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Abstract: The global connected cars market is growing rapidly. Novel services will be offered to
vehicles, many of them requiring low-latency and high-reliability networking solutions. The Cloud
Radio Access Network (C-RAN) paradigm, thanks to the centralization and virtualization of
baseband functions, offers numerous advantages in terms of costs and mobile radio performance.
C-RAN can be deployed in conjunction with a Multi-access Edge Computing (MEC) infrastructure,
bringing services close to vehicles supporting time-critical applications. However, a massive
deployment of computational resources at the edge may be costly, especially when reliability
requirements demand deployment of redundant resources. In this context, cost optimization based
on integer linear programming may result in being too complex when the number of involved nodes
is more than a few tens. This paper proposes a scalable approach for C-RAN and MEC computational
resource deployment with protection against single-edge node failure. A two-step hybrid model is
proposed to alleviate the computational complexity of the integer programming model when edge
computing resources are located in physical nodes. Results show the effectiveness of the proposed
hybrid strategy in finding optimal or near-optimal solutions with different network sizes and with
affordable computational effort.
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1. Introduction

Connected vehicles can provide a large set of services for smarter and safer mobility. As an
example, a problem highly felt worldwide is road safety [1] where vehicular networks can help in
providing prompt information to drivers and alerting possible dangerous situations by allowing
vehicles to communicate with each other. It is possible to distinguish between short-range direct
communications and long-range network communications [2,3]. Different communications need
different network requirements, such as low latency, high computational capacity, and high reliability,
depending on the application [4].

To provide the aforementioned services, 5G networks can be used to carry data to/from vehicles
and road infrastructure. Centralized cloud-based Radio Access Networks (C-RANs) represent an
effective solution to design high-capacity radio access in 4G and 5G networks and to support
challenging use cases [5], such as the ones of vehicular networks. C-RAN introduces unprecedented
flexibility by efficient application of Network Function Virtualization (NFV) [6] jointly with Software
Defined Networking (SDN) [5,7,8]. SDN can, in fact, provide suitable control and management
support to optimally locate virtualized network functionalities to intelligent nodes in the cost and
power efficiency perspectives. This is of particular importance when considering highly dynamic
and performance-constrained contexts as happens in 5G networking. In addition, to ensure timely
network adaptation to user needs, SDN control and management must cope with a potentially high
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number of network elements and, consequently, the design of control algorithms calls for highly
scalable approaches. Virtualized baseband functionalities are suitably located and centralized in
the nodes of the optical transport network implementing a C-RAN for enhanced functionality and
cost-optimization purposes [7]. The nodes hosting these pooled virtual baseband units (BBUs) are
called BBU hotels. BBU hotels can be provided with an additional computational capacity to perform
time-sensitive operations required by low-latency services, as per the Multi-access Edge Computing
(MEC) paradigm [9]. MEC, by providing 5G with processing resources at the network edge, allows to
achieve stringent application requirements. However, widespread deployment of these nodes may
be costly; therefore, intelligent nodes hosting BBU hotels and edge computing resources need to
be identified in relation to latency and processing constraints. Moreover, the problem of BBU hotel
placement in C-RAN has been shown to be NP-hard [10], requiring novel strategies to make optimal
approaches more scalable.

This paper proposes an Integer Linear Program (ILP) to solve the joint deployment problem
of baseband processing and edge computing with reliability against single-node failure in C-RAN.
The main objective of this strategy is to minimize the nodes in which processing capabilities must be
installed while ensuring latency and optical link (i.e., maximum wavelengths over fibers) constraints
are not violated. To overcome the computational complexity of classical optimization approaches,
a hybrid (based on both heuristic and ILP) deployment strategy is also proposed. The algorithm
performs a first phase in which the initial set of nodes candidate to host baseband and edge computing
functions is reduced and a suboptimal solution is provided. Then, a second phase is executed for
optimization purposes. The latter approach is shown to provide results close to optimal ones while
considerably reducing computational time.

The paper is organized as follows. In Section 2, related works in the context are introduced.
Section 3 provides an overview of the reference C-RAN architecture and describes the deployment
problem. In Section 4, the optimization problem is formulated, while Section 5 presents the
hybrid model. In Section 6, the numerical results obtained in different scenarios are presented.
Finally, Section 7 concludes the paper.

2. Background

In Reference [11], the Vehicular Edge Computing (VEC) architecture is analyzed. VEC is composed
of three layers: users, MEC, and cloud. In the user layer, vehicles exchange information with each other
or with road infrastructure through different protocols, such as the ones reported in References [12,13].
Mobile networks can also be used for vehicular communications to directly send/retrieve data to/from
vehicles or road infrastructure [14]. Data are then carried to the MEC or cloud layers, where different
services are located. The MEC layer is usually needed to provide low-latency services or to offload the
network by means of content caching [14]. The cloud layer, instead, is located deeper in the network and
offers extensive computational capacity for heavy data processing and non-time-senstive applications.

The adoption of 5G new radio allows to use its efficient cell coordination and interference
management mechanisms as well as novel discovery techniques to improve performance in dense
scenarios. With 5G deployments, C-RAN will gradually take over conventional distributed networks
in favor of more efficient centralized networks [15]. In C-RAN, antennas and Remote Radio Units
(RRUs) are usually located at antenna sites, while BBUs are decoupled from RRUs and placed in central
locations [5]. Part or all the baseband processing functions realizing the mobile network protocol
stack are performed in the BBUs, where they can be virtualized over general-purpose hardware to
decrease network costs [5]. Depending on the specific functions performed in the different units,
traffic with different characteristics is transported over the so-called fronthaul links interconnecting
them [16]. According to the adopted functional split, the nodes of the transport network can operate
at different layers of the protocol stack [17]. Multiple splits can also be defined depending on
different levels of baseband function centralization [18,19]. MEC will also play a fundamental role
in 5G to meet low-latency service requirements [9,20]. Recently, different architectures have been
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proposed for edge computing [21]. Edge data centers can be co-located with 4G or 5G baseband
processing functions to reduce the delay by bringing services closer to the users [9]. This is of
particular relevance for vehicular networks that can take advantage of this to offer Ultra Reliable and
Low-Latency Communication services (URLLC) over 5G networks. However, the cost for a large-scale
reliable deployment of edge core and cloud resources must be taken into consideration and calls for
cost-efficient deployment strategies.

In References [22,23], the authors present optimal and suboptimal strategies for placement of edge
resources in 5G networks. In Reference [22], a framework to optimize the placement of primary and
backup 5G user plane functions (UPFs) at the edge is provided. The proposed deployment strategies
aim at configuring edge resources at a minimum cost while ensuring service demands are met. Results
show the amount and use of required UPF for different scenarios and provide a complexity analysis
and the execution time of different algorithms. However, the proposed model considers only backhaul
links and do not account for the finite optical link capacity, which may affect the solution, especially
when dealing with very high bitrate requirements of Fronthaul links. The model in Reference [23],
instead, focuses on the number of edge nodes to be equipped with computational capacity, which is
shown to increase with the number of base stations deployed in the area.

Deployment strategies for C-RAN have been proposed recently for Wavelenght Division
Multiplexing (WDM) networks based on ILP and heuristic strategies [24,25]. Reliability aspects
for C-RAN deployment are analyzed in detail in References [10,26,27]. In References [28], the authors
propose a fog computing framework for C-RAN in vehicular networks. Simulation results show that
low latency can be achieved with edge computing under different traffic conditions. However, no
consideration has been made on the deployment of C-RAN processing functions in access/aggregation
networks. In Reference [29], the authors propose an edge server placement for MEC in distributed RAN
based on integer programming. The proposed approach is compared with different benchmarking
strategies. Results show how the different strategies perform in terms of edge service access delay
for different numbers of edge nodes using a realistic dataset. While the focus of this work is on
distributed RAN, in C-RAN, specific constraints on latency and bandwidth requirements set by
the baseband processing at the physical layer are needed. In addition, resiliency aspects are not
considered in Reference [29]. The work in Reference [30] proposes an ILP and a heuristic for the
deployment of cloud fog RAN. The authors conduct an extensive analysis of the trade-offs among the
minimization of propagation latency and power consumption, but no mention of reliability aspects
against failures is made. The work in Reference [26] is extended here with proper routing (i.e., not
based on precomputed shortest path), and considerations on edge computing deployment for URLLC
services in C-RAN are made. A novel heuristic strategy is also proposed to reduce the computational
complexity of the optimization problem by properly reducing the set of possible locations for C-RAN
and MEC infrastructure.

3. Architectural Solution and Problem Formulation

The reference C-RAN architecture has been introduced in previous works [7,31]. It consists of a
hierarchical SDN control plane with a lower layer split into as many controllers as the different kinds
of network domains to control, namely the radio network, the optical transport network, and the cloud
network. An example of this architectural solution applied to vehicular scenarios is shown is Figure 1.
The radio domain is composed of antennas and RRUs located at cell sites, and baseband processing
functions that are performed over general-purpose hardware in edge nodes. The radio controller is in
charge of controlling radio and baseband resources that are remotized following the C-RAN design
concept. The optical transport network consists of a set of intelligent nodes interconnected by Dense
Wavelength Division Multiplexing (DWDM) optical links to support high-capacity fronthaul in C-RAN.
For example, to support heavy and constant fronthaul traffic generated by the Common Public Radio
Interface (CPRI) split [19] (referred to as Option 8 in Reference [18]), dedicated wavelengths are usually
required. Nodes of the transport network, referred to here as edge nodes, are equipped with processing
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capabilities to perform MEC functionalities and are managed by the cloud controller. Each controller
interacts with the SDN orchestrator to provide information for interworking control and management
functions through different domains. The orchestrator is in charge of accommodating new service
requests by suitably allocating required resources across the different domains. The orchestrator
applies suitable algorithms to properly select the nodes in which the BBU functionalities and services
are executed, depending on service and physical network constraints.

RRU

RRUs

RRUs

SDN orchestrator

RRU Remote Radio Unit

RSU Road Side Unit Edge node

SDN Software Defined Network

MEC Multi-access Edge Computing

Radio

controller
Cloud

controller

RSU

RRU

Transport

controller

MEC

MEC

MEC

Figure 1. Softward Defined Networking (SDN)-controlled Cloud Radio Access Network (C-RAN)
architecture for vehicular communications.

C-RAN architecture can be used as an enabler for vehicular communications providing network
assistance and commercial services, as depicted in Figure 1. Vehicles communicate directly with the
mobile network or with Road Side Units (RSUs), that send collected data through the mobile network.
Data concerning low-latency applications can be elaborated directly in the edge nodes, thanks to the
computational resources offered by the MEC. Computational resources in edge nodes can be used for
(i) virtual baseband processing; (ii) virtual mobile core network functions; and (iii) edge application
services [32]. Non-time-sensitive data can be delivered to applications performed in remote locations
(not reported in the figure). The traffic destined to remote cloud resources is user dependent and
requires lower bandwidth with respect to fronthaul requirements [16] and is out of the scope of this
paper. In this work, we propose to co-locate, within the same edge node, cloud and BBU processing
functions. An edge node is considered to be active when it hosts physical or virtual functions, either for
BBU processing or edge core/cloud services.

To provide a reliable C-RAN against single node failures, a 1 + 1 protection solution is desirable
to avoid temporary service outages due to resource restoration. Primary and backup path resources
must be allocated to provide resiliency against hardware failures. This work considers single active
edge node failures (i.e., a failure of all servers placed in an active edge node). The formulation of the
joint BBU hotel and edge cloud processing location problem with resiliency is as follows:

• Given a set of RRUs to be connected to active edge nodes, a set of edge nodes (candidates to host
BBU and edge processing resources), and a set of links connecting edge nodes.

• Find active edge nodes and suitable optical resource assignment such that (i) the number of active
nodes and (ii) total wavelengths are minimized.
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• Ensure that each RRU is connected to two active edge nodes (one for primary and one for backup
purposes) and that the maximum available wavelengths per link and maximum allowed distance
to provide target service are not exceeded.

4. ILP-Based Optimization

This section proposes an ILP formulation of the problem. This algorithm is expected to be executed
by the orchestrator, which is assumed to have complete knowledge of the underlying network topology
and available resources to provide the placement. The notation used in the algorithm is reported in
Table 1. The set of nodes in the network, the candidate to host BBU and edge processing functions,
is denoted as N, while the number of sources (RRUs) physically connected to node s ∈ N is denoted
as Rs. The connectivity among them is modeled by the C binary matrix. C has one row and one
column for each node, and an element is equal to 1 if the two nodes are directly connected by a link,
0 otherwise. Binary variables pH

sd and bH
sd are equal to 1 if node d ∈ N is the node processing data from

RRUs located at node s for primary or backup, respectively. The binary variable hd is equal to 1 if edge
node d is active, i.e., if it acts as a primary or a backup for one or more RRUs. hd = 1 also means that at
least one between pH

sd and bH
sd is equal to 1. To connect each RRU to the nodes performing processing

functions, one wavelength is reserved along the path, due to the high requirements of physical layer
processing functions. This is captured by binary variables wp

sdij and wb
sdij. The maximum available

wavelengths over each link and the maximum allowed distance between RRUs and BBUs are indicated
with MW and MH , respectively. In this formulation, edge processing functions are co-located with
BBU processing to reduce the delay to a minimum and to take advantage of the already active nodes,
without requiring additional resources on fibers to reach farther facilities. For this reason, only MH

is considered, which is usually more stringent. If this is not the case, MH could represent the service
delay and be used as a more stringent delay requirement. In this work, all links are assumed to be
equally long, so MH is expressed in terms of hops.

The formulation is as follows.

Table 1. Notation for Integer Linear Program (ILP).

Parameter Definition

N set of edge nodes in the network, |N| = n.
Rs number of sources (RRUs) directly connected to s ∈ N.
C n× n matrix. cij = 1 if node i is directly connected to node j, 0 otherwise.

pH
sd

binary variable, equal to 1 if edge node d ∈ N acts as primary for RRUs at node (cell site) s ∈ N;
0 otherwise.

bH
sd

binary variable, equal to 1 if edge node d ∈ N acts as backup for RRUs at node (cell site) s ∈ N;
0 otherwise.

hd binary variable equal to 1 if edge node d ∈ N is active, 0 otherwise.

wp
sdij

binary variable, equal to 1 if the path to connect RRUs at node s ∈ N and primary edge node
d ∈ N is using physical link i− j (i, j ∈ N); 0 otherwise.

wb
sdij

binary variable, equal to 1 if the path to connect RRUs at node s ∈ N and backup edge node
d ∈ N is using physical link i− j (i, j ∈ N); 0 otherwise.

MW max. available wavelengths in each link.
MH max. allowed distance between RRUs and edge nodes.
α, β ∈ N tuning parameters for the objective function.
L ∈ N a large number (e.g., 10, 000).

Objective Function

Minimize F = α · ∑
d∈N

hd + β · ∑
s∈N

∑
d∈N

∑
i∈N

∑
j∈N

wp
sdij + wb

sdij (1)
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The multi-objective function in Equation (1) is composed of two members. The first term takes
into account the activation cost of each node, while the second term accounts for the wavelengths
required to connect RRUs to edge nodes, both primary and backup.

The problem is subject to the following constraints:

∑
d∈N

pH
sd = 1, ∀s ∈ N (2)

∑
d∈N

bH
sd = 1, ∀s ∈ N (3)

pH
sd + bH

sd ≤ 1, ∀s, d ∈ N (4)

hd · L ≥ ∑
s∈N

pH
sd + bH

sd, ∀d ∈ N (5)

∑
s∈N

∑
d∈N

(wp
sdij + wb

sdij + wp
sdji + wb

sdji) · Rs ≤ MW , ∀i, j ∈ N (6)

wp
sdij ≤ cij, ∀s, d, i, j ∈ N (7)

wb
sdij ≤ cij, ∀s, d, i, j ∈ N (8)

∑
i∈N

∑
j∈N

wp
sdij ≤ MH , ∀s, d ∈ N (9)

∑
i∈N

∑
j∈N

wb
sdij ≤ MH , ∀s, d ∈ N (10)

∑
i∈N

wp
sdij − wp

sdji =


pH

sd if j = s, s 6= d, ∀s, d, j ∈ N (11)

−pH
sd if j = d, s 6= d, ∀s, d, j ∈ N

0 otherwise

∑
i∈N

wb
sdij − wb

sdji =


bH

sd if j = s, s 6= d, ∀s, d, j ∈ N (12)

−bH
sd if j = d, s 6= d, ∀s, d, j ∈ N

0 otherwise

The constraints of Equations (2) and (3) ensure that there is only one primary and one backup
edge node, respectively, for each RRU. The constraint of Equation (4) guarantees that primary and
backup nodes are disjoint. The constraint of Equation (5) counts the number of active nodes (i.e.,
performing processing functions) in case they are acting either as a primary or a backup for any RRU.
The constraint of Equation (6) limits the number of wavelengths over each link for both primary and
backup in both directions (i.e., from i to j and j to i together). The constraints of Equations (7) and (8)
ensure the feasibility of the connections so that a link between two nodes can be used if and only if it
exists in the physical topology. The constraints of Equations (9) and (10) limit the maximum distance
between RRUs and BBUs to MH for primary and backup paths, respectively. Finally, Equations (11)
and (12) are the flow conservation constraints for primary and backup paths, respectively. These
constraints are needed to reserve the paths connecting RRUs to their primary and backup edge nodes.
In this model, wavelength conversion is allowed in the network nodes.

5. Two-Phases Hybrid Approach

The hybrid approach proposed here is performed in two phases. In the first phase, a heuristic
is proposed to provide a computationally simple but reliable C-RAN coverage by guaranteeing that
each RRU has both a primary and a backup node and that minimum delay is achieved. The second
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phase is an optimization process, based on a modified version of the ILP proposed in Section 4, that
aims at reducing the number of active nodes found in phase 1. The details of the hybrid algorithm are
reported below.

Phase 1 is assumed to start from a C-RAN configuration where no edge node is active, i.e., BBU
and edge functionalities have yet to be assigned to nodes. This has, anyway, no impact on the generality
of the approach. In this phase, the edge node activation is performed within a 1-hop distance or,
equivalently, RRUs can be connected only to the node itself or to a neighbor edge node. This implicitly
assumes that there are enough resources on the links connecting neighbors and guarantees that delay
constraints are always satisfied. It should be noted that, to solve the deployment problem, primary
and backup nodes must be selected. Therefore, not satisfying the aforementioned condition on the link
resources does not guarantee a solution to the problem.

In addition to the C matrix needed to model the physical links (see Table 1), two additional
structures are introduced here:

• H matrix: This is an n× 2 matrix, where each row represents a node of the network; the first
column indicates which is the primary edge node chosen by the node on that row, while the
second column indicates which is the backup node.

• W matrix: This is an n× n matrix which keeps track of the use of the links between nodes. In W,
there is one row for each source edge node (where the RRUs are physically connected). W has one
column for each edge node, that is, the possible locations for the edge server performing baseband
and services for the specific RRUs. This matrix is needed to provide a feasible solution at the end
of phase 1 but is not used in phase 2.

Algorithm 1 presents the pseudo-code of the algorithm executed by each node of the network
during phase 1. In the beginning, the algorithm starts with empty H and W matrices (line 2).
This algorithm executed in a sequence for each node until all nodes in the network have both primary
and backup connections (condition in line 4). Then, node i checks some conditions for the primary and
for the backup connection in order to find suitable edge nodes. If node i is already active (line 6), it can
use itself as the primary edge node (line 7). Otherwise, node i must search among its neighbors to find
an already active node (line 8) and, if it succeeds, makes the primary connection to the edge node j
(line 9) and updates W matrix accordingly (line 10). The updating phase stores in the position i, j of the
matrix the required wavelengths over link i–j. If no neighbor is active (line 11), node i activates itself
and makes the primary connection to itself (lines 12 and 13).

After establishing the primary connection, node i executes a set of instructions to find the backup
edge node. There are two possible situations. The first situation is when node i is already active
and plays the primary role for the RRUs connected to itself or not active at all (line 16). In this case,
node i either finds a directly connected neighbor node (j), which is already active and satisfies the
distance restriction, and connects to it (lines 17–19) or chooses randomly one of the neighbors as a
backup, defines the backup connection, and updates W matrix accordingly (lines 20–23). The other
situation happens when node i is active (line 25). Node i can take advantage of this situation and
makes the backup connection to the local edge node (lines 26 and 27). Phase 1 stops when all nodes in
the network have both connections to primary and backup nodes.

The objective of the second phase is to minimize the number of active nodes. This is achieved
by reassigning the RRU connections and shutting down active nodes by further centralizing BBU
and edge processing functions within the distance constraints (MH). This is achieved by adding the
following set of constraints to the ILP model presented in Section 4:

Equation (13) forces the node candidates to be 0 (non-active) for all the nodes excluded by phase
1 (i.e., for all the nodes that have no RRU assigned to them, either for primary or backup purposes).
The ILP is then solved with a reduced set of candidate nodes that always ensures the feasibility of
the solution.
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hd =

{ 0 if Hd0 + Hd1 = 0, ∀d ∈ N (13)

{0, 1} otherwise

Algorithm 1 C-RAN reliable coverage (phase 1).

1: Initialization:
2: H, W ← ∅
3: Begin:
4: while exists node i ∈ N s.t. (Hi0 = 0) ∨ (Hi1 = 0)
5: //Primary connection assignment:
6: if hi = 1
7: Hi0 = i
8: else if ∃ node j s.t. cij = 1 and hj = 1
9: Hi0 = j

10: update W
11: else
12: hi = 1
13: Hi0 = i
14: end if
15: //Backup connection assignment:
16: if (hi = 1 and Hi0 = i) or (hi = 0)
17: if ∃ node j s.t. cij = 1 and hj = 1
18: Hi1 = j
19: update W
20: else
21: activate random neighbor j (hj = 1)
22: Hi1 = j
23: update W
24: end if
25: else
26: hi = 1
27: H1i = i
28: end if
29: end while
30: End

6. Numerical Results

Numerical results are obtained in different networks to evaluate the effectiveness of the ILP and
hybrid solutions in terms of active edge nodes and of the centralization gain, GC, that is the advantage
related to centralizing BBU and cloud functionalities, expressed by the following formula:

GC =
|N| −∑d∈N hd

|N| (14)

where |N| and hd have been defined in Table 1. Three sample networks, N38, N20, and N14, consisting
of 38, 20, and 14 nodes, respectively, are considered, as represented in Figure 2. Evaluations
assume here that 10 RRUs are physically connected to each node to provide mobile network
coverage and transmission capacity for vehicular network, and the adoption of CPRI (option 8 in
Reference [18]). The proposed algorithms and evaluations can be extended to different numbers of
RRUs, possibly unbalanced among edge nodes and suitably adapted to different functional split,
which is left for future works. The commercial tool CPLEX [33] is used to run the ILP on a computer
with 4 cores at 3.2 GHz and 8 GB of RAM. Tuning parameters α and β are set to a value of α >> β so
that the minimization of active edge nodes is prioritized, while the maximum number of wavelengths
over each link MW is set to 80.

In Figures 3–5, comparisons are reported between the hybrid and the ILP approaches by plotting
the results in terms of the number of active edge nodes as a function of the allowed distance, expressed in
hops. The cost of the hybrid solution depends on the node from which the heuristic procedure starts:
the maximum and minimum costs in terms of total number of active nodes obtained are both reported
in the plots. In addition, the results at the end of phase 1 of the hybrid strategy are also shown, as lines
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and denoted as H, to outline the effect of the optimization phase. These lines are constant because they
do not depend on the distance, as they provide a solution within 1 hop distance. The costs obtained
with the hybrid and ILP approaches decrease with the distance in all networks. The minimum value
that can be achieved is 2 because one primary and one backup node must be always present to cope
with single edge node failure. In case of tight distance constraints (e.g., 1 or 2 hops), data cannot be
transported far in the network; thus, many edge nodes must be activated. When the distance constraint
increases, farther nodes in the network can be reached and, consequently, the number of total active
nodes decreases. From the figures, it can be seen also the influence of the starting node, represented by
the difference between the maximum and the minimum costs. In the worst cases, only one additional
node must be activated. In addition, the results of the hybrid are shown to be the same as the optimal
ones in most of the cases. However, in very few cases, the hybrid approach cannot achieve optimal
solutions due to the choices performed in phase 1, where some nodes are excluded by the pool of
possible active nodes and cannot be activated in phase 2.

Figure 2. N38, N20, and N14 C-RAN topology for numerical evaluations.
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Figure 3. Total number of active edge nodes as a function of the allowed distance between RRUs and
edge nodes for network N14: Maximum and minimum costs of the hybrid results are reported after
both phases.
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both phases.
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In Figure 6, the gain of centralization of BBU and edge cloud functionalities is presented as a
function of the allowed distance from RRUs by comparing the ILP results with the results of the hybrid
approach at the end of phase 1 (denoted as H) and phase 2 in the maximum-cost case. This gain is
relevant both for ILP and hybrid, with the hybrid being very close or coincident to the optimal solution.
In the worst case (i.e., distance constraint equal to 1 hop), the hybrid provides only 8% gain reduction.
As expected, phase 1 provides only suboptimal solutions. It is, therefore, evident the role of phase
2 of the hybrid approach in achieving a high centralization gain with respect to the plain coverage
achieved in phase 1.
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Figure 6. Centralization gain as a function of the allowed distance between RRUs and edge nodes for
network N38: Results are reported for the maximum cost for hybrid (phase 1 and phase 2), and ILP.

Table 2 reports the number of active links, wavelengths over the most used link, and overall
wavelengths in network N38 for the two strategies. By comparing the strategies, it is possible to observe
that the ILP requires a slightly higher number of wavelengths with respect to the hybrid approach
when the number of active nodes is lower (distance constraints 1, 2, and 4). Nevertheless, because the
activation cost of a node is much larger than the cost of a wavelength, the ILP solution always reaches
a lower cost solution compared with the hybrid approach. When the ILP and hybrid require the
same amount of active nodes (distance constraints 3 and 5) the ILP requires fewer wavelengths than
the hybrid approach due to a wider set of choices. This happens for similar reasons also for the
wavelengths required over the most used link.

To solve the harder instances of the problem, the ILP takes 2.8 s, 22.75 s, and 10,010.17 s in the
network N14, N20, and N38, respectively, showing an increased computational complexity when the
size of the problem increases. Solving the ILP with the hybrid approach instead allows to reduce
the solving times to 2.2 s, 17.99 s, and 3647.88 s in the three networks due to the reduction of the
solution space. It should be noted that, in order to see the differences between the two strategies,
the evaluations proposed here are done for networks suitable to cover a small- or medium-sized city.
In larger scenarios (i.e., networks with more edge nodes and links), it is not always possible to ensure
a solution with the ILP approach. These scenarios can be instead tackled with the hybrid approach,
which has been shown to provide results close to optimality.
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Table 2. Number of active links, wavelengths over the most used link, and total wavelengths for the
hybrid and ILP for different distance constraints in network N38.

Dist. Hybrid ILP

[hops] Active Max Total Active Max Total

1 45 10 530 48 10 560
2 51 40 950 50 40 1040
3 49 70 1370 51 60 1350
4 52 70 1530 48 80 1830
5 51 80 1790 52 80 1780

7. Conclusions

This paper addresses the problem of providing low latency and reliable services in vehicular
scenarios in a cost-efficient way using 4G and 5G networks. Baseband resources of C-RAN can
be co-located with MEC resources to achieve target service requirements. An ILP model for the
cost-efficient deployment of baseband and edge cloud resources with reliability against single node
failure is proposed. In addition, a heuristic technique is also proposed to reduce computational
complexity of the ILP model by proper selection of a subset of edge nodes for the optimization phase.
Results show that the hybrid approach provides similar results to the ILP ones while considerably
reducing the solving time.
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