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Abstract
We prove that the minimal cardinality of an invariable generating set for a finite
group G can be bounded in terms of the rank of G and we discuss some related
questions.
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1 Introduction

Following [9] we say that a subset S of a group G invariably generates G if

G = 〈sg(s) | s ∈ S〉

for every choice of g(s) ∈ G, s ∈ S. Any finite group G contains an invariable
generating set (consider a set of representatives of each of the conjugacy
classes).

Several papers deal with the question of bounding the minimal cardinal-
ity dI(G) of an invariable generating set for a finite group G together with
an analysis of the probability that d independently and uniformly randomly
chosen elements of G invariably generate G with good probability (see for
example [5],[6],[7],[9],[10],[14],[15],[16],[18],[20],[21],[22]).

Clearly dI(G) is not less than the minimal cardinality d(G) of a generating
set of the finite group G. On the other hand, it follows from Proposition 2.5
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of [15] and Theorem 1 of [7] that the difference dI(G) − d(G) can be ar-
bitrarily large. Many results in the literature provide bounds for d(G) in
relation with different structural properties of G. In this paper we review
some of these results and we discuss to which extent we can expect compa-
rable results on the smallest cardinality dI(G) of an invariable generating
set. Moreover, we provide a bound to dI(G) in the case where G has finite
rank.

Theorem 1.1 LetG be a finite group of rank d. Then dI(G) 6 2d2+(13/4)d− 2.

We don’t know how sharp the previous bound is and it particular we
leave the question open whether a linear bound of dI(G) in terms of the
rank rk(G) of G can be proved. In any case the difference dI(G) − rk(G) can
be arbitrarily large: for any d ∈N there exists a finite supersoluble group G
with rk(G) = d and dI(G) − rk(G) = d− 1 (Proposition 3.6).

The invariants d(G), dI(G), rk(G) can be defined also for profinite groups.
In this case generation and invariable generation are interpreted topolog-
ically, and these numbers can also be infinite. Theorem 1.1 immediately
implies the following result.

Corollary 1.2 If a profinite groupG has finite rank d, then G is finitely invariably
generated and dI(G) 6 2d2 + (13/4)d− 2.

In 1989, Guralnick (see [13]) and Lucchini (see [17]) independently proved
that if all the Sylow subgroups of a finite group G can be generated by d
elements, then the group G itself can be generated by d+ 1 elements. We
will show that there exists a supersoluble group G whose Sylow subgroups
are d-generated but dI(G) = 2d− 1 (Proposition 3.6). But the question of
a bound on dI(G) as a function only of d, when every Sylow subgroup
is d-generated, is still open in the general case.

Families of groups generated by 2 elements but requiring an increasing
large number of elements to be invariably generated have been constructed
in [15] as a direct product of alternating groups. In [18], an analogous fam-
ily of soluble groups has been constructed as a wreath product of cyclic
groups of prime order, for different primes. In the language of profinite
groups, these results allow to construct examples of profinite groups that
can be generated by 2 elements but are not finitely invariably generated.
The examples of 2-generated prosoluble groups that are not finitely invari-
ably generated given in [7] and [18] have the following properties: they
are not soluble, their rank is infinite and their order (as a supernatural
number) is divisible by infinitely many primes. The first two properties
are unavoidable, respectively by Theorem 2 of [7] and Corollary 1.2, but
it is not clear whether it could be possible to construct 2-generated prosol-
uble groups that are not finitely invariably generated and whose order is
divisible by only finitely many primes. By Theorem 2 of [7], for every pos-
itive integer l, there exists a finite soluble group G with derived length l
and dI(G) > l. We suspect that, for every l, there exists also a
finite {2, 3}-group G with derived length l and dI(G) > l (this would implies
that the free pro-{2, 3} group of rank 2 is not finitely invariably generated).
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As a small contribute to the problem, in the last section of the paper we
provide the construction of a 2-generated group G or order 214 · 384, derived
length 4, and dI(G) > 4.

2 Some results on generation and invariable
generation

In the sequel, dxe denotes the smallest integer greater or equal to x and d(G)
the minimal size of a generating set of a group G. A group L is primitive
monolithic if L has a unique minimal normal subgroup A, and trivial Frattini
subgroup. We define the crown-based power of L of size t to be

Lt = {(l1, . . . , lt) ∈ Lt | l1A = · · · = ltA} = At diag(Lt).

In [2] it was proved that, given a finite group G, there exist a primitive
monolithic group L and a positive integer t such the crown-based power Lt
of size t is an epimorphic image of G and d(G) = d(Lt) > d(L/ soc(L)).

The minimal number of generators of a crown-based power Lt in the case
where A is abelian can be computed with the following formula.

Theorem 2.1 (see Proposition 6 of [3]) Let L be a primitive monolithic group
with abelian socle A, and let Lt be the crown-based power of L of size t. Define

rL(A) = dimEndL(A)A, sL(A) = dimEndL(A)H
1(L/A,A)

and let θ = 0 if A is a trivial L-module, and θ = 1 otherwise. Then

d(Lt) = max
(
d(L/A), θ+

⌈
t+ sL(A)

rL(A)

⌉)
.

In [4, Proposition 9] it is shown that for every non Frattini chief factor A
of a finite group G there exist an integer tA and a primitive monolithic
group LA such that the crown based power (LA)tA , but not (LA)tA+1, is
an homomorphic image of G. Whenever A is abelian, tA is precisely the
number δG(A) of the chief factors G-isomorphic to A and complemented in
an arbitrary chief series of G. Moreover, when G is soluble, sL(A) = 0 by the
following unpublished result by Gaschütz (see Lemma 1 of [23]).

Lemma 2.2 Let H be a finite soluble group and let V be a faithful irreduci-
ble G-module. Then H1(H,V) = 0.

Therefore, if G is a finite soluble group, by Theorem 1.4 of [2] and Theo-
rem 2.1 we recover the following formula due to Gaschütz (see [12]).
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Proposition 2.3 LetG be a finite soluble group. For every irreducibleG-module V
define

rG(V) = dimEndG(V) V ,

set θG(V) = 0 if V is a trivial G-module, and θG(V) = 1 otherwise, and let δG(V)
be the number of the chief factors G-isomorphic to V and complemented in an
arbitrary chief series of G. Then

d(G) = max
V

(
θG(V) +

⌈
δG(V)

rG(V)

⌉)
where V ranges over the set of non G-isomorphic complemented chief factors of G.

When G is an arbitrary finite group, from Theorem 2.1 we deduce the
following bound for d(G).

Corollary 2.4 Let G be a finite group. Then

d(G) > max
V

(
θG(V) +

⌈
δG(V)

rG(V)

⌉)
where V ranges over the set of non G-isomorphic complemented abelian chief factors
ofG, δG(V) is the number of the complemented chief factors which are G-isomorphic
to V in an arbitrary chief series of G and rG(V) = dimEndG(V) V .

Proof — Let V be a complemented abelian chief factors of G. Then by Pro-
position 9 of [4] there exists a primitive monolithic group L, with

soc(L) ' V ,

such that Lt is an homomorphic image of G and t = δG(V). By Theorem 2.1
we have that

d(G) > d(Lt) > θ+

⌈
t+ sL(A)

rL(A)

⌉
> θ+

⌈
t

rL(A)

⌉
and the result follows. ut

Let us now consider invariable generation and denote by dI(G) the mini-
mal size of an invariable generating set of a group G. In this contest, even
the more natural relations between sets of generators fail. For example no-
tice that Sym(4) is invariably generated by the two elements a = (1, 2, 3, 4)
and b = (1, 3, 2), but is not invariably generated by the set {ab,b},
since ab = (3, 4) is conjugate to (1, 3) and 〈(1, 3),b〉 6= Sym(4).

Clearly, if N is a normal subgroup of G, then dI(G/N) 6 dI(G). When N
is a normal abelian subgroup of G, dG(N) denotes the minimal number
of generators of N as a G-module. The Frattini subgroup of a group G is
denoted by Frat(G). Recall that a subset of G generates G if and only if
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its image in G/ Frat(G) generates G/ Frat(G). We collect in the following
lemma some basic results on invariable generation.

Lemma 2.5 Let N be a normal subgroup of a group G.

(1) dI(G) 6 dI(G/N) + dI(N).

(2) If N is abelian, then dI(G) 6 dI(G/N) + dG(N).

(3) IfN is a minimal normal subgroup, then dI(G) 6 dI(G/N)+ c, where c = 1
if N is abelian and c = 2 if N is non-abelian.

(4) If N 6 Frat(G), then dI(G) = dI(G/N).

Proof — Parts (2.5) and (2.5) follow from the proofs of Lemma 2.8 and Lem-
ma 2.10 of [16], respectively. Part (2.5) is Theorem 3.1 in [15]. Part (2.5)
follows immediately from the above mentioned property of Frat(G). ut

The minimal number dG(N) of generators of a G-module is given by the
following lemma.

Lemma 2.6 (see Lemma 11 of [7]) Let G be a finite group. Assume that N is a
direct product

N = An11 × . . .×A
nr
r

where, for each i, Ai is a finite elementary abelian pi-group for a prime num-
ber pi, Ai is an irreducible Fpi G-module and Ai is not G-isomorphic to Aj
for i 6= j. Then the minimal number of elements needed to generate N as G-module
is

dG(N) = max
i∈{1,...,r}

(⌈
ni

rG(Ai)

⌉)
,

where dxe denotes the smallest integer greater or equal to x.

The main main tool in the study of d(G) is the following result, known
as Gaschütz’s Lemma.

Lemma 2.7 (see [11]) LetN be a normal subgroup of a finite groupG and suppose

〈g1N, . . . , gdN〉 = G/N.

If d > d(G), then we can find n1, . . . ,nd ∈ N such that 〈g1n1, . . . , gdnd〉 = G.

Unfortunately the analogous of Gaschütz’s Lemma for invariable genera-
tion is false: for example Sym(3)/Alt(3) is invariably generated
by (1, 2)Alt(3) and (1, 3)Alt(3), but there is no pair of invariable genera-
tors x,y of Sym(3) with

{x,y}∩Alt(3) = ∅.

The only available criterion in order to decide whether an invariable gener-
ating set of a quotient group G/N can be lifted to G is given in Proposition 8

of [5] and holds only in the case where N is abelian. To formulate this result,
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we need to recall some notation from [5]. Let H be a finite group acting
faithfully and irreducibly on an elementary abelian finite p-group V . For a
positive integer u we consider the semidirect product Vu oH: unless other-
wise stated, we assume that the action of H is diagonal on Vu, that is, H acts
in the same way on each of the u direct factors.

Proposition 2.8 (see Proposition 8 of [5]) Suppose that h1, . . . ,hd invariably
generate H and that H1(H,V) = 0. Let w1, . . . ,wd ∈ Vu with

wi = (wi,1, . . . ,wi,u).

For j ∈ {1, . . . ,u}, consider the vectors

rj =
(
πj(w1), . . . ,πj(wd)

)
= (w1,j, . . . ,wd,j) ∈ Vd.

Then h1w1,h2w2, . . . ,hdwd invariably generate Vu oH if and only if the vec-
tors r1, . . . , ru are linearly independent modulo

W = {(u1, . . . ,ud) ∈ Vd | ui ∈ [hi,V], i = 1, . . . ,d}.

In particular, there exist w1, . . . ,wd ∈ Vu such that h1w1,h2w2, . . . ,hdwd
invariably generate Vu oH if and only if

u 6
∑
i

dimEndH(V) CV (hi).

By Gaschütz’s Lemma, if the set {g1, . . . , gd(G/N)} generates G modulo N,
then there exist d(G) elements ni in N such that

〈g1n1, . . . , gd(G/N)nd(G/N),nd(G/N)+1, . . . ,nd(G)〉 = G.

So there always exists a generating set with d(G) −d(G/N) elements belong-
ing to N. Also the analogous of this sentence for invariable generation is
false, as it is indicated by the following result.

Lemma 2.9 There exist a finite group G and a normal subgroup N of G such
that there is no invariable generating set of G of size dI(G) with dI(G) −dI(G/N)
elements in N.

Proof — Let H = 〈a,b〉 ' C2 ×C2 and let V1 = 〈γ〉 ' C3, V2 = 〈δ〉 ' C3.
Consider the semidirect product

G = (V1 × V2)oH ' Sym(3)× Sym(3)

with γa = γ−1, γb = γ, δa = δ, δb = δ−1. Assume that X = {x1, x2} is a
generating set for H. Clearly xi 6= 1 and, since H is abelian, X is also an
invariable generating set. By Proposition 2.8 and Lemma 2.2, there exist
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elements w1,w2 ∈ V1 ×V2 such that 〈x1w1, x2w2〉 invariably generates G if
and only if

1 6 dimCV1(x1) + dimCV1(x2) and 1 6 dimCV2(x1) + dimCV2(x2)

i.e. if and only if

X∩CH(V1) 6= ∅ and X∩CH(V2) 6= ∅.

Since CH(V1) = 〈b〉 and CH(V2) = 〈a〉 it must be X = {a,b}. It follows
that any pair of invariable generators of G is of the form (aw1,bw2), for
suitable w1,w2 ∈ V1 × V2, and dI(G) = 2.

Now let
N = (V1 × V2)o 〈ab〉.

We have dI(G) = 2 and dI(G/N) = 1, however a pair of invariable generators
does not contain elements of N. ut

3 Invariable generation of groups of finite rank

Theorem 3.1 in [15] (see Lemma 2.5) states that if a finite group G has a chief
series with a abelian factors and b non-abelian factors then dI(G) 6 a+ 2b.
If G is soluble, Proposition 12 in [7] gives the bound

dI(G) 6 l(d(G) − 1) + 1,

where l is the derived length of G. Whenever we can control the nilpotent
factors on a normal series of a, not necessarily soluble, group G, we can also
use the following bound.

Proposition 3.1 Let G be a finite d-generated group having a normal series
with l nilpotent factors, a abelian chief factors and b non-abelian chief factors.
Then dI(G) 6 l(d− 1) + a+ 2b+ 1.

Proof — The proof is by induction on |G|, the case |G| = 1 being trivial.
Suppose |G| > 1 and let {Ni}i>0 be a normal series of G with l nilpotent

factors, a abelian chief factors and b non-abelian chief factors.
If Frat(G) 6= 1, then we consider the series

{Ni Frat(G)/ Frat(G)}i>0

of the factor group G/ Frat(G): this series has at most l nilpotent factors, a
abelian chief factors and b non-abelian chief factors. By induction and Lem-
ma 2.5, dI(G) = dI(G/ Frat(G)) 6 l(d− 1) + a+ 2b+ 1.

So we assume Frat(G) = 1 and let N = N1EG be the last non-trivial term
of the normal series {Ni}i>0.
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If N is a chief factor, then by Lemma 2.5 we get that dI(G) 6 dI(G/N) + 1
if N is abelian, or dI(G) 6 dI(G/N) + 2 if N is non-abelian, and then we
apply induction to G/N to obtain the desired bound.

Assume now that N is nilpotent. As Frat(N) 6 Frat(G) = 1, N is abelian.
Actually, N is a direct product of complemented minimal normal subgroups
of G and we can write N = A×B where

A = An11 × . . .×A
nr
r , B = A

nr+1
r+1 × . . .×A

ns
s

where each Ai is an elementary abelian pi-group, for a prime number pi, Ai
is an irreducible Fpi G-module and Ai is not G-isomorphic to Aj for i 6= j;
in particular we assume that Ai is a trivial G-module if and only if i > r+ 1.

Note thatG/N has a normal series (namely {Ni/N}i>1) with l−1 nilpotent
factors, a abelian chief factors and b non-abelian chief factors. If l = 1, then
we apply Theorem 3.1 in [15] (see Lemma 2.5) to get that dI(G/N) 6 a+ 2b.
By Lemma 2.6

dG(N) = max
i∈{1,...,s}

(⌈
ni

rG(Ai)

⌉)
. (3.1)

On the other hand, by Proposition 2.4,

d > d(G) > max
V

(
θG(V) +

⌈
δG(V)

rG(V)

⌉)
(3.2)

where V ranges over the set of non G-isomorphic complemented chief factors
of G. Since ni 6 δG(Ai), by (3.1) and (3.2) we deduce that

d > max
i∈{1,...,s}

(⌈
ni

rG(Ai)

⌉)
= dG(N)

hence dG(N) 6 d. Then by Lemma 2.5 we obtain

dI(G) 6 dI(G/N) + dG(N) 6 a+ 2b+ d (3.3)

which is the desired bound when l = 1.
Assume now that l > 1. Since B 'G N/A is a product of trivial G-modules

and it is complemented since Frat(G) = 1, we have

G/A ' G/N×N/A.

Since l > 1, the group G/A has again a normal series with l− 1 nilpotent
factors, a abelian chief factors and b non-abelian chief factors, namely,

1 6
N2
N
6 . . . 6

Ni
N
6
Ni+1
N
× N
A
6
Ni+2
N
× N
A
6 . . . 6

G

N
× N
A

where i is the smallest positive integer such thatNi+1/Ni is nilpotent. There-
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fore, by induction,

dI(G/A) 6 (l− 1)(d− 1) + a+ 2b+ 1. (3.4)

By Lemma 2.6

dG(A) = max
i∈{1,...,r}

(⌈
ni

rG(Ai)

⌉)
. (3.5)

Note that by the definition of A, we have θG(Ai) = 1 for every i 6 r. Sin-
ce ni 6 δG(Ai), by (3.5) and (3.2) we deduce that

d > max
i∈{1,...,r}

(
1+

⌈
ni

rG(Ai)

⌉)
= 1+ dG(A)

hence dG(A) 6 d− 1. Then, by Lemma 2.5 and (3.4), we obtain

dI(G) 6 dI(G/A) + dG(A) 6 (l− 1)(d− 1) + a+ 2b+ 1+ (d− 1)

= l(d− 1) + a+ 2b+ 1

which gives the desired bound. ut

The next two results will be needed in the proof of Theorem 1.1.

Theorem 3.2 (see Theorem 1 of [6]) Let G be a subgroup of Sym(n); then
either G = Sym(3) and dI(G) = 2 or dI(G) 6 bn/2c.

Theorem 3.3 (see Theorem 6.2A of [8]) LetG be a soluble subgroup of GL(n, F).
Then the derived length of G is at most 2n.

Now we are ready to prove Theorem 1.1.

Proof of Theorem 1.1 — Since dI(G) = dI(G/ Frat(G)), without loss of
generality, we can assume Frat(G) = 1. In this case, the Fitting subgroup F
of G is a direct product of abelian minimal normal subgroups of G, say

F = N1 × . . .×Nt

where each Ni is an elementary abelian pi-group of rank at most d.
Let R = R(G) be largest soluble normal subgroup of G, and consider

its homomorphic images Hi = R/CR(Ni), for i = 1, . . . , t. Every Hi is
isomorphic to a soluble linear group acting on Ni, where Ni is a vector
space of dimension at most d, and thus, by Theorem 3.3, the derived length
of each Hi is bounded by 2d. Therefore,

R/

t⋂
i=1

CR(Ni)
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has derived length at most 2d. Since

C =

t⋂
i=1

CR(Ni)

is a soluble normal subgroup of CG(F), we have that C 6 F (see e.g. [1], 31.9)
hence

dl(R/F) 6 2d,

where dl(R/F) denoted the derived length of R/F.
Let now T be a normal subgroup of G such that T/R is the socle of G/R.

Since R is the largest soluble normal subgroup of G, T/R is a direct product
of non-abelian minimal normal subgroups of G/R, say

T/R =M1 × . . .×Mr

where Mi ' Srii for some simple non-abelian group Si and some integer ri.
Since a Sylow 2-subgroup Pi of a non-abelian simple group Si is not cyclic,
the number of generators of

∏r
i=1 P

ri
i is at least 2(

∑r
i=1 ri), hence

r∑
i=1

ri 6 d/2.

Now, for each 1 ∈ {1, . . . r},

(G/R)/CG/R(Mi)

is isomorphic to a subgroup of

Ki = Aut(Si) o Sym(ri),

and
r⋂
i=1

CG/R(Mi) 6 T/R

(see e.g. [1], 31.13), hence

G/T 6
r∏
i=1

Ki/T 6
∏
i

Out(Si) o Sym(ri).

Call G = G/T and let L be a subgroup of G containing T and such that

L/T = L = G∩
r∏
i=1

Out(Si)ri .
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As dl(Out(Si)) 6 3, we have that L is soluble of derived length at most 3.
Finally, G/L is isomorphic to a subgroup of

r∏
i=1

Sym(ri)

and hence it is a permutation group of degree

r∑
i=1

ri 6 d/2.

By Theorem 3.2 a permutation group of degree m can be invariably gener-
ated by dm/2e elements, hence

dI(G/L) 6 dI(G/L) 6 dd/4e.

Summing up, we have found a normal series in G

1 6 F 6 R 6 T 6 L 6 G

such that F is nilpotent, R/F is soluble with dl(R/F) 6 2d, T/R has a series
of at most bd/2c non-abelian chief factors, L/T is soluble with dl(L/T) 6 3,
and dI(G/L) 6 d/4. In particular, L has a normal series with at
most 1+(2d+3) nilpotent factors and bd/2c non-abelian chief factors. Hence,
by Proposition 3.1 it follows that

dI(L) 6 (2d+ 4)(d− 1) + 2bd/2c+ 1 6 2d2 + 3d− 3.

Since dI(G) 6 dI(G/L) + dI(L) (see e.g. Lemma 2 of [6]), we conclude that

dI(G) 6 dd/4e+ 2d2 + 3d− 3 6 2d2 +
13

4
d− 2,

as required. ut

In 1989, R. Guralnick [13] and Lucchini [17] independently proved that if
all the Sylow subgroups of a finite group G can be generated by d elements,
then the group G itself can be generated by d+ 1 elements. So a natural
question is the following:

Question 3.4 If all the Sylow subgroups of a finite group G can be generated by d
elements, is it possible to bound dI(G) as a function of d?

The following result shows that we can bound dI(G) as a function of d
and the number of the distinct prime divisors of |G|.
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Proposition 3.5 Let G be a finite group and assume that every Sylow subgroup
of G can be generated by d elements. If n is the number of the distinct prime divisor
of |G|, then dI(G) 6 (n+ 1)d. In particular, if G is soluble, then dI(G) 6 nd.

Proof — Fix a chief series of G and denote by ap the number of com-
plemented chief factors of order a power of p and by b the number of non-
abelian chief factors. By Lemma 4 of [19], we have that ap 6 d
and a2 + b 6 d. By Lemma 2.5 we deduce that

dI(G) 6
∑
p6=2

ap + a2 + 2b 6 (n− 1)d+ 2d = (n+ 1)d.

If G is soluble, that is b = 0, then by Lemma 2.5 we have that

dI(G) 6
∑
p

ap 6 nd,

completing the proof of the statement. ut

Question 3.4 has a positive answer in the particular case of finite super-
soluble groups. Indeed if G is supersoluble, then, by Theorem 3 of [7],

dI(G) 6 2d(G) − 1.

If every Sylow subgroup of G is d-generated, then by the theorem of Gural-
nick and Lucchini, d(G) 6 d+ 1, so we conclude dI(G) 6 2d+ 1. However
the next result shows that even in the case of supersoluble groups, we cannot
have dI(G) 6 d+ 1.

Proposition 3.6 For every d ∈N there exists a finite supersoluble group G such
that the rank of G is d and dI(G) = 2d− 1.

Proof — Let K = Cd2 . There are α = 2d − 1 different epimorphisms

σ1, . . . ,σα

from K to C2 (σi :K→ C2 is uniquely determined byMi=kerσi, a (d− 1)-di-
mensional subspace of K). Assume that p1, . . . ,pα are different odd prime
numbers. For each i, consider the FpiK-module Vi defined as follows:

Vi ' Cpi

and vki = vi if k ∈Mi, vki = v2i otherwise. Let Wi = Vd−1i and consider

G =

 ∏
16i6α

Wi

oK.
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The group G is supersoluble and it is easy to see that every subgroup
of G is d-generated. Now assume that g1, . . . , gr invariably generate G,
where r = dI(G). We write

gi = (wi1, . . . ,wiα)ki

with ki ∈ K and wij ∈ Wj. In particular k1, . . . , kr generate K and, up to
reordering the elements g1, . . . , gr, we can assume that the first d-elements

k1, . . . , kd

are a basis for K. Let

M = 〈k−11 k2, . . . , k−1d−1kd〉.

It can be easily checked that M is a maximal subgroup of K, so M =Mj for
some j ∈ {1, . . . ,α}. Moreover ki /∈Mj for every i ∈ {1, . . . ,d}, in particular

CVj(ki) = 0

for every i ∈ {1, . . . ,d}. On the other hand w1jk1, . . . ,wrjkr invariably gen-
erate G, so, by Corollary 7 of [7],

d− 1 6
∑
16i6r

dimFpj
CVj(ki) =

∑
d+16i6r

dimFpj
CVj(ki) 6 r− d.

Hence dI(G) = r > 2d− 1. On the other hand, it follows from Theorem 3

of [7] that a supersoluble d-generated finite group is invariably generated
by 2d− 1 elements. Therefore dI(G) = 2d− 1. ut

4 An example

Families of groups generated by 2 elements but requiring an increasing
large number of elements to be invariably generated have been constructed
in [15] and in [18], actually as a direct product of alternating groups and as
a wreath product of cyclic groups, respectively. In both cases, it is necessary
to increase the number of the primes dividing |G| to make dI(G) bigger. So
another natural question arises.

Question 4.1 Is it possible to bound dI(G) only as a function of d(G) and of the
primes, or the number of primes, dividing |G|?

In this section we will build a 2 generated group, whose order is divided
by only two primes, such that 3 elements are not sufficient to invariably
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generate G. The only intent of this example is to show how complicated is
to control the number of invariable generators with the only aid of Proposi-
tion 2.8.

We start with H1 = C2 ×C2, the direct product of two copies of a cyclic
group of order 2. This group has precisely 3 homomorphic images which
are isomorphic to C2, hence we can define 3 different actions of H1 on C3,
the cyclic group of order 3. With respect to these 3 actions, we define the
semidirect product

G1 = C33 oH1.

Actually, G1 is the group constructed in Proposition 14 of [7] for d = 2, so

d(G1) = 2 and dI(G1) = 3.

We can identify G1 with the subgroup of

Sym(3)× Sym(3)× Sym(3) 6 Sym(9)

consisting of even permutations. Note that G1 is a subdirect product
of Sym(3)3 and there are three different epimorphisms

πi : G1 → Sym(3),

for i = 1, 2, 3, obtained by factoring out

G1 ∩ (Sym(3)× Sym(3)× 1), G1 ∩ (1× Sym(3)× Sym(3))

and
G1 ∩ (Sym(3)× 1× Sym(3))

respectively.
Let g1, g2, g3 be invariable generators of G1 and assume that

gi = (σi1,σi2,σi3)

for i ∈ {1, 2, 3}. Since πi(g1),πi(g2),πi(g3) invariably generate Sym(3), for
every i, each column of the following matrix (whose rows are the compo-
nents of the gi’s) (

σ11 σ12 σ13
σ21 σ22 σ23
σ31 σ32 σ33

)
must contain at least one element of order 2 (that is, an odd permutation)
and one element of order 3 (that is, an even permutation). On the other
hand, each row of the matrix corresponds to some gi, which is an even
permutation, so in at least one column we have two odd permutations. We
may assume that the first column contains two odd permutations. Moreover,
we can replace any invariable generator with one of its conjugates, so we
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may assume that

π1(g1) = σ11 = (1, 2), π1(g2) = σ21 = (1, 2), π1(g3) = σ31 = (1, 2, 3).

The group S3 acts naturally on the module

I = {(a1,a2,a3) ∈ F2
3 | a1 + a2 + a3 = 0}

by permuting the indices, so that I is an absolutely irreducible Sym(3)-mo-
dule. For each i = 1, 2, 3, the epimorphism πi : G→ Sym(3) makes I into an
absolutely irreducible G-module Ii and the three modules I1, I2, I3 are non-
isomorphic to each other, because they have different centralizers. Consider
the group

H2 = (I21 × I
2
2 × I

2
3)oG1

where the action on I2i is diagonal. Since δH2(Ii) = 2, by Proposition 2.3 the
group H2 is again 2-generated. We will call

π̃i : H2 → I2 o Sym(3)

the projection induced by πi : G1 → Sym(3).
Assume that g̃1, g̃2, g̃3 are invariable generators of H2 that projects

into g1, g2, g3. Then their images under the first projection π̃1

yi = π̃1(g̃i),

invariably generate I2 o Sym(3). Moreover, y1,y2,y3 are lifts of the genera-
tors σi1 = π1(gi), i = 1, 2, 3, to

π̃1(H2) = I
2 o Sym(3).

We now apply Proposition 2.8 to obtain some information on y1,y2,y3.
Let us fix the vectors

v1 = (1, 1, 0) and v2 = (0, 1, 1)

as a basis of I over F2. Let Wi = Im(σi1 − 1). Then

W1 =W2 = 〈v1〉, W3 = 〈v1, v1 + v2〉 = I.

Since each yi is a lift of σi1 to I2 o Sym(3), we can write

y1 = (12)(a11v1 + a12v2,b11v1 + b12v2),

y2 = (12)(a21v1 + a22v2,b21v1 + b22v2),

y3 = (123)(a31v1 + a32v2,b31v1 + b32v2),
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for some ai,j,bi,j ∈ F2. Consider the matrix whose first rows form a basis
of

W =W1 ⊕W2 ⊕W3
and the last two rows are the vectors r1, r2 defined in Proposition 2.8:

A =


1 0 0 0 0 0

0 0 1 0 0 0

0 0 0 0 1 0

0 0 0 0 1 1
a11 a12 a21 a22 a31 a32
b11 b12 b21 b22 b31 b32

 .

Since y1,y2,y3 invariably generate I2 o Sym(3), by Proposition 2.8 the ma-
trix A is invertible, that is, the submatrix

A ′ =
(a12 a22
b12 b22

)
is invertible. Consider the three epimorphisms

ϕi : I
2 o Sym(3)→ Io Sym(3)

obtained by factoring out the first copy of I, the second copy of I and the
diagonal in I2, respectively. The condition on A ′ implies that either one of
the rows of A ′ is equal to (1, 1) or a12 + b12 = a22 + b22 = 1. Therefore for
at least one j ∈ {1, 2, 3} we have that

ϕj(y1) = (1, 2)(α1v1 + v2)
ϕj(y2) = (1, 2)(α2v1 + v2).

(4.1)

Note that
J = F33

is an absolutely irreducible Io Sym(3)-module, with the action defined by:

(b1,b2,b3)(a1,a2,a3)σ = (b
aσ(1)
σ(1)

,b
aσ(2)
σ(2)

,b
aσ(3)
σ(3)

),

where baii = −bi if ai 6= 1 and baii = bi otherwise.

Combining the three maps ϕi with the three projections π̃j of H2 to

I2 o Sym(3),

we get 9 epimorphisms ϕi,j = ϕi ◦ π̃j from H2 onto Io Sym(3), having differ-
ent kernels. These epimorphisms produce 9 non-isomorphic H2-modules Ji,
for i = 1, . . . , 9. Now we take each module with multiplicity 3 and we
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consider the group

G2 =

 ∏
16i69

J3i

oH2.

By Proposition 2.3, as δH2(Ji) = rH2(Ji), we deduce that G2 is still 2-ge-
nerated.

We want to prove that g̃1, g̃2, g̃3 cannot be lifted to three invariable gener-
ators of G2.

We will consider in particular the projection π = ϕ1,j, where j is defined
in such a way that (4.1) holds, hence

π(g̃i) = (1, 2)(αiv1 + v2)

for both i = 1, 2.
Assume by contradiction that g̃1, g̃2, g̃3 can be lifted to invariable gen-

erators of G2. Then in particular the elements π(g̃1),π(g̃2),π(g̃3) can be
lifted to invariable generators of J3oH2, so by Proposition 2.8 the following
relation holds:

dimCJ(π(g̃1)) + dimCJ(π(g̃2)) + dimCJ(π(g̃3)) > 3. (4.2)

Let
π(g̃3) = (1, 2, 3)(αv1 +βv2) = (1, 2, 3)(α,α+β,β)

and take (z1, z2, z3) ∈ J. Then

(z1, z2, z3) = (z1, z2, z3)π(g̃3) = ((−1)αz3, (−1)α+βz1, (−1)βz2)

if and only if

z2 = (−1)α+βz1 and z3 = (−1)βz2 = (−1)αz1;

in particular we always have dimCJ(π(g̃3)) = 1. Now, π(g̃i), for i = 1, 2, is
of the form (1, 2)(αv1 + v2) = (1, 2)(α,α+ 1, 1). We note that if

(z1, z2, z3) = (z1, z2, z3)(1,2)(αv1+v2) = ((−1)αz2, (−1)α+1z1,−z3)

then

−z3 = z3, z2 = (−1)αz1, z1 = (−1)α+1z2 = (−1)α+1(−1)αz1 = −z1,

hence (z1, z2, z3) = (0, 0, 0). Therefore dimCJ(π(g̃1)) = dimCJ(π(g̃2)) = 0,
so (4.2) cannot be satisfied, giving the desired contradiction. We conclude
that dI(G2) > 4.
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