for air quality and health impact assessments.  

Traffic emissions are a major source of air pollution in urban areas and adversely impact upon 

human health and the environment (Kumar et al., 2016, 2015, 2013). Adverse health effects 

have been linked to exposures of regulated air pollutants such as particulate matter including 

PM10 (fraction of particles with an aerodynamic diameter ≤10µm; Talbi et al., 2018), PM2.5 

(fraction of particles with an aerodynamic diameter ≤2.5µm;  Rivas et al., 2017), Ozone (O3; 

Goodman et al., 2018), nitrogen dioxides (NOx; Jeanjean et al., 2017; Muttoo et al., 2018) and 

unregulated  pollutants such as ultrafine particles (UFP; Baldauf et al., 2016; Kumar et al., 

2017; Pacitto et al., 2018), black carbon (Rivas et al., 2017), volatile organic compounds 

(VOCs; McDonald et al., 2018) and heavy metals (Aksu, 2015; Onder and Dursun, 2006).  

Recent studies have shown potential of GI for improving near-road air quality and limiting 

personal exposures to local air pollution sources (Abhijith and Kumar, 2019; Abhijith et al., 

2017; Baldauf, 2017). GI can reduce pollutant concentrations by offering a greater surface area 

for increased dry deposition, enhancing pollutant redistribution and increasing atmospheric 

turbulence, although some GI characteristics can strengthen atmospheric stagnation and 

increase local air pollution concentrations (Deshmukh et al., 2018; Steffens et al., 2012). 

Without the GI, dispersion of air pollution is governed by factors, such as wind speed and 

direction, topography and meteorology. GI can add additional dispersion characteristics by 

their surface roughness, geometry and deposition characteristics. A potential reduction of air 

pollutant concentrations led by these processes has been reported at both microscale (i.e. 10-

500 m; Britter and Hanna, 2003) in street canyon environment (Gromke et al., 2016; Pugh et 
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al., 2012) and at the citywide macroscale (i.e. 5-100 km; Bottalico et al., 2017; Currie and Bass, 

2008; Nowak, 1994). For example, Pugh et al. (2012) used CFD simulation for studying the 

effect of green wall and roof on air pollutant reduction in street canyons. They found that the 

presence of green wall and roof together could reduce NO2 and PM concentrations as much as 

40% and 60%, respectively, depending upon the street canyon aspect ratio. Later, Gromke et 

al. (2016) simulated the effect of hedgerows in a wind tunnel for assessing the personal 

exposure reduction in street canyons with an aspect ratio (i.e., width to building height) of two. 

They showed that discontinuous hedgerows could result in increased air pollutant 

concentrations in the range of 3-19% compared to no hedgerow scenario. Abhijith et al. (2017) 

summarised positives and downsides in terms of air quality in different environments and 

highlights a need for careful selection of GI under diverse urban conditions. At macroscale, 

Bottalico et al. (2017) studied the importance of urban forest in air purification in Florence, 

Italy. They used remote sensing data and applied a regression model to map urban forest and 

LAI, in addition, to estimating the deposited amount of O3 and PM10. Their results show that 

the urban forest can remove air pollutant concentrations monthly up to 5% of O3 and 13% of 

PM10.  Summary of relevant studies considering GI modelling at the microscale and macroscale 

is presented in Table 1. It is worth noting the large reductions at the microscale are usually for 

shorter averaging times while the macroscale assessments are generally for annual averages. 

Also, these are for different vegetation characteristics and therefore there are no direct 

comparisons between the reductions at these two scales. The assessments that have carried out 

comparisons of short- and long-term benefits from similar vegetation characteristics are 

currently lacking in the literature.   

The underlining reasons for air pollutant concentration reductions are led by complex processes, 

such as enhanced dilution due to enhanced atmospheric turbulence owing to increased surface 

roughness (Pleijel et al., 2004), air pollutants concentration redistribution (Abhijith et al., 2017; 
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Baldauf, 2017) and dry deposition which is strongly influenced by LAI (Jayasooriya et al., 

2017; Selmi et al., 2016). To identify the dominant process of GI’s effects on air pollution 

would require a specially-designed experiment measuring air pollutant reductions at different 

distances from the source in combination with different GI types and characteristics 

(Deshmukh et al., 2018). Coupled GI and air pollutant dispersion modelling to estimate 

associated dry deposition is based on consideration of GI as a porous medium in CFD (Jeanjean 

et al., 2015) and wind tunnel (Gromke et al., 2012) simulations, as a whole in receptor models 

(Chen et al., 2016; Li et al., 2016; Maleki et al., 2016), time of interaction (Pugh et al., 2012) 

and air pollutant concentration over the surface area (Jeanjean et al., 2016; Tiwary et al., 2009). 

At macroscale, the dilution of air pollutants due to GI-induced enhanced atmospheric 

turbulence has not been studied much, but some previous works already established a potential 

decrease in ground level air pollutant concentration with increasing surface roughness (Barnes 

et al., 2014; Venkatram et al., 2013). Past works have also investigated the impacts of GI on 

the reduction of particulate matter (Janhäll, 2015), urban heat island mitigation (Akbari et al., 

2001; Bowler et al., 2010; Luber and McGeehin, 2008), reductions in noise pollution (Chiesura, 

2004; Pathak et al., 2011), reductions in pollutant exposure as passive roadside barriers 

(Abhijith et al., 2017; Gallagher et al., 2015, 2013), stormwater management (Czemiel 

Berndtsson, 2010; Shaneyfelt et al., 2017), and the consideration of GI as a part of natural 

capital (Chenoweth et al., 2018).  

However, uncertainty in GI modelling may lead to overestimation of total dry deposition, 

which can result in an under-prediction of exposure. For instance, the use of constant surface 

resistance in a dispersion modelling would overestimate dry deposition by approximately ten-

fold (Cape et al., 2008), while low-resolution concentration data in deposition models can lead 

to overestimation by a factor of two (Schrader et al., 2018). Therefore, it is essential to 

consolidate and synthesise previous investigations on the considerations of GI in micro and 
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macro scale air pollutant dispersion model for: (i) researchers to identify knowledge gaps for 

improved coupled modelling of air pollutant deposition and dispersion in atmospheric models, 

and (ii) decision-makers to assess the potential of GI to evaluate air quality and health benefits 

and incorporate findings accordingly into future urban planning. We summarise potential 

considerations in the microscale and macroscale air pollution modelling regarding GI. These 

summaries can assist in the formulation of coupled models to obtain a more realistic estimate 

of atmospheric chemical budgets.  

Furthermore, previous articles on interactions between GI and air pollutants have discussed: 

current methods of estimating dry deposition with numerical models (Wesely, 2000); 

applications of atmospheric models for particle dispersion (Holmes and Morawska, 2006); 

assessment of deposition velocities of air pollutants to different vegetation species (Hirabayashi 

et al., 2011); methods and controlling factors for particulate matter dry deposition (Mohan, 

2016); assessment of deposition and thermal effects of urban trees (Buccolieri et al., 2018); bi-

directional air pollutant exchange between GI and the atmosphere (Massad et al., 2010); 

detrimental effects of particulate matters on GI (Litschke and Kuttler, 2008); and estimation of 

deposition velocities based on land use (Schrader and Brümmer, 2014). However, there 

remains a need to estimate GI-related dry deposition in atmospheric dispersion models for both 

the microscale and macroscale. Janhäll (2015) provided a thorough literature review on urban 

GI effects on particulate matter concentrations at different spatial scales. Our review extends 

its scope by focusing on the importance of different resistances in the estimation of deposition 

velocity for both gaseous pollutants and particulate matter and their consideration in coupled 

dispersion-deposition modelling. In particular, we: (i) carry out a detailed review of 

parameterisation for GI modelling to estimate deposition velocity; (ii) provide a comprehensive 

summary of design inputs (e.g., meteorological, GI, and topographical parameters) to evaluate 

the different respective resistance and deposition velocity for their estimation by deposition 
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models; (iii) evaluate the effectiveness of microscale and macroscale air pollution dispersion 

models to estimate pollutant concentration reductions by GI; (iv) evaluate the parametric 

uncertainties in coupled GI and dispersion modelling; and (v) discuss a numerical framework 

for linking GI, air pollution and public health outcomes.  

 2. Scope and outline 

 This review focuses on GI that includes vegetation (trees, hedges and bushes in street 

canyons or at open roadsides), grasslands including parks and gardens and urban forests both 

within microscale and macroscale. The direction of deposition velocity for green walls and 

inclined roofs is not usually perpendicular to the implanted surfaces. Therefore, a discussion 

on green walls, inclined roofs or any other artificial system, as well as considerations of wind 

direction impacts are kept out of the scope of this study.  

We carried out a systematic literature review by searching articles using Google Scholar, 

Scopus, Web of Science, and Science Direct in addition to those known to authors. The 

following keywords were used in our search: dry deposition, green infrastructure, air pollution 

and trees, air pollutant dispersion models, air transport models, air pollution and vegetation, 

deposition velocity, air pollution exposure assessment, urban tree and health benefits, roadside 

vegetation, air pollution and health, microscale and macroscale simulation. We considered a 

period over the past three decades (1973-2019) and those written in English language.  The 

outputs of the search were manually screened and those fitting directly to the topic areas and 

context of the article were selected for discussion.  

The review starts by critically synthesising GI modelling systems and relevant technical input 

parameters that are required for the deposition scheme (Section 3). Considerations of GI in air 

pollution dispersion models at microscale and microscale to predict spatio-temporal 

concentrations are discussed at length in Sections 4 and 5, respectively. Section 6 describes 
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challenges in the simulation of real-world scenarios such as GI deposition velocity, GI spatial  

distributions, the influence of local meteorological parameters and pollutant transformation.  

Section 7 focuses on mathematical approaches linking GI, air pollution and public health  

outcomes. Finally, a summary of topic areas covered, conclusions reached and an outlook for  

future research is provided in Section 8.  

 3.  Deposition scheme in GI modelling systems    

 The deposition schemes, which are a part of air transport models, use mathematical  

equations to describe atmospheric turbulence, absorption (for gases) and gravitational settling  

(for particles) processes within the atmospheric mixing layer, that estimate the accumulated  

quantity of air pollutant removal over any solid surface area without involving water in the  

atmosphere. The following specific conditions make GI considerations distinct in typical  

numerical simulations: (i) aerodynamic effects in the form of air pollutant concentration  

redistributions (Hefny et al., 2015); (ii) deposition of air pollutants (Nowak et al., 2018); and  

(iii) surface roughness affecting atmospheric turbulence (Barnes et al., 2014). At the microscale,  

roadside GI such as hedges may act as a filtering barrier between air pollution sources and  

receptors that can reduce personal exposures for nearby populations. However, at the  

macroscale, GI such as urban forests, parks, gardens and hedges collectively increase  

atmospheric dilution as well as act as a sink (in terms of deposition) for atmospheric pollutants.  

Harmful gaseous pollutants and airborne particles deposit while passing over the GI surface.  

Since there is no globally accepted deposition scheme to describe the dry deposition process  

due to the complexity of air pollutants-GI interaction that influence the deposition flux, we  

discussed dry deposition schemes to identify sets of data required for covering various  

scenarios.  The pollutant flux (F; g m–2 s–1) to GI is proportional to the deposition velocity (Vd;  

m s–1) and pollutant concentration (C; g m–3) (Bottalico et al., 2016; Jeanjean et al., 2016;  

Tiwary et al., 2009).  
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       F = Vd × C                                                              (1) 

Vd for different gaseous pollutant (Eq. 2) can be calculated as the inverse sum of aerodynamic 

resistance (Ra; s m–1), quasi-laminar boundary layer resistance (Rb; s m–1) and the vegetation 

canopy resistance (Rc; s m–1) (Janhäll, 2015; Tallis et al., 2011; Tiwary et al., 2009).  

𝑉𝑑 =  
1

𝑅𝑎+𝑅𝑏+𝑅𝑐
   𝑓𝑜𝑟 𝑔𝑎𝑠𝑒𝑜𝑢𝑠 𝑝𝑜𝑙𝑙𝑢𝑡𝑎𝑛𝑡𝑠                                                      (2) 

For particulate matter (Eq. 3), Giardina et al.(2018) have proposed a new deposition model 

based on an electrical analogy scheme to estimate Vd by using both total resistance Rz (= Ra + 

Rbp; s m–1) and settling velocity (Vs; m s–1) (Eq. 3). The schematic diagram for gaseous 

pollutant collection, through dry deposition, as represented in Fig 1.  

𝑉𝑑 =
𝑉𝑠

1−𝑒−([𝑅𝑧]𝑉𝑠)
       𝑓𝑜𝑟 𝑝𝑎𝑟𝑡𝑖𝑐𝑢𝑙𝑎𝑡𝑒 𝑚𝑎𝑡𝑡𝑒𝑟                                             (3) 

The Ra depends on the atmospheric turbulence over the surface and is independent on the 

species (Eq. 4). The influences of Ra typically dominate from 10 to 100 m above the ground 

level (Cherin et al., 2015; Padro and Edwards, 1991; Zhang et al., 2017a).  

𝑅𝑎 =
1

𝑘𝑢∗
(ln

𝑧ℎ

𝑧0
− 𝛹ℎ)                                                  (4) 

Where k (-) is the von Karman constant (0.4); Zh (m) is the reference height; z0 (m) is the 

aerodynamic surface roughness height above the displacement plane; u* (m s–1) is the friction 

velocity depending upon the atmospheric turbulence and  𝛹ℎ  (-) is a stability function of 

momentum depend on the Pasquill stability class calculated based on Monin-Obukhov length 

(L; m) using Eq. (5):   

𝐿 =  
𝑢∗

3𝑐𝑝𝜌�̅�

𝑘𝑔𝐻
                                                              (5) 

𝑐𝑝 (J K–1 kg–1) is the specific heat at constant pressure; �̅� (K) is the average temperature; and 

H (W m–2) is the sensible heat (Koloskov et al., 2007). 
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 Rb and Rbp (s m–1) affects the deposition of air adjacent to the surface and depend on molecular  

properties of the pollutant and roughness of the surface (Eqs. 6 and 7 for gaseous pollutant and  

particulate matter, respectively), with influences typically dominating from 0 to 10 cm above  

the deposition surface (Giardina and Buffa, 2018; Zhang et al., 2017a).  

𝑅𝑏 =
2 𝑆𝑐

2
3

𝑃𝑟
2
3 𝑘𝑢∗

    𝑓𝑜𝑟 𝑔𝑎𝑠𝑒𝑜𝑢𝑠 𝑝𝑜𝑙𝑙𝑢𝑡𝑎𝑛𝑡𝑠                                    (6)  

Sc (-) is the Schmidt number (υ/D), where υ (m2 s–1) is the kinematic viscosity of air and D (m2  

s–1) is the molecular diffusivity of the pollutant, determined from Stokes-Einstein equation  

(𝐷 =
𝑘𝑇𝐶𝑐

3𝜋µ𝐷𝑝
), with K (J K–1) the Boltzmann constant, T (K) the absolute temperature, µ (kg m– 

1 s–1) the air dynamic viscosity, and Cc (-) the Cunningham factor and Pr the Prandtl number  

(=
𝐶𝑝 𝜐

𝑘
)  with Cp the heat capacity per unit volume of the air, υ the kinematic viscosity,  

and k (W m–1 K–1) the thermal conductivity.   

1

𝑅𝑏𝑝
= (

1

𝑅𝑏𝑑
+

1

𝑅𝑏𝑖
+

1

𝑅𝑏𝑖+𝑅𝑏𝑡
)   𝑓𝑜𝑟 𝑝𝑎𝑟𝑡𝑖𝑐𝑢𝑙𝑎𝑡𝑒 𝑚𝑎𝑡𝑡𝑒𝑟                       (7)  

Rbd (s m–1) is dependent on the Schmidt number, Rbi (s m–1) on the surface conditions and  

Stokes number, and Rbt (s m–1) on the dimensionless particle relaxation time.  

The Rc is the most uncertain resistance and varies with the nature of the surface and the type  

of GI (Fowler, 1981; Hirabayashi et al., 2012; Janhäll, 2015; Jayasooriya et al., 2017; Nowak  

et al., 2006; Wesely, 1989; Zhang et al., 2003). Most of the deposition models found in the  

literature used Eq. (8) to evaluate canopy resistance for the gaseous pollutant (Seinfeld and  

Pandis, 2006; Walmsley and Wesely, 1996; Wesely, 1989; Zhang et al., 2017a).  

1

𝑅𝑐
=

1

𝑅𝑠+𝑅𝑚
+

1

𝑅𝑙𝑢
+

1

𝑅𝑑𝑐+𝑅𝑐𝑙
+

1

𝑅𝑎𝑐+𝑅𝑔𝑠
                                      (8)  

When gaseous pollutants enter the substomatal cavity in leaves, the diffusion of gaseous  

material is resisted through the stomata of the leaves, known as stomatal resistance (Rs; s m–1)  

and through aqueous media of the spongy mesophyll cells, known as mesophyll resistance (Rm;  
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s m–1). Zhang et al. (2017a) reported the empirical Eq. (9) based on Wesely (1989) to assess 

the stomatal resistance for GI. 

𝑅𝑠 = 𝑅𝑖 (1 +
1

200((𝐺+0.1)2)
)

400

𝑇𝑠(40−𝑇𝑠)

𝐷𝐻2𝑜

𝐷𝑥
                                 (9) 

Ri (s m–1) is the minimum canopy stomatal resistance depending on land cover, G (W m–2) is 

the solar radiation, Ts (°C) is the surface temperature, and DH2O/Dx (-) is the ratio of diffusivity 

between the water vapour and the gaseous pollutant.  Rs is primarily a function of the size of 

the stomata and time of opening or closing of the stomata based on the plants’ photosynthesis 

requirement (Zhang et al., 2017a). Rm is dependent on the chemical properties of the pollutant, 

such as solubility, reactivity and the type of vegetation species. While interacting within 

mesophyll cells, pollutants transform from air to liquid and then diffuse into the aqueous media 

of the spongy mesophyll cells. Xiao and Zhu (2017) recognised that the pollutant, after entering 

the substomatal cavity, experiences resistance from the physical barriers and biochemical 

components inside the cell wall, chloroplast envelope, cytosol and stroma between substomatal 

cavity, and the chloroplast of the leaf, which can be modelled with Eq. (10). 

𝑅𝑚 =
𝑅𝑇

𝐻𝑐
𝑅𝑎𝑖𝑟 +  𝑅𝑙𝑖𝑞                                              (10) 

Where R (bar m3 K-1 mol-1) the gas constant; T the absolute temperature of air ; Hc (bar m3 mol–

1) the Henry law constant (which is a dimensionless number used to convert Rair to its liquid-

phase equivalent resistance); and Rliq (s m–1) the summation of all series of liquid resistances 

(resistance of the cell wall and membrane, resistance of the cytosol between the chloroplast 

and the cell wall, resistance of the chloroplast envelope and resistance of the stroma). 

Other than stomatal openings, the available deposition surface of most leaves comprises a waxy 

top layer of the cuticle known as the cutin polyester membrane (Ruggiero et al., 2017), while 

the related resistance to deposition is known as a cuticle or cuticular resistance (Rlu; s m–1). 

Since the permeation of air pollutants through cuticles are negligible (Grünhage and Haenel, 
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1997), the resistance is an order less than stomatal resistances (Wesely and Hicks, 1977). The 280 

value of cuticle resistance is subjected to a degree of wetness of the surface and pH value 281 

(Massad et al., 2010) which can be divided into dry cuticle resistance and wet cuticle resistance 282 

(Walmsley and Wesely, 1996). A single model to evaluate the cuticle resistance for a wide 283 

range of GI, organs or pollution conditions are not possible because deposition and gas 284 

exchange phenomena are functions of wettability, the degree of polarity and apolarity of the 285 

plant surfaces, retention and quality of surface-deposited liquids (Fernández et al., 2017). 286 

Zhang et al (2002) have estimated cuticle resistance for dry and wet conditions by Eqs. (11) 287 

and (12), respectively. 288 

𝑅𝑙𝑢 𝑑𝑟𝑦 =
𝑅𝑙𝑢 𝑑𝑟𝑦0

𝑒0.03𝑅𝐻𝐿𝐴𝐼
1

4⁄ 𝑢∗

                                                                     (11) 289 

𝑅𝑙𝑢 𝑤𝑒𝑡 =
𝑅𝑙𝑢 𝑤𝑒𝑡0

𝐿𝐴𝐼
1

2⁄ 𝑢∗

                                                                          (12) 290 

Where Rlu dry0 (s m–1) and Rlu wet0 (s m–1) are reference values of dry and wet cuticle resistance, 291 

that vary with GI type.  292 

Due to the porosity of GI, air pollutants may enter into the lower canopy of dense vegetation, 293 

where atmospheric buoyancy resistance (Rdc; s m–1) is dominated by buoyant convection forces, 294 

which depend on the amount of sunlight that heats the surface or lower canopy, and the angle 295 

of the terrain (Eq. 13).  296 

𝑅𝑑𝑐 = 100(1 +
1000

𝐺+10
) × (1 + 1000𝜃)−1                                        (13) 297 

Where θ is the slope of the local terrain in radians. Although Rdc in the lower canopy is 298 

independent of wind speed, in cases when winds are able to penetrate into the lower canopy, 299 

especially on the sides of hills, could change the mixing force (Wesely, 1989). 300 

Resistance to the uptake of air pollutants by leaves, twigs, bark and other exposed surfaces 301 

within the lower canopy is known as lower canopy resistance (Rcl; s m–1). Rcl depends on 302 



14 

 

canopy structure metric such as bark area index, porosity and areal density. Zhang et al. (2017a) 

reported Eq. (14) to estimate the Rcl as: 

𝑅𝑐𝑙 =  (
10−5𝐻𝑐

𝑅𝑐𝑙,𝑆𝑜2
+

𝑓0

𝑅𝑐𝑙,03
)

−1

                                                          (14) 

f0 (-) is the reactivity factor for gases, Rcl, SO2 (s m–1) and Rcl,O3 (s m–1) denote the baseline Rcl 

for SO2 and O3, respectively, as given in Wesely (1988). 

Many deposition models assume that deposition to the ground surface under GI is negligible 

but some research findings indicate that the amount of deposition at the surface varies from 20-

30% depending on the type of air pollutants (Meyers and Baldocchi, 1988). The resistance 

offered by GI to an air pollutant while passing through the canopy to the ground surface is 

known as in-canopy resistance (Rac; s m–1). Rac is a function of canopy height and LAI of GI 

and can be modelled using Eq. (15) (Erisman et al., 1994). 

𝑅𝑎𝑐 =
ℎ𝑐𝑏𝑐𝐿𝐴𝐼

𝑢∗
                                                   (15) 

Canopy height, hc (m), is the height above ground-level to the top of the GI and bc (-) is an 

empirical constant taken as 14 m-1. 

Canopy soil resistance (Rgs; s m–1) is a resistance to the uptake of air pollutants by the soil 

surface. The deposition of air pollutants depends on the pH value of the soil, relative humidity, 

surface temperature, soil moisture content, ambient air pollutant concentration, pollutant type 

and solar radiation (Erisman et al., 1994).  The soil resistance, Rsoil is similar to the canopy soil 

resistance and its parameterisation is given by Eq. (16) (Jacobson, 2005). 

𝑅𝑔𝑠/  𝑅𝑠𝑜𝑖𝑙 =  (
10−5𝐻𝑐

𝑅𝑔𝑠,𝑆𝑜2
+

𝑓0

𝑅𝑔𝑠,03
)

−1

                                                  (16) 

Rgs, SO2 (s m–1) and Rgs,O3 (s m–1) denote the baseline soil resistances for SO2 and O3, 

respectively, as provided in Wesely (1988). Surface resistance (Rs; s m–1) accounts for the 

amount of air pollutant deposition to any surface including soil, snow and concrete. Canopy 
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resistance is also a subpart of the Rs. Erisman (1994) reported temperature-dependent, (Eqs. 

17-18) snow-covered Rs for SO2 and NH3 as:  

𝑅𝑠𝑛𝑜𝑤 = 500 𝑠𝑚−1   𝑎𝑡 𝑇 < −1 ℃                                                   (17) 

𝑅𝑠𝑛𝑜𝑤 = 70 (2 − 𝑇)𝑠𝑚−1   𝑎𝑡1 <  𝑇 < −1 ℃                                                   (18) 

For particles, the additional parameter Vs, is required to estimate Vd, for particle diameters up 

to 50 m according to the Stokes law (Eq. 19) 

𝑉𝑠 =
𝑑𝑝

2𝑔(𝜌𝑝−𝜌𝑎)𝐶𝑐

18𝜇𝑎
                                          (19) 

Where ρp (kg m–3) is the density of the particles, ρa (kg m–3) is the density of the ambient air, 

dp (m) is particle diameter, and g (m s–2) is the gravitational acceleration.  

Alternative methods to evaluate the resistances used for dry deposition estimation for gaseous 

pollutants are also reported in the literature  (Alfieri et al., 2008; Bennett et al., 1973; Ganzeveld 

and Lelieveld, 1995; Gong et al., 2017; Irmak and Mutiibwa, 2010; Jiang et al., 2017; Kerstiens, 

2006; Kumar et al., 2014; Lhomme and Montes, 2014; Magnani et al., 1998; O’Dell et al., 1977; 

Rodný et al., 2016; Wesely, 1989; Wong et al., 2018; Zhang and Shao, 2014; Zhou et al., 2017). 

Khan et al. (2017) have discussed other models for dry particle deposition schemes. A 

summary of typical values for different resistances are listed in Supplementary Information (SI) 

Table S1, while parameters required for dry deposition estimation are summarised in Table 2.      

The most widely used deposition model is i-Tree Eco (www.itreetools.org) that maps the 

measured air pollutant concentrations by monitoring stations over GI canopies then estimates 

air pollutant sequestration rates based on air pollutant concentrations, LAI of the GI and 

meteorological data. For example, Selmi et al. (2016) estimated 88 t of air pollutants removal 

by urban trees during one year (July 2012 to June 2013) in Strasbourg city, France.  However, 

the i-Tree Eco model does not consider the influence of GI on pollutant dispersion aspects such 

http://www.itreetools.org/
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as air pollutants redistribution and enhanced atmospheric dilution. 

 4. Considerations of GI in microscale models  

Microscale models are used to predict air quality near the source, where air pollutant 

dispersion is dominated by characteristics including source-induced turbulence, pollutant 

chemistry, local meteorology, source geometry and the surrounding buildings, terrain and GI, 

flow alternation and many more aspects. In street canyons, aerodynamic effects have a greater 

impact on local air pollution levels than deposition (Vos et al., 2013). However, in open road 

conditions, both aerodynamic and deposition effects are important (Tong et al., 2016). In this 

section, we review several models developed to estimate exposure concentrations, near to 

traffic emissions, for local populations by capturing the temporal and spatial variation of air 

pollutant concentrations at the microscale, and we discuss how these models represent GI in 

their simulation. Although these models were not developed to study the impact of GI on 

exposures reduction, their results could still be partially used to assess the GI impacts of air 

pollutant concentrations. Table 3 presents a summary of the differences in GI considerations 

by various microscale models that are described in the subsequent text. 

Box and wind tunnel models are based on the principle of conservation. Physical and chemical 

processes of air pollutant dispersion, dilution and deposition are simulated in the study domain, 

which is assumed to be isolated from its surroundings. The consideration of roadside GI in 

microscale models (especially regarding urban street canyons) was intensively studied through 

laboratory experiments in a wind tunnel by Gromke and co-workers (Gromke, 2011; Gromke 

et al., 2012; Gromke and Blocken, 2015; Gromke and Ruck, 2007). In these models, air 

pollutants were forced to pass normally through the vegetation, which was shown to increase 

the deposition velocity by allowing more time and amount of pollutant to interact with the GI 

(Janhäll, 2015). However, under ambient conditions, air pollutants only interact with the 
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available surface area of GI while passing above or around the structure (Abhijith et al., 2017). 

Moreover, synthetic materials were used to represent GI, which introduced uncertainties in the 

simulation of Rc. 

Gaussian plume models are most commonly used as dispersion models to estimate 

concentrations of air pollutants by solving a set of mathematical equations in three dimensions, 

usually considering a point sources. Historically, to incorporate stability conditions and plume 

rise, the models can use one of five stability classification schemes (Lapse Rate scheme, 

Pasquill-Gifford scheme, Turner scheme, Sigma-Theta scheme and Richardson number) and 

one of two (Briggs and Holland method) plume rise formulations (Awasthi et al., 2006). These 

models also have two different vertical and horizontal dispersion coefficients to simulate 

vertical and horizontal dilution, depending on stability class and distance from the source. In 

Gaussian models, the air pollutant concentrations were calculated independently of GI 

characteristics. With computational advancement, Gaussian plume model limitations have 

been minimised in modified/advanced models that estimate pollutant concentrations with a 

combination of different sources’ contributions, which are spatially distributed sources (such 

as multiple points, line and area sources). These models use meteorological data and surface 

roughness height to compute surface friction velocity, Monin- Obukhov length and the wind 

speed and direction at a reference height to define atmospheric boundary layer properties and 

use modified vertical and horizontal dispersion coefficient based on wind tunnel, field 

experiments or empirically. One dispersion model, RLINE (developed by United States 

Environmental Protection Agency (US-EPA)), takes meteorological input from AERMET 

(Cimorelli et al., 2005), vertical and horizontal dispersion with empirical constants obtain based 

on field tracer studies and wind tunnel simulation (Venkatram et al., 2013) and have been tested 

against independent field studies (Snyder et al., 2013). RLINE model does not incorporate the 

effect of GI (roadside vegetation), but it can quantify the effect of roadside barriers on the 
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prediction of air pollutant concentrations due to modified dispersion coefficients. HIWAY-2 

(developed by US-EPA) uses the steady-state Gaussian model to estimate the concentration of 

nonreactive pollutants from highway traffic at receptors located in relatively uncomplicated 

terrain; thus, the model is unable to consider complex terrain that includes GI (Peterson, 1980). 

This model uses only three stability classes (unstable, neutral and stable) and more realistic 

concentration estimation adjacent to highways with respect to the original version due to 

updated dispersion coefficients (Peterson, 1980; Sharma and Khare, 2001). Other Gaussian 

models also use modified dispersion coefficients to include the effect of non-porous barriers. 

ADMS-Road (developed by the Cambridge Environmental Research Consultants, UK) is a 

Gaussian plume air dispersion model that uses the boundary layer depth and Monin-Obukhov 

length to define the atmospheric boundary layer properties, rather than the simplistic Pasquill-

Gifford stability classes. This model calculates dry deposition removal by estimating Ra and 

Rb components and uses a constant value of Rc for the whole modelled domain, which could 

lead to uncertainty in air pollutant concentrations predictions (Apsley, 2017). Usually, 

advanced Gaussian models are not capable to simulate the aerodynamic effects of GI, which 

dominate the spatial distribution of air pollutant at the microscale.  

Receptor models are applications of a set of mathematical or statistical relationships obtain 

information on the sources of air pollutants from air pollutants measured at the receptor point. 

The name receptor models or receptor-oriented models arises from the fact that these methods are 

focused on the behaviour of the ambient environment at the point of impact as opposed to the source-

oriented dispersion models that focus on the emissions, transport, dilution and transformations that 

occur beginning at the source and following the pollutants to the sampling or receptor sites.  Watson 

et al.(2002) have described the procedures for using a receptor model to estimate the 

contribution of sources at receptor locations. Receptor models are simple, self-explanatory and 

highly precise in estimating air pollutant concentrations at the receptor point (Watson, 1984). 
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Many studies (Belis et al., 2013; Gardner and Dorling, 1999; Han et al., 2004; Liu et al., 1996; 

Song et al., 2001; Wåhlin et al., 2006; Wahlina et al., 2001) reported the application of receptor 

modelling for air pollutant concentrations simulation. Receptor models can be used to quantify 

the potential influences of GI as a whole (Chen et al., 2016, 2015; Heal et al., 2012; Li et al., 

2016; Maleki et al., 2016; Yin et al., 2011), but in simulating air pollutant concentrations, they 

are unable to handle the non-linear behaviours of dry deposition, spatial distribution of GI and 

other parameters such as complex local meteorological parameters, air moisture and wind 

velocity. 

Computational Fluid Dynamics (CFD) models are effective and powerful tools for the 

numerical simulation of wind flow and mass transfer numerically. Most CFD models solve the 

governing nonlinear Navier Stokes equations, which are conservation of mass, momentum and 

energy, along with transport and/or any other user specific equations, with the help of any 

conventional methods such as the Finite Volume Method, Finite Element Method, Finite 

Difference Method and Spectral Methods. Many CFD models (Amorim et al., 2013; Baik et 

al., 2009; Costabile et al., 2006; Jeanjean et al., 2017, 2015; Kwak et al., 2018; Marciotto et 

al., 2010; Sanchez et al., 2016) have also been developed by researchers to simulate complex 

wind flows and pollutant transfer problems at different scales. Although CFD modelling has 

the capacity to deal with complex geometries, wind-induced turbulence and air pollutant 

transformations in simulating air pollutant concentrations (Amorim et al., 2013; Costabile et 

al., 2006; Jeanjean et al., 2015; Kwak et al., 2018; Lateb et al., 2016; Sanchez et al., 2016), 

they still require more validation to simulate the effects of modelled geometries on wind 

velocity and air pollutant concentration predictions in urban settings (Huang et al., 2009; Sini 

et al., 1996). GI is considered to be a porous media, and its pollutant removal efficiency is 

modelled as a function of LAI or of Leaf Area Density (LAD; m2 m–3) by assuming a constant 

deposition velocity (Jeanjean et al., 2017; Pugh et al., 2012). However, the aerodynamic effects 
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(such as momentum sink, local turbulence and transpiration cooling) are also modelled as a 

function of GI characteristics, as discussed in SI Section S2. Steffens et al. (2012) reported the 

modeling study on the effect of vegetation barriers on plume dispersion near roadways through 

coupling turbulence and aerosol dynamics to capture both the aerodynamic and deposition 

effects. The modeling results show that GI barriers can reduce UFP concentrations, but the 

level of reduction depends on meteorological conditions. For example, increased wind speed 

leads to more reduction in particles larger than ~50 nm, but minimal effect on particles smaller 

than ~50 nm as a result of interactions among aerodynamic resistance, impaction and residence 

time (Steffens et al., 2012). The predicted effect of wind speed by Steffens et al. (2012) agreed 

with the observed patterns from a later field study (Lee et al., 2018), even in terms of the critical 

size (predicted 50 nm versus observed 60 nm). 

Most of the CFD studies do not implement separate models for pollutant removal. However, 

well-configured CFD models can resolve the wind flow field and allowing the estimate of air 

pollutant removal via atmospheric turbulence and Brownian motion near the surface. 

Furthermore, the effect of different species, leaf size, soil moisture content and other 

parameters to define canopy resistance are usually neglected in majority CFD studies. 

Therefore, CFD models could usually underestimate deposition and over-predict pollutant 

concentration. 

Hybrid models describe combinations of two or more models which are either used in series to 

generate desirable outputs (Karamchandani et al., 2009; Korek et al., 2016; Sharma et al., 2013; 

Sun et al., 2017) or complementarily to target specific problems such as the development of 

modified flow fields due to complex terrain, the estimation of dry deposition because of GI, or 

the generation of spatial meteorological data etc. within domain (Fallahshorshani et al., 2012). 

Eulerian grid models, Lagrangian puff dispersion or trajectory models used along with 
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Gaussian plume models are classical examples of hybrid models. Globally, researchers are  

developing new hybrid models to simulate complex air pollutant dispersion processes under  

different environmental conditions. Currently, the major problem with hybrid models is the  

linkage between models, because of which the development of unique methodologies for  

linking different models and dealing with case-specific requirements linked, for example, to  

data availability is often required. For instance, LAI can be estimated by different models such  

as relating it to digital cameras values (Casadesús and Villegas, 2014), through mathematical  

equations linking LAI, absorbed photosynthetically active radiation and net primary production  

from remote sensing (Gower et al., 1999), by mathematical regression models (Blanco and  

Folegatti, 2003), using satellite data (Aboelghar et al., 2010; Chen et al., 2005; Xavier and  

Vettorazzi, 2004), and with many other direct or indirect methods (Bréda, 2003; Gower et al.,  

1999). Hybrid models are capable of considering GI in air pollutant concentrations simulations  

but because of the data required for considerations of GI (Table 2), uncertainty in data  

generation, spatial and temporal variation of data, there is no accepted hybrid approach for  

considering the GI in predicting air pollutant concentrations.    

The impacts of GI on pollutant dispersion in urban areas are not considered in many microscale  

models. A comprehensive understanding of individual aspects, such as dry deposition (Nowak  

et al., 2006); filtration (Chen et al., 2017) and air pollutant concentrations redistribution  

(Gromke and Ruck, 2008; Miao et al., 2016) are needed to be considered in urban air quality  

simulation. For dry deposition, an additional sink term may be used in computational models  

to simulate gaseous pollutant absorption into the leaf matrix via stomata. The mathematical  

model used to estimate deposition, shown in Eq. (1), is applicable when the total LAD and  

concentration point belong to two different cells, mostly in the macroscale model. Therefore,  

Eqs. (2) and (3) describing a mathematical model to estimate Vd considering Ra as the  

resistance between the height of concentration modelled and the GI canopy are applicable for  
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forest canopy only. On the other hand, the microscale models, with much finer resolution and  

the resolving concentration around GI which has an impact of Ra, results in different Vd that at  

the macroscale. For instance in CFD simulation, sink term is proportional to a concentration  

within a cell, Vd and LAD shown in Eq. 20 (Buccolieri et al., 2018; Jeanjean et al., 2016; Vos  

et al., 2013) where Vd is generally assumed to be the same as macroscale.   

𝑆𝑑 = −𝐿𝐴𝐷. 𝑉𝑑. 𝐶                                   (20)  

Apart from trees and hedges, surfaces like grass, soil and water also affect deposition, but this  

additional deposition is not considered in microscale modelling. Also, the filtration capacity of  

GI is the amount of gas and particles retained in its volume without absorption is neglected.  

This effect is most significant for particles deposition inside the GI canopy. Furthermore, the  

modelling of particles deposition is more complex than that of gases due to re-suspension under  

high wind speeds. The amount of re-suspension depends on wind speed and amount of  

epicuticular wax available on leaves in different seasons (Zhang et al., 2017c). Hefny et al.  

(2015) have discussed GI-induced aerodynamic effects with two different approaches: (i) an  

implicit approach (represented by surface roughness); and (ii) an explicit approach (represented  

by porous media) for inclusion of GI in numerical modelling, and concluded that explicit  

approach is more physically realistic over implicit approach for simulation of wind flow field  

and dispersion modelling. The built-up street canyon configuration and vortexes interaction  

with GI is shown in Fig 2. These vortexes in street canyons help to reduce pollutant  

concentrations through dilution. The flow around GI is dependent on the location of the latter  

in the built-up street canyon, the interaction with street canyon vortexes, the surrounding  

environment, and meteorological conditions. The porous behaviour of GI results in an  

aerodynamic effect that is different from that of solid barriers. Two zones – a low turbulence  

zone due to flow abatement and a high turbulence zone due to a sudden change in flow  

deflection – are generated due to vortexes interacting with the street GI (Vos et al., 2013).  
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Generally, low turbulence zones present higher concentrations, owing to relatively lesser  

mixing and the loss of momentum by the part of air pollutants passing through GI, getting  

stagnant (Santiago et al., 2017). Tong et al. (2016) employed the CFD-based CTAG model to  

evaluate six different vegetation barrier configurations, and identified vegetation–solid barrier  

combination (i.e., solid barrier followed by vegetation barrier) as one of most effective design  

options, via promoting vertical mixing (through solid barriers) and enhancing deposition  

(through vegetation barriers). The CTAG modeling results also revealed that a highly porous  

roadside vegetation barrier containing large gaps within the barrier structure could increase  

downwind pollutant concentrations, consistent with findings from a field study (Deshmukh et  

al., 2018). In conclusion, the choice of microscale model to study the impact of GI on local air  

pollutant concentrations simulation depends on available input parameters, simulation time,  

the representation of GI-pollutant interaction processes, meteorological conditions and the  

surrounding urban geometry.   

 5. Considerations of GI in macroscale models   

Macroscale models are used to predict the air pollutant concentrations around a source,  

where air pollutant dispersion is dominated by meteorological and topographical conditions  

such as wind velocity and direction, ambient temperature, terrain slope, surface roughness and  

deposition. For the consideration of GI in macroscale models, important aspects are deposition  

velocity (Verbeke et al., 2015) and change in friction velocity and surface roughness (Barnes  

et al., 2014; Britter and Hanna, 2003). Here, we have reviewed methodologies for considering  

GI in macroscale air dispersion models. Table 4 summarises the differences in GI  

considerations in various macroscale models that are discussed in the subsequent text.  

At macroscale, Gaussian plume models have been widely used for air quality prediction from  

a point source and have some limited applicability such as flat terrain, no local flow and  
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circulation and single source. Apart from inbuilt assumptions in historical Gaussian plume  

models such as continuous steady source, chemically inert pollutant, bell-shaped distribution  

of pollutants in the horizontal and vertical direction and constant meteorological conditions,  

for which this model category, are neither able to represent the dispersion outside these  

conditions nor to handle complex environmental conditions, topography, additional  

atmospheric chemistry and the air pollutant removal capacity of GI through dry deposition.  

Modified Gaussian models such as ADMS-Urban, AERMOD, CALPUFF and SCREEN3  

(developed by the US-EPA) are the most commonly used amongst the scientific community.  

ADMS-Urban (developed by the Cambridge Environmental Research Consultants, UK) is a  

Gaussian plume air dispersion model that computes local flow along with turbulence due to  

surface roughness based on Nguyen et al. (1997) and dry deposition velocity with constant  

surface resistance (Apsley, 2017). With constant surface resistance, ADMS-Urban is unable to  

incorporate the effect of different land cover on deposition. AERMOD is a steady-state  

Gaussian plume model, jointly developed by the American Meteorological Society and the US- 

EPA, that takes meteorological inputs from AERMET (Cimorelli et al., 2005) and complex  

terrain data from AERMAP (Langner and Klemm, 2011). To compute deposition velocity  

based on Wesely (1988), AERMOD uses a constant LAI that depends on nine land use  

categories and five seasonal categories rather than the actual LAI that varies with the type of  

GI. However, Lin et al. (2018) have shown in their large-eddy simulation study that total  

particle deposition is sensitive to LAI. CALPUFF, jointly developed by Sigma Research  

Corporation (currently part of Earth Tech, Inc.) and California Air Research Board, is a non- 

steady-state Lagrangian Gaussian puff model; it uses CALMAT generated wind field or wind  

velocity and other inputs such as surface roughness and terrain data to compute dispersion  

coefficient (Bai et al., 2018). CALPUFF estimates deposition velocity without considering the  

Rdc and Rcl due to GI porosity and other surfaces (e.g., grass, soil) in the lower canopy that  
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could lead to uncertainty in dry deposition amount. These Gaussian models are therefore not  

capable to simulate the (i) effect of flow deflection and flow abatement near to receptor; (ii)  

the pollution tolerance of different GI species; (iii) characteristics (shape and dimensions) of  

GI types; and (iv) the effect of GI inside the urban area.  

Statistical models are mathematical models that predict air pollutant concentrations with the  

help of unknown constants, which as estimated according to measured data. Such models  

include land use regression models (Rao et al., 2017), machine learning models (Kleine Deters  

et al., 2017), and Monte Carlo (Mallet and Sportisse, 2008). These models need to be trained  

for past datasets to assess the impact of variables in the conditions under which they were  

initially trained. Land use regression models have been widely used to estimate air pollutant  

concentrations by finding mathematical relationships between parameters such as land cover  

(LAI, types and spatial distribution of GI, land use pattern), meteorological data, emissions  

data and ambient concentrations (Cattani et al., 2017; de Hoogh et al., 2014; Habermann et al.,  

2015; Hoek et al., 2008; Yli-Pelkonen et al., 2017). Because these models do not consider the  

physical relationship between emissions and air quality under given sets of meteorological and  

topographical conditions (Shahraiyni and Sodoudi, 2016; Wolf et al., 2017; Zhang and Ding,  

2017), the effects of GI on air pollutant concentrations remain unexplained by statistical models.  

CFD models at macroscale require high computational time and resources, even for a smaller  

size of the domain but are effectively able to capture the effects of GI at a fine spatial resolution.  

The modelling methodology and limitations for considering GI in CFD models, box or wind  

tunnel models, receptor models and hybrid models were previously discussed (Section 4).  

GI reduce air pollutant concentrations through pollutant removal by dry deposition and by  

enhancing atmospheric dilution via increased surface roughness at the urban scale. Most  

macroscale simulations use the average deposition value for every cell within a simulated  
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domain because grid size is greater than the dimension of GI that introduces uncertainty in air  

quality prediction. The seasonal variation leading to changes in LAI, VOC emissions, non- 

linear deposition behaviours and particle resuspension are important inputs, along with from  

meteorological data, terrain data and surface roughness, all of which need to be considered in  

dispersion modelling and could change air pollutant concentrations at the macroscale.  

Generally, deposition models estimate air pollutant removal over GI and neglect increased  

atmospheric dilution by their surface roughness during an assessment of GI impacts. For  

instance, Bodnaruk et al. (2017) used i-Tree Eco to estimate air pollutants removal over an area  

of 95 km2 in Baltimore, US. Their modelling estimates showed an additional total pollutant  

(PM2.5 and O3) removal of 173 t. yr-1, if the tree cover is increased from 24% in 2010 to 44.4%  

in 2040 (to meet the city’s Baltimore sustainability plan).    

 6. Challenges in considering GI for dispersion modelling at microscale and macroscale   

Atmospheric dispersion models predict air quality under the influence of different inputs  

such as meteorological data, topographical data, GI data, and source emissions. Apart from the  

complexity of environmental processes and interface interactions (Holnicki and Nahorski,  

2015; Irwin, 2014), variance in measured and estimated pollutant concentrations where GI is  

present may be due to: (i) pollutant measurement error; (ii) model input uncertainties (Table  

2); (iii) simplification of deposition processes (Section 3); and (iv) difficulties in treating GI in  

numerical solutions (Sections 4 and 5). Past studies have reported the effects of input data  

uncertainties on pollutant concentrations at different spatial scales, including: meteorology data  

uncertainty at mesoscale (Gilliam et al., 2015; Godowitch et al., 2015), emissions data  

uncertainty at macroscale (Diez et al., 2014; Holnicki and Nahorski, 2015) and at mesoscale  

(Saikawa et al., 2017), topography and land use data uncertainty at macroscale (Zou et al.,  

2016), and surface roughness uncertainty at macroscale (Barnes et al., 2014). The challenges  

to model inputs and processes, especially regarding the consideration of GI in air pollutant  
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concentration simulations, primarily relate to: (i) spatio-temporal variation of GI characteristics  

such as shape and size, porosity, pollution tolerance and pollutant sink; (ii) pollutant  

transformation due to GI; and (iii) influences of meteorological and topographical data (such  

as temperature, humidity, terrain slope, wind speed and direction) on the deposition process.  

Uncertainties in model input data could cause predictions of air pollutant concentrations to by  

vary up to a factor of four for identical solutions (Lohmeyer et al., 2002). The most significant  

challenge is the consideration of the spatio-temporal distribution of GI and its characteristics,  

because each GI differs from others with respect to its location, LAI, porosity, species and  

geometries. Past studies (Aubrun et al., 2005; Buccolieri et al., 2011; Gromke et al., 2012;  

Gromke and Ruck, 2008; Miao et al., 2016) have discussed the effects of GI on local wind  

velocity and dispersion at different spatial scale. An additional challenge is the seasonal LAI  

variation that affects the change in porosity and geometry of GI (wind flow alternation) and  

change in pollutant absorption rate (deposition velocity). GI species also exhibit different  

tolerances to different air pollutants (Appleton et al., 2009; Yang et al., 2015) which may cause  

short-term (immediately visible symptom on leaves) and long-term (premature leaf drop,  

reduced growth and species death) damages. Furthermore, meteorological and topographical  

conditions have an influence on deposition processes and are not typically included in model  

parameterisations. For example, the contemporary occurrence of high ozone with high  

temperatures (including during heat waves) and low humidity conditions, as has been reported  

in many studies (Filleul et al., 2006; Hou and Wu, 2016; Zhang et al., 2017b; Zhang and Wang,  

2016). Similarly, elevated levels of PM2.5 are reported during high temperatures and low wind  

speeds (Tai et al., 2010; Zhang et al., 2017b). For example, Kavassalis and Murphy (2017)  

have reported the coincidence of low ground-level O3 concentrations and high relative  

humidity in the US between 1987 and 2015. This is because O3 uptake is unintentionally high  

by plants’ stomata during high relative humidity. Furthermore, Zhang et al. (2003) have  
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highlighted the combined effect of strong solar radiation (>200 W m–2) and wet conditions  

(rainfall or morning dew) on Rs and introduce the term Wst (the fraction of stomatal blocking  

water film) in Rc calculation, Eq. (21).  

1
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+

1

𝑅𝑎𝑐+𝑅𝑔𝑠
                                       (21)     

Pollutant transformation due to the presence of GI is another challenge in air pollution  

dispersion modelling. VOCs such as isoprene, monoterpenes and sesquiterpenes are released  

by GI and can have considerable effects on air pollutant concentrations during heat waves  

(Churkina et al., 2017). These VOCs can undergo chemical transformation and produce ozone  

and PM in the presence of high nitrogen oxide concentrations (Seinfeld and Pandis, 2006). For  

example, Churkina et al. (2017) reported up to ∼60% and ~40% contributions in modelled  

ground level O3 formation from VOCs during the heat wave in July 2006 and hot summer days  

in 2014 in Berlin, respectively. We observed that the GI-air pollutant interaction (deposition  

rate) is not constant, as assumed in many dispersion models, but actually has a high spatio- 

temporal variation that depends on GI types and spatial distribution, as well as meteorological  

and climatic factors such as relative humidity, ambient temperature and wind velocity.   

 7. Linking of GI, air pollution and health outcomes  

Knowledge of linkages between public health outcomes and GI-induced air pollution  

reduction is important to assess public health benefits (Fig. 3). We focus here on a basic  

framework that links GI’s reduction of atmospheric pollutant concentrations and the potential  

exposure of individuals to assess the resultant health risk related to air pollution (Table 5). An  

air pollution health risk assessment (APHRA) is a mathematical approach that estimates the  

expected health impact of short- or long-term exposure to air pollutants in  different variables  

such as age group, environmental conditions and socioeconomic status (WHO, 2016). Here,  

we present an APHRA framework to link health outcomes with short- or long- term exposure  
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alternation due to the presence of GI. Several epidemiological studies have reported a wide  

range of health impacts, such as respiratory symptoms, hospital admissions and/or premature  

deaths, associated with excess exposure to air pollution. These health outcomes could be  

quantified by a number of premature deaths, years of life lost (YLLs), disability-adjusted life  

years (DALYs), or change in life expectancy (Health Organization Regional Office for Europe,  

2015). For instance, Pope et al. (2009) reported a life expectancy increase by 0.64 years for per  

10 µg m–3 decrease in PM2.5 for 51 US cities. The input data required to estimate the health  

outcomes, shown in Eq. (22), are population data (P; numbers), baseline rates of death or  

hospital admission (M; number per year), change in air pollutant concentration (ΔQ; µg m-3)  

and relative risk (RR) (Andreão et al., 2018; Künzli et al., 2000; Sacks et al., 2018).   

∆M = (1 − 𝑒−𝑅𝑅×∆𝑄)  × 𝑃 × 𝑀               (22)  

Where ΔM is a change in health effects due to air pollution and RR is a change in health effect  

for a unit change in an air pollutant concentration. The main steps for APHRA are performed  

via (i) direct measurements of air pollution concentrations of individual’s exposure (Steinle et  

al., 2015); (ii) indirect measurements by estimating pollutant concentrations with modelling or  

fixed site monitors (Beelen et al., 2014; Brauer et al., 2016). For APHRA, the use of the indirect  

method is more common over the direct method, which is mostly used in industrial or  

occupational health risk assessment. At a national scale study of 2425 urban and 3094 rural  

areas in 2010, Hirabayashi and Nowak (2016) used fixed-site monitoring data and applied  

pollutant concentrations change due to deposition over the tree canopy to identify air pollutant  

removal and health benefits with an increase in LAI or percentage of tree cover. There is  

uncertainty in APHRA due to factors such as: (i) the ambient air, which is a complex pollutant  

mixture, and making estimations of exposure assessment is challenging because monitoring  

stations do not map the full domain; (ii) the fact that the baseline disease burden is not properly  

recorded, especially for under-developed countries; and (iii) assumptions made during the  
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derivation of concentration-response functions such as smoking condition, indoor air pollutant  

exposures and medical conditions (WHO, 2016). The presence of GI could further increase  

uncertainty in APHRA by (i) adding allergenic pollens that may trigger other diseases, (ii)  

emitting bVOCs that may transform air pollutants and increase particular pollutant  

concentrations locally, and (iii) altering exposure by air pollutant concentration redistribution.  

Furthermore, USDA Forest Service developed i-Tree with BenMap (US-EPA) models provide  

an option to estimate the health outcomes of annual air pollutants removal by the deposition  

over GI canopy at the macroscale. However, changes in short-term exposure induced by  

pollutant concentrations redistribution at the microscale, and enhanced atmospheric pollutant  

dilution by increased surface roughness at the macroscale, both due to GI, have not been  

assessed along with deposition.   

Some studies highlighted that the overall urban GI is associated with a decrease in mortality  

and morbidity. For instance, De Keijzer et al. (2017) linked to air pollution concentration and  

urban vegetation to standardized mortality rates using Poisson regression and to life expectancy  

using linear regression. This study was based on mortality data from 2148 small areas with an  

average population of 20750 inhabitants between 2009 and 2013 in Spain. An increase in life  

years of 0.17 (95% CI: 0.07, 0.27) with an increase in average greenness in urban areas by  

interquartile range was found. The same study also found a reduction in life years of 0.90 (95%  

CI: 0.83, 0.98), 0.20 (95% CI: 0.16, 0.24), 0.13 (95% CI; 0.09, 0.17) and 0.64 (95% CI; 0.59,  

0.70) due to an increase of 5 µg m-3 for each of PM10, O3, NOx and 2 µg m-3 in PM2.5,  

respectively. In another study, Lovasi et al (2008) examined the association between asthma  

prevalence in 4 to 5 years old children and the number of street trees in New York and found  

that an increased tree density was associated with a 29% decrease in asthma prevalence (RR =  

0.71 per 343 trees km-2, 95% CI; 0.64, 0.79). This association could be due to a reduction in  

air pollutant concentrations by urban GI. Conversely, numerous studies (King et al., 2014;  
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Selmi et al., 2016; Yang et al., 2008) have found air pollutant removal values between 58.9 and  

99.6 kg ha–1 year–1 due to GI, but health benefits were not estimated, presumably owing to a  

lack of availability of health data.    

 8. Summary, conclusions and future outlook  

We discussed various aspects related to the consideration of GI in microscale and  

macroscale atmospheric dispersion models. We also presented the mathematical description of  

different processes and the relevant inputs required to simulate GI effects for estimating air  

pollutant removal under deposition schemes. Microscale and macroscale air pollutant  

dispersion models have been surveyed with respect to their physical and chemical  

representations of GI into the modelling system and limitations in assessing the effects of GI  

on air pollutant concentrations estimation. The non-linear behaviour of GI deposition response  

with meteorological parameters and other challenges, such as spatio-temporal variation of GI  

characteristics and effects on air pollutant transformation have been briefly studied. Moreover,  

the importance of GI in health risk assessment through a linkage between GI, air pollution and  

health were examined.  

Numerous numerical methods have been used to simulate additional physical and chemical  

processes due to the presence of GI in atmospheric dispersion models at different spatial scales,  

in order to estimate air pollutant removal (Section 3). These processes depend on many factors  

such as meteorological data, GI characteristics and air pollutant concentrations. Moreover,  

representing the deposition scheme in detail is complex, resource-intensive and requires a large  

amount of input data (such as meteorological parameters, topographical parameters, GI  

parameters and pollutant parameters (Table 2), which is not readily available for dispersion  

models. Different air pollutant dispersion methodologies used for air pollutant concentration  

simulations at various spatial scales have been discussed (Sections 4 and 5), and a summary of  

their considerations of different GI-related processes is provided in Tables 3 and 4. The  
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individual spatial case has specific flow, mixing characteristic and sensitivity to input 

parameters in simulating the effects of GI on air pollutant concentrations. It is, therefore, 

necessary to identify the individual spatial conditions to understand the dominating physical 

and chemical processes that need to be incorporated in detail during simulations of real-world 

problems and simplifications of various others processes to reduce computational time and 

resources. For instance, the predominant processes in air pollution dispersion models at 

microscale concern aerodynamic effects (rather than deposition), which are strongly influenced 

by local meteorology, source characteristics and the surrounding geometry. Therefore, the 

implicit approach for the inclusion of GI at microscale may lead to unrealistic predictions of 

air pollutant concentrations. Several other processes that also influencing deposition velocity 

and altering air pollutant concentrations have been reported in the literature but many of them 

are not represented in air pollutant concentration simulation methodologies. The vegetation 

emits more VOCs with rising temperatures and can make appreciable contributions to O3 

formation (Section 6).  

The following key conclusions are drawn: 

• A detailed review of parameterisation for GI modelling to estimate deposition velocity 

permits the conclusion that, for gaseous pollutants, Vd is dominated by Rc which is 

greater than Ra and Rb. Favourable conditions for gaseous pollutants to be absorbed by 

plant leaves depends on a series of parameters increasing LAI, size of stomata opening, 

photosynthesis rate per leaf area, PAR. However, for particulate matter, Vd is highly 

dependent on particle’s diameter, as governed by a U-shaped curve which shows it's 

minimal for particles with sizes between 0.4 and 0.9 µm in aerodynamic diameter. 

• A synthesis of data inputs (listed in Table 2) to evaluate different resistances and 

deposition velocity for their estimation shows that the simplification of the deposition 

scheme may lead to large uncertainties in air pollutant removal estimation.  
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•  Deposition schemes show that Vd should be treated differently for microscale and  

macroscale simulations because the pollutant concentrations are resolved around GI,  

which has the effect of Ra, in microscale models. Generally, the Vd value used in  

dispersion models is measured as an assumed downward flux of pollutant over GI  

(forest area) in the field. However, traffic emissions near roadside GI present a different  

configuration, where sources are located under the GI canopy.   

• Usually, dispersion models (Sections 4 and 5) are not purposefully developed to assess  

the effects of GI on air pollutant concentrations. However, they may still be able to  

capture a number of processes listed in Tables 3 and 4 for GI considerations at the  

different spatial scales. There remains a need for coupled GI-dispersion models that can  

incorporate air pollutant-VOC chemistry, GI pollution tolerance and non-linear  

pollutant deposition under different meteorological conditions.  

• The numerical framework linking GI, air pollution and health outcomes can help to  

estimate the benefits of GI based on a reduction in short- and long-term air pollution  

exposure in terms of mortality, morbidity and monetary values. These benefits are  

usually estimated based on the amounts of air pollutants deposited onto the surfaces of  

GI, and the enhanced dispersion due to surface roughness by GI (leading to dilution of  

pollutants) is largely overlooked.   

This review identified mechanisms of air pollutant removal through the deposition process and  

other relevant key processes (aerodynamic effects, flow alteration and atmospheric dilution) at  

different spatial scales with regards to the consideration of GI in dispersion modelling. The  

review also highlighted a number of research questions that remain unanswered. For example,  

the proportional influences of deposition and dilution in reducing pollutant concentrations over  

large-spaced GI, such as urban parks, grassland and forests is rarely studied. Likewise, the  

effect of filtering capacity, pollution tolerance and temperature sensitivity of different GI types  
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in dispersion models require further research. The effect of wind direction on Vd in microscale  

simulations is not well understood. A very little is known on the modifications required in  

dispersion models for combined GIs such as hedges with trees and, grass with hedges or trees.  

We also recommend that future studies should also develop the methodologies for dispersion  

models that could consider the GI porosity based on the wind speed as well as considering  

green roofs and green walls at different spatial scales.  
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List of Figures  

  

Figure 1. Schematic diagram showing the resistance relationship with Ohm’s law in electrical  

circuits where Ra is aerodynamic Resistance; Rb is quasi-laminar boundary layer Resistance; Rc  

is canopy/surface resistance; Rc1 is atmospheric buoyancy, lower canopy and in-canopy  

resistance; Rc2 is stomatal, mesophyll and cuticular resistance; and Rc3 is canopy soil, ground,  

water, snow or any other surface resistance; adopted from (Fowler, 1981).  
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Figure 2. A schematic of the changes in the formation of vortex (shown by blue lines) in urban  

street canyon during the interaction of the flow with the leeward GI, showing vortex formation  

(a) in street canyon (Width/Height = 1) under perpendicular wind flow (Gromke, 2011) as well  

as cross-section and top view of (b, c) GI free street canyon, (c, d) street canyon with hedges,  

(e, f) street canyon with tree.  
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Figure 3. Framework for linking between GI, air pollution and public health.    
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List of Tables  

Table 1.  Summary of relevant studies considering GI modelling at the microscale (street and  

neighbourhood) and macroscale (city).  

City (modelled 

area)  

Pollutant 

concentration 

measurement 

techniques  

Approach for GI 

consideration 

Author (year) 

Toronto (1216 ha)  Field measurement  UFORE (i-tree) Currie and Bass 

(2008)  

Beijing (30,121 ha) Field measurement UFORE (i-tree) Yang et al.(2004) 

Chicago (60300 ha) Field measurement Nowak method (i-tree) Nowak (1994) 

Sacramento (23600 

ha) 

Field measurement Mcpherson method Mcpherson and 

Simpson (1999) 

Baltimore (21000 

ha) 

CMAQ version 4.7.1 i-tree, CMAQ + WRF Cabaraban et 

al.(2013) 

Leicester (400 ha) OpenFOAM 

software (CFD) 

OpenFOAM software 

(CFD) 

Jeanjean et 

al.(2015) 

Marylebone (72 ha) OpenFOAM 

software (CFD) 

OpenFOAM software 

(CFD) 

Jeanjean et 

al.(2017) 

Antwerp (32 and 64 

ha) 

OpenFOAM 

software (CFD) 

OpenFOAM software 

(CFD) 

Vranckx et 

al.(2015) 

Lisbon (45.50 ha) URVE code (CFD) URVE code (CFD) Amorim et 

al.(2013) 

Aveiro (64 ha) URVE code (CFD) URVE code (CFD) Amorim et 

al.(2013) 

Leicester (400 ha) OpenFOAM 

software (CFD) 

OpenFOAM software 

(CFD) 

Jeanjean et al 

(2016) 

Shanghai (0.18 ha) FLUENT (CFD) FLUENT (CFD) Li et al.(2016) 

Bari (0.645 ha) FLUENT (CFD) FLUENT (CFD) Buccolieri et 

al.(2011) 

Santiago (96720 ha) Field measurement UFORE (i-tree) Escobedo and 

Nowak (2009) 

Shanghai (47100 ha) Field measurement Statistical analysis Yin et al.(2011) 

Florence (10200 ha) Field measurement iTree software Bardelli et al  

(2011) 

Syracuse (6500 ha) Field measurement iTree software Nowak et 

al.(2013) 

Auburn (306 ha) Field measurement iTree software Martin et 

al.(2013) 

West Midland 

(960000 ha) and 

Glasgow (300000) 

FRAME model Statistical analysis McDonald et al. 

(2007) 

Berlin (200 ha) Field measurement Land use regression 

model 

Ghassoun et 

al.(2017) 

Strasbourg (7830 ha) Field measurement iTree software Selmi et al.(2016) 

Chicago (58830 ha) Monitoring stations Nowak method (iTree) Yang et al.(2008) 
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Chapel Hill, NC 

(16ha) 

Field measurement CTAG (CFD) Steffens et 

al.(Steffens et al., 

2012) 

Chapel Hill, NC and 

generic near-road 

environments (16 

ha) 

Field measurement CTAG (CFD) Tong et al.(Tong 

et al., 2016) 

Woodside, CA 

 

Field measurement CTAG (CFD) Deshmukh et al. 

(2018) 

  

Table 2. Summary of parameters required to calculate the dry deposition over GI surfaces.  

Resistance  Meteorological 

parameters 

Topographical 

parameters 

GI parameters Pollutant 

parameters 

Ra  Temperature; density 

of air; Specific heat; 

sensible heat; Friction 

velocity; Wind speed 

and direction  

Terrain data;  

Building geometry  

- Source 

location and 

elevation; 

Source outlet 

velocity; 

Source 

geometry 

Rb Kinematic viscosity; 

Thermal conductivity; 

Air dynamic viscosity; 

Temperature;    

Cunningham factor, 

particle relaxation 

time, thermal 

conductivity; Heat 

capacity per unit 

volume 

Land cover/use 

data; Surface 

roughness 

- Molecular 

diffusivity; 

particle 

diameter  

Rs Air temperature, solar 

radiation; Solar 

elevation angle; 

Diffusion and direct-

beam solar radiation; 

Conductance-reducing 

effects of air 

temperature 

The angle 

between the leaf 

and the sun  

Photosynthetically 

Active Radiation 

(PAR); Leaf water 

potential; vapour 

pressure deficit, 

LAI; Water vapour 

pressure deficit;  

Molecular 

diffusion  

Rm - - Net photosynthesis 

rate per leaf area; 

Type of species, 

Henry law 

constant; 

Absolute 

temperature, 

gas constant 
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Rlu Atmospheric acids; 

Ambient air 

temperature; Relative 

humidity; Seasonal 

conditions,  

- The thickness and 

chemical 

composition of leaf-

surface water-layer; 

LAI;  Pollutant 

concentration over 

leaf; Cuticle surface 

area; Formation, 

growth and fate of 

water films; Type 

of species; Age of 

leaf 

Pollutant 

concentration; 

Rate of 

pollutant 

interaction, 

pollutant 

composition,   

Rdc  

 

Solar radiation; Solar 

elevation angle 

Slope of the local 

terrain 

- - 

Rcl  

 

- - Bark area index; 

Porosity; Areal 

density; Stem area 

Henry law 

constant; 

Absolute 

temperature; 

Gas constant, 

reactivity 

factor for 

gases; Baseline 

lower canopy 

resistance for 

SO2 and O3 

Rac 

 

Friction velocity; 

Wind speed and 

direction 

- Canopy height; 

Leaf area Index 

- 

Rgs and Rsoil Relative humidity; 

Ambient concentration 

of air pollutant and 

solar radiation 

pH value of soil; 

Soil moisture 

content 

- - 

Rb (for 

particles) 

Schmidt number; Air 

kinematic viscosity; 

Friction velocity; Air 

dynamic viscosity; 

Stokes number; 

Density of air; 

Ambient Temperature; 

Relative humidity 

Surface rough; 

Land use cover 

LAI; Height of 

canopy 

Particle’s 

Brownian 

diffusivity; 

Cunningham 

factor; 

Particle’s 

settling 

velocity; 

particle 

relaxation time; 

Particle 

diameter; 

Particle 

density;     

Vs Density of air; 

Gravitational 

acceleration; Air 

kinematic viscosity 

- - Particle 

diameter; 

Particle 

density; 

Cunningham 

factor 
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Table 3. Summary of the consideration of differences processes in various microscale models.  

Microscale 

models 

Consideration of different process 

Absorption  Filtration Aerodynamic 

effect 

GI 

geometry 

Pollutant 

tolerance limit 

Box and wind 

tunnel models 

No Yes Yes Yes No 

Gaussian plume 

models 

Yes No No No No 

Receptor models Yes Yes No No No 

CFD models Yes Yes Yes Yes No 

Hybrid models Yes No Yes Yes No 

  

Table 4. Summary of the consideration of different processes in various macroscale models.  

Processes Macroscale models 

Gaussian 

plume 

models 

Modified 

Gaussian 

models 

Statistical 

models 

Receptor 

models 

CFD 

models  

Hybrid 

models  

Absorption No Yes Yes Yes Yes Yes 

LAI  No No Yes No Yes Yes 

Land cover  No Yes Yes No Yes Yes 

Surface 

roughness  

No Yes No No Yes Yes 

Terrain data No Yes No No Yes Yes 

VOC emissions No No No No No No 

Coupled 

dispersion- 

deposition 

No Yes Yes Yes Yes No 

Background 

Concentration 

variation 

No No No No No Yes 
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Table 5.  Summary of relevant studies that have quantified the linkage between GI, air pollutant  

reduction and health benefits.   

Author (year)  City; Model 

used 

Summary 

Tiwary et al.(2009) London (UK); 

(ADMS-Urban + 

statistical model) 

• PM10 removal has been estimated through different GI 

combinations with two species (sycamore maple 

(Acer pseudoplatanus L.), Douglas fir (Pseudotsuga 

menziesii Franco) and grassland using computational 

model. 

• PM10 reduction varied between 0.03 to 2.33 t ha yr-1 

with different GI combination.  

• The health effects noted were a reduction in 2 

premature deaths per year and 2 respiratory hospital 

admissions per year. 

Powe and Willis 

(2004) 

Britain(UK); 

(Monitoring 

stations+ 

statistical model) 

• The absorption of SO2 and PM10 via forests (more than 

2 ha in area) were estimated based on National Air 

Quality Information and Forest Commission spatial 

distribution data of woodland. 

• The forest can absorb large quality of air pollutants, 

for example, 385,695–596,916 metric tonnes of PM10 

and 7715–11,215 metric tonnes of SO2 per year 

• The above air pollutants reduction would be equal to 

5-7 deaths per year and 4-6 hospital admission per 

year. 

David J. Nowak et 

al.(2013) 

10 U.S. cities; 

(Monitoring 

stations + i-Tree) 

• PM2.5 removal was estimated for 10 U.S. cities with 

existing trees cover using i-Tree model and U.S. EPA 

monitors concentration. 

• Total amount of PM2.5 removal varies from 4.7 to 64.5 

tonnes per year. 

• The equivalent mortality reduction from 0.1 to 7.6 

death per year. 

Nowak et al.(2018) 86 Canada cities; 

(Monitoring 

stations + i-Tree) 

• The change in air pollutants (NO2, O3, PM2.5, SO2, and 

CO) concentration have been estimated through the 

iTree model and health impacts were studied.  

• The total air pollutant removal was 7500 t to 21,100 t 

and average removal rate was 3.72 g/m2/year. 

• The overall health impacts of urban trees are included 

avoidance of 30 human mortality in all cities. 

Hirabayashi and 

Nowak (2016) 

U.S.; 

(Monitoring 

stations + i-Tree) 

• Resultant changes in concentration for the four air 

pollutants (NO2, O3, PM2.5 and SO2) were modelled 

by the iTree model using deciduous and evergreen 

trees with varying LAI and 2010 census data. US 

EPA's BenMAP has been used to link air quality 

improvement to human health improvement was 

estimated. 
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• In urban areas, annual mean air pollutant 

concentration was 15.5 (µgm-3) for NO2, 61.7(µgm-3) 

for O3, 10.0 (µgm-3) for PM2.5 and 4.9 (µgm-3) for SO2. 

Changes in concentration increased as the LAI 

increased but the relation is non-linear.  

• A comprehensive national database of deciduous and 

evergreen trees with varying LAI and its effects on air 

quality and human health in the United States was 

developed 

Nowak et al.(2014) U.S.; 

(Monitoring 

stations + i-Tree) 

• Avoidable health impacts and associated economic 

benefits of four air pollutants (NO2, O3, PM2.5 and 

SO2) removal by trees and forest in the US were 

estimated for 2010. 

• The estimated quantity of air pollutants removal was 

17.4 million tonnes based on hourly pollution data and 

daily total tree cover and LAI though i-Tree model.  

• The existing trees can help in avoiding more than 850 

incidences of human mortality and 670,000 incidences 

of acute respiratory symptoms. 

Rao et al.(2014) Portland; 

(Monitoring 

stations + LUR) 

• LUR have been used to estimate a decrease in NO2 

concentration by an urban tree in Portland. 

• The estimated removal of NO2 was 0.57 ppb for every 

10 ha trees. 

• The annual health benefits are approximately 21,000 

fewer incidences and 7000 fewer days of missed 

school due to asthma exacerbation for 4-12 year-olds; 

54 fewer emergency visits across people of all ages; 

and 46 fewer cases of hospitalization due to 

respiratory problems triggered by NO2 in the elderly. 

• The potential of an urban forest to reduce the air 

pollutant (NO2) and hence provide health benefits are 

approximately 7 million USD due to reduced 

incidence of respiratory problems. 

Bodnaruk et 

al.(2017) 

Baltimore (US); 

(Monitoring 

station + i-Tree) 

• The monetary benefits of increasing tree cover from 

24% to 40% have been estimated under different 

spatial GI distribution. 

• An additional annual 173-ton air pollutants removal 

was predicted at maximum potential tree cover of 

44.4%. 

• The monetary benefits of these air pollutant removal 

on human health were estimated equal to 6.3 million 

USD. 

City of Woodland 

(2018) 

Woodland 

(California); 

(Remote sensing 

+ i-Tree) 

• The total air pollutants removal and monetary benefits 

of existing 14.5% urban tree canopy have been 

assessed using high-resolution aerial imagery and 

remote sensing software for 2010. The U.S. EPA’s 

BenMAP Model was used to estimate monetary 

values resulting from changes in air pollutants 

concentration. 
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• The analysis estimated that Woodland’s tree canopy 

annually removing 40 tons of air pollutants (includes 

CO, NO2, O3, SO2 and PM10) and save 15.3 million 

gallons of stormwater. 

•  The monetary values of health benefits resulting from 

air pollutants removal have been estimated as equal to 

1.8 million USD. 

City of Sacramento 

(2018) 

Sacramento 

(California); 

(Remote sensing 

+ i-Tree) 

• The U.S. EPA’s BenMAP Model was used to estimate 

monetary values resulting from air pollutants removal.  

These removals have been estimated using high-

resolution aerial imagery and remote sensing software 

for existing 19.1 % urban tree canopy in 2010. 

• The analysis estimated that Sacramento’s tree canopy 

annually removing 392.4 tons of air pollutants 

(includes CO, NO2, O3, SO2 and PM10) and save 58 

million gallons of stormwater. 

• The monetary values of health benefits resulting from 

air pollutants removal have been estimated as equal to 

18.8 million USD. 

  

  




