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Aim: To investigate the genome-wide methylation of genetically characterized colorectal cancer stem cell
(CR-CSC) lines. Materials & methods: Eight CR-CSC lines were isolated from primary colorectal cancer (CRC)
tissues, cultured and characterized for aneuploidy, mutational status of CRC-related genes and microsatel-
lite instability (MSI). Genome-wide DNA methylation was assessed by MethylationEPIC microarray. Results:
We describe a distinctive methylation pattern that is maintained following in vivo passages in immune-
compromised mice. We identified an epigenetic CR-CSC signature associated with MSI. We noticed that
the preponderance of the differentially methylated positions do not reside at CpG islands, but spread to
shelf and open sea regions. Conclusion: Given that CRCs with MSI-high status have a lower metastatic po-
tential, the identification of a MSI-related methylation signature could provide new insights and possible
targets into metastatic CRC.
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Colorectal cancer (CRC) is the fourth leading cause of cancer-related deaths worldwide in males and the third in
females [1]. Despite being one of the most preventable cancers, the overall 5-year survival rate has not improved in the
past 15 years, amounting to 64.9% in 2013 compared with 64.8% in 2000 [2,3]. This multifactorial disease is thought
to develop from intestinal crypt stem cells as a result of genetic, epigenetic and microenvironmental alterations [4–8].
Accumulating evidence supports the hypothesis that a small fraction of tumor initiating cells, called colorectal
cancer stem cells (CR-CSCs) play a crucial role in CRC initiation, progression, dissemination and therapeutic
resistance [6,9,10]. This subpopulation of cells exhibits biological characteristics of stem cells, such as self-renewing
ability and a potential to differentiate into different types of progenitors [9,11,12]. CR-CSCs are characterized by
alterations that lead to aberrant activation of signaling networks crucial for disease progression, including the
constitutive activation of Wnt/β-catenin and receptor tyrosine kinases (RTKs) pathways, and induction of the
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epithelial–mesenchymal transition (EMT). All these pathways are normally activated in healthy stem cells at the
base of the colonic crypts and are associated with the invasive/metastatic phenotype of CRC [13]. Among the
markers that are specifically expressed by CR-CSCs there are CD44, CD166, CD133 antigens, and leucine-
rich repeat-containing G-protein-coupled receptor 5 (LGR5), together with functional markers such as aldehyde
dehydrogenase 1 family member A1 (ALDH1) and β-catenin (CTNNB1) [14,15].

In addition, CR-CSCs resist conventional chemo- and radio-therapy. This is attributed to several survival
mechanisms, including: relatively quiescent nature, meaning that they have proliferative capacity but are not
often cycling; greater ability to repair DNA and higher expression of the ATP-binding cassette (ABC) membrane
transporters [16–19]. Therefore, even though CR-CSCs account for less than 1% of the tumor bulk, they are thought
to represent the major source of recurrent disease after treatment, and to be capable of reconstituting the tumor at
the original and/or distant sites, ultimately leading to therapeutic failure.

Several studies suggest that aberrant DNA methylation is one of the mechanisms driving tumor onset, devel-
opment, progression and recurrence [20–24]. In CRC, hypermethylation is observed at CpG-rich promoter regions
and results in transcriptional gene silencing [21]. On the other hand, hypomethylated regions are often localized
in open sea areas of the genome and are linked with chromosomal instability (CIN), gene activation and loss of
imprinting [25,26]. However, these data mostly derive from studies performed on primary tumors, characterized by
intrinsic cellular heterogeneity [27], which dampens their biological relevance.

Here we report the epigenetic profiles of eight CR-CSC lines and compare these profiles to those publicly
available for non neoplastic colorectal mucosa, adenomas, CRCs and matching metastases. Our results show that:
seven out of eight CR-CSC lines display an intragenetic homogeneity; each cell lines disclose a distinctive epigenetic
profile; the methylation status of 262 CpG can distinguish the microsatellite instability (MSI) status of the cell
lines and that these CpGs are mostly located on shelf, shore and open sea genomic positions.

Materials & methods
Isolation & culture of CR-CSCs
CRC specimens were obtained from patients undergoing CRC resection, in accordance with the ethical standards
of the institutional committee of the University of Palermo. CR-CSCs were isolated as previously described [28–

30]. Briefly, tumor samples were mechanically and enzymatically digested with collagenase and hyaluronidase for
1 h at 37◦C. Then the obtained digests have been cultured in ultralow adhesion flasks to select CSCs that do
not undergo anoikis. The culture medium is based on serum-free advanced Dulbecco’s Modified Eagle Medium:
Nutrient Mixture F-12 (DMEM/F12), supplemented with EGF and bFGF. Cells are cultured in these conditions
for several passages (3–4 months depending on the parental tumor histological grading and the number of CSCs in
tumor specimens) and expanded by both enzymatic and mechanical dissociation. Then cells are characterized and
eventually sorted for the expression of putative CSC markers. Finally, CR-CSCs are tested for their tumorigenic
potential by subcutaneous injection in non-obese diabetic (NOD) severe combined immunodeficiency (SCID)
gamma mice (NSG). Cells were maintained at 37◦C in a 5% CO2 humidified incubator. Short tandem repeat (STR)
DNA profiling was carried out for the authentication of CR-CSC lines using a 24-locus STR kit (GlobalFiler™ STR
kit, Thermo Fisher Scientific, MA, USA). STR analysis was performed on the ABIPRISM 3130 genetic analyzer
(Thermo Fisher Scientific) following the manufacturer’s instructions. DNA profiles of isolated CR-CSC lines were
matched with their relative patient tumor tissues to ensure no contamination with standard cell lines and their
identity.

MSI analysis
For MSI analysis, genomic DNA (gDNA) was extracted from CR-CSCs using the DNeasy Blood & Tissue kit
(Qiagen, Hilden, DE) according to the manufacturer’s instructions. Isolated gDNA was subjected to a multiplex
PCR assay using the GeneQuality CC-MSI kit (AB ANALITICA, Padova, IT) following standard protocol and
then analyzed by capillary electrophoresis on Genetic Analyzer ABIPRISM 3130 (Thermo Fisher Scientific).
Detection of MSI status was carried out using a set of microsatellite markers including BAT25, BAT26, D2S123,
D17S250, D5S346 (Bethesda Panel) and BAT40, NR21, NR24, D18S58, TGFßRII (MSI-high, ≥4 markers
unstable; MSI-low; 1–3 markers unstable).
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Animal procedures
All the in vivo experiments have been performed in accordance with the Animal Care Committee Guidelines of
the University of Palermo, using three mice per condition. The tumorigenic potential of CR-CSCs was assessed
by harvesting 5 × 105 dissociated tumor cells, resuspending them into 100 μl of 1:1 Matrigel (BD Matrigel
Matrix Growth Factor Reduced, Becton, Dickinson and Company, NJ, USA) and subcutaneously injecting cells
in NOD/SCID mice. Tumor growth was monitored and measured twice per week following cell injection using
an electronic caliper.

Tumor volume was calculated using the formula: (largest measured diameter × [smallest measured
diameter]2 × π/6) for up to 15 weeks. At the end points, when subcutaneous tumor reached 2 cm in diam-
eter, or when mice showed the first signs of suffering (Italian Ministry of Health, authorization no. 154/2017-PR),
animals were sacrificed accordingly to Directive 2010/63/EU Guidelines (D.lgs 26/2016). Xenograft tumors were
collected and used for paraffin-embedded tissues, DNA/RNA/protein extraction and cell isolation.

Cell viability assay
The cell viability assay was assessed for up to 96 h, using the CellTiter 96 R© AQueous One Solution Cell Proliferation
Assay kit (MTS) according to the manufacturer’s instruction (Promega, WI, USA). To evaluate the CR-CSCs
chemosensitivity to oxaliplatin, 3000 cells were plated into ultralow attachment 96-well plates (Corning, NY, USA)
and exposed to vehicle or 50 μM oxaliplatin (cat. 09512, Sigma Aldrich, MO, USA). The results were analyzed by
using a multiwall plate reader (GDV programmable MPT Reader DV 990BV6).

Reverse transcription quantitative PCR
Total RNA from CR-CSCs was purified by using the RNeasy Mini Kit (Qiagen) and retro-transcribed with the
iScript™ gDNA Clear cDNA Synthesis Kit as recommended by the manufacturer (Bio-Rad, CA, USA). Relative
expression level of selected genes was assessed by real-time PCR using the PrimePCR Custom Panel (Bio-Rad)
according to manufacturer’s instructions. Each sample was normalized to GAPDH and HPRT1 reference genes
to obtain the �Ct [(2- [Ctgene –CtGAPDH)] Ct)]. Data, collected from QuantStudio 7 Flex Real-Time PCR
System (Thermo Fisher Scientific) were analyzed with the PrimePCR Analysis software (Bio-Rad).

Methylation EPIC bead CHip analysis
A total of 1 μg of extracted DNA was bisulphite-converted with the EZ-96 DNA Methylation-Gold™ Kit, used
according to the manufacturer’s protocol (Zymo Research, CA, USA). Next, the 850 K DNA methylation array
by Infinium MethylationEPIC BeadChip (Illumina, CA, USA) was performed on 4 μg of bisulphite-converted
DNA, following the Illumina Infinium HD Methylation protocol. This array includes 853.307 cytosine positions
of the human genome (CpG sites, non-CpG sites and random SNPs). The methylation score for each CpG was
represented as a β-value according to the fluorescent intensity ratio representing any value between 0 (unmethylated)
and 1 (completely methylated). Arrays were scanned by HiScan (Illumina). DNA methylation data discussed in
this publication have been deposited in NCBI’s Gene Expression Omnibus (GEO) and are accessible through GEO
Series accession number GSE123367 (www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE123367).

Statistical analyses
Raw signal intensities generated using the Infinium MethylationEPIC BeadChip were extracted from .idat files
using the minfi Bioconductor package. The following filtering criteria were applied: samples with more than 5%
of sites with a detection p-value greater than 0.05 were removed (0 samples removed); probes with a detection
p-value greater than 0.05 in more than 1% of the samples were removed (5059 probes removed). For each
probe, β values (Meth/[Meth + Unmeth]) were calculated. Exploratory analysis of DNA methylation profiles was
performed using RnBeads platform (https://rnbeads.org/index.html) [31]. Statistical analyses were performed using
R software. For differentially methylated probes (DMPs) identification, the ANOVA test was applied and probes
having Benjamini–Hochberg (BH) p-value < 0.05 were selected. For differentially methylated regions (DMRs)
identification, we applied the analytical pipeline described in Bacalini et al. [32]. Briefly, we used the Infinium
EPIC annotation to group the CpG probes located on the same island, shore or shelf associated to a gene, and
for each of region we evaluated the differences in DNA methylation between the groups under investigation using
a multivariate analysis of variance (MANOVA). In the comparison between Gr1 CR-CSCs and Gr2 CR-CSCs,
DMRs with a BH-corrected p-value < 0.05 were selected. In the comparison between CR-CSCs and CRC samples
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from datasets GSE42752 and GSE53051, a more stringent selection criteria for DMRs was adopted (Bonferroni
corrected p-value < 0.01, at least two adjacent CpG sites with >0.2 concordant difference of methylation between
CRCs and CR-CSCs), in order to minimize potentially confounding batch effects. Hierarchical clustering was
performed using the heatmap.2 function in R gplots package, using default settings (euclidean distance function,
complete agglomeration method). K-means clustering was performed using the R function kmeans, while the
adjusted rand index was calculated using the randIndex function in the flexclust R package.

Library preparation & sequencing
Library preparation of exonic regions from 20 genes (ACVR1B, APC, BRAF, CSMD3, CTNNB1, EDNRB, FAM123,
FBXW7, GNAS, GPC6, KIAA1804, KRAS, NRAS, PIK3CA, PTPRD, SMAD2, SMAD4, SOX9, TCF7L2, TP53;
Supplementary Table 1) was performed according to the Ion AmpliSeq Library Kit 2.0 protocol (Thermo Fisher
Scientific), starting with 20 ng of gDNA. Two 16-cycle multiplex amplification reactions of the regions of interest
were performed by using AmpliSeq custom oligos. An Ion Xpress Barcode Adapters Kit (Thermo Fisher Scientific)
was used to add Ion Torrent-specific motifs to amplicons. For purification, an Agencourt AMPure XP reagent
(BeckmanCoulter, CA, USA) was used. Final libraries were quantified by using the Bioanalyzer instrument with the
High Sensitivity DNA Kit (Agilent, CA, USA), diluted and pooled together in equimolar amounts. 25 μl of a 26
pM pool of all libraries was mixed with Ion Sphere Particles and clonally amplified in an emulsion PCR, performed
in accordance with the Ion PGM™ Hi-Q™ View OT2 Kit protocol and using the Ion OneTouch instrument
(Thermo Fisher Scientific). Enrichment-System and Dynabeads MyOne Streptavidin C1 magnetic beads (Thermo
Fisher Scientific) were used to enrich template-positive Ion Sphere Particles. Enriched samples were loaded onto
Ion 318 chip and sequenced by using the Ion Torrent PGM, following the Ion PGM™ Hi-Q™ View Sequencing
Kit protocol.

Sequencing data analysis & variant identification
Sequencing data analysis was conducted by using the Torrent Suite software v. 5.4.0 (Thermo Fisher Scientific).
Briefly, low-quality reads were removed, adapter sequences trimmed and alignment against a reference genome
(hg19) performed by using the Torrent Mapping Alignment Program. The Variant Caller plugin was used to
identify variations from the reference sequence. The annotation of the variants was performed with ANNOVAR [33].
Insertions and deletions belonging to homopolymeric regions were removed, because sequencing error rate is high
in these regions. The mutation waterfall plot was generated using the Bioconductor package GenVisR [34].

Copy number variation (CNV)
Copy number variation (CNV) was performed by reverse transcription quantitative PCR (RT-qPCR) using both
the TaqMan technology (STUB1 ID: Hs02061495 cn; COX19 ID: Hs02372251 cn; JAG2 ID: Hs03069093;
HES5 ID: Hs02713003 cn; Thermo Fisher Scientific) and the Roche Assay Design Center software to iden-
tify primers and relative UPL probes (https://lifescience.roche.com/en it/brands/universal-probe-library.html;
KRAS F TGTATGGGCTGTGACATTGC - KRAS R CCACCTGTTCTTCCACCATC, UPL #68; TP53 F
TGTTCTTGCAGTTAAGGGTTAGTTT - TP53 R TGAAGTGGGCCCCTACCTA, UPL#05; DLEU2 F
ACGTTGTGCAGAAACTTGAGAC - DLEU2 R TCTAAGCAACCTGGATTTCACA, UPL#68). Briefly, 10 ng
of DNA was amplified using the Universal Mastermix (Roche, Basel, CH), specific primers, fluorescent probes and
the Human TaqMan R© Copy Number Reference Assays RNase P as internal standard reference (Thermo Fisher
Scientific). Each sample was analyzed in triplicate on CFX96 Touch™ Real-Time PCR Detection System (Bio-Rad).
Each well was normalized to RNase P to obtain the �Ct (2- [FAM dye Ct –VIC RNAseP dye Ct]). All samples
were then normalized to a calibrator (three DNA samples from healthy donors) to determine ��Ct. Samples
were considered to be carrying deletion or amplification if loss/acquisition of genetic material at the corresponding
chromosome region was ≥25% compared with the average values of normal controls.

Results
Genetic characterization of CR-CSC lines
We sequenced the hotspot mutation regions of 20 CRC-related genes (Supplementary Table 1) in eight primary
CR-CSC lines obtained as described before [9,29,30] (Table 1). We focused on the most relevant genes associated
with CRC development, including TP53, APC, KRAS and SMAD4 [35,36], which respectively showed 8, 13, 5 and
6 nucleotide variations (NVs) affecting the coding sequences in 6, 8, 5 and 4 cell lines. Of note is the missense SNP
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Table 1. Clinical and molecular features of colorectal cancer patients.
Pt# Gender Age at diagnosis Site Grading TNM MSI status†

#5 M 68 Right colon G3 IIIB MSI-H

#8 F 57 Cecum G3 na MSI-L

#9 F 53 Sigma G2 na MSI-L

#11 F 77 Right colon G2 IIIB MSS

#12 M 76 Right colon G2 IIIC MSI-H

#13 M 63 Right colon G3 IIIC MSI-L

#14 F 47 Right colon G2 IIA MSI-H

#21 F 60 Right colon G2 na MSI-L

†MSI status is referred to the patient respective CR-CSC line.
CR-CSC: Colorectal cancer stem cell; MSI: Microsatellite instability; MSS: Microsatellite stable.

rs459552 in APC whose minor allele ‘T’ (MAF, 0.2019/24418-ExAC, NCBI-dbSNP Short Genetic Variations)
was present in all the CR-CSC lines. However, the association of APC rs459552 with cancer remains unclear [37,38].
The allele frequencies of the NVs in TP53, APC, KRAS and SMAD4 were mostly around 50 or 100%, hinting at
hetero- or homozygosity and clonal homogeneity. However, in four cell lines, the genes mutations showed peculiar
allele frequencies of 33% or 61–70%, pointing to the presence of three allele sets (Figure 1A; Supplementary
Table 2). To verify this, we focused on KRAS, which revealed three non-synonymous NVs with a frequency of
approximately 67% in three cell lines. We examined all the KRAS NVs (synonymous and non-synonymous) in
those cell lines. In one of them, CR-CSC#12, we found the rs1137282 synonymous polymorphism at a frequency
of 36.6%, in other words, close to 33%, the frequency expected for three allele copies (Supplementary Table 2).
This suggests that, at least in CR-CSC#12, there are three KRAS alleles. We then considered the frequencies of all
the NVs found in the investigated genes in the eight cell lines (Figure 1B). Altogether, CR-CSC#5, #12 and #14
showed NV frequencies mostly around 50% (Figure 1B), pointing to near-diploid status, while CR-CSC#8, #11,
#13 and #9 displayed allele frequencies suggesting amplification to three (33 and 66%) or four allele copies (25 and
75%). Only CR-CSC#21 presented a more complicated pattern of allele frequencies, which could reflect genetic
and clonal heterogeneity.

To verify if the distribution pattern of the NVs frequencies reflected aneuploidy, we analyzed the CNVs of seven
chromosomal regions known to be amplified or deleted in CRC (Figure 1C). The results of NVs frequency analysis
were confirmed by CNV analysis. In fact, compared with the controls (healthy donors, HDs), CR-CSC#5, #12,
and #14 (Group 1; Gr1) showed a moderate level of aneuploidy; CR-CSC#8, #11, #13 and #19 (Group 2; Gr2)
displayed several DNA copy number alterations and CR-CSC#21 (Group 3; Gr3), showed a pattern intermediate
between Gr1 and Gr2.

These results indicate that seven out of eight CR-CSC lines are genetically homogeneous, while one, CR-CSC#21,
could comprise multiple subclones, in agreement with the fact that its TP53 mutation presents a frequency of 70%,
with no variation in gene copy number.

Given that metastatic capacity is associated with CIN [39–41] and with CD44v6 expression on CR-CSCs [30], we
measured CD44v6 levels on the CR-CSC cell lines. As expected Gr2 and Gr3, that had higher rates of aneuploidy,
also showed higher CD44v6 surface expression compared with Gr1 (Figure 1D). Overall, differences in CD44v6
expression were not significant, but higher CD44v6 expression correlated with increased levels of CRC stemness
markers (Figure 1E). Indeed, critical genes involved in embryonic development, EMT and invasiveness, including
DKK1, FN1 and TWIST, showed higher expression in Gr2 compared with Gr1 (Figure 1E, left panel). Gr3
CR-CSC line (#21) show over-expression of genes related to cancer-stemness including TGFBs, WNT5A, ZEB1,
MMP9, SERPINE1 and Vimentin (VIM), when compared with the other groups of CR-CSC lines (Figure 1E,
central & left panel). Given that MSI is a key characteristic of CRC and is mutually exclusive with CIN, we analyzed
the MSI status of the CR-CSCs. As expected, Gr1 displayed high microsatellite instability (MSI-H), whereas Gr2
and Gr3 showed low or stable microsatellite status (MSI-L, MSS; Table 1). This indicates that a defined MSI status
can be present at the CR-CSC level.
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DNA methylation profile of CR-CSC lines correlates with MSI status of CR-CSCs
We analyzed the genome-wide DNA methylation profile of the CR-CSC lines using the Illumina Infinium
MethylationEPIC BeadChip. Unsupervised clustering based on all methylation values showed three main clusters,
respectively comprising: CR-CSC#5, #12, #14; CR-CSC#8, #19, #11, #13 and CR-CSC#21 (Figure 2A), which
matched the three groups previously identified through genetic profiling (Gr1, Gr2 and Gr3). When we plotted
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Figure 1. Genetic analysis of the colorectal cancer stem cell lines (cont.). (A) Mutational waterfall plot of eight colorectal cancer stem
cell lines (only nucleotide variation affecting the coding sequence are represented). (B) Frequency analysis of all detected nucleotide
variations. (C) Copy number values were determined by quantitative PCR; genes data were normalized to the endogenous references
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the density distribution of the methylation β values, we noticed that only the Gr1 CR-CSCs had a peak between
0.3 and 0.5 (Figure 2B). To rule out the possibility that this peculiar distribution was the result of a technical
artifact, we performed the same analysis after normalization of raw data using the method proposed by Fortin
et al. [42]. Gr1 samples maintained an evident peak of intermediate methylation values respect to non-normalized
data (Supplementary Figure 1A). To gain insight on this pattern, we divided the probes according to genomic
localization: CpG islands; shores, in other words, regions up to 2 kb from CpG island; shelves, in other words,
regions from 2 to 4 kb from CpG island and open sea, in other words, the rest of the genome [43,44]. We found
that the peak at intermediated DNA methylation values in Gr1 was due to CpG probes mapping in shores, shelves
and open sea, but not in CpG islands (Figure 2C). Given that Gr1 displayed molecular features associated to
favorable prognosis when found in tumor sample patients (MSI-H; Table 1), we investigated the differences in
DNA methylation between Gr1 and Gr2 in order to identify genes whose aberrant epigenetic regulation could be
linked to more aggressive tumor phenotype.

First, we used the ANOVA test to compare Gr1 and Gr2, and identified 262 DMPs (BH corrected p-value < 0.05;
Figure 3A and Supplementary Table 3). A hierarchical clustering heatmap confirmed that Gr1 and Gr2 were clearly
separated (Figure 3B) and showed that a large fraction of DMPs had intermediate methylation values in Gr1 that
resembled the previously observed pattern (Figure 2B–C). 83 of the 262 DMPs had DNA methylation values
between 0.3 and 0.5 in all the Gr1 samples but in none of the Gr2 samples. 12 out of these 83 probes mapped in
the CpG islands, 13 in shores, 4 in shelves and 54 in open sea regions.

Thereafter, we used an alternative analytical pipeline specifically designed to identify DMRs, in other words,
regions where multiple adjacent CpG sites were differentially methylated among the compared groups [32]. Focusing
on CpG islands, shores and shelves associated to genes, we identified 282 DMRs (BH corrected p-value < 0.05;
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Figure 2. DNA methylation profile of colorectal cancer stem cell lines. (A) Hierarchical clustering of colorectal cancer stem cell samples
based on all Infinium EPIC methylation values. The heatmap displays only the top 1000 CpG sites with the highest variance across all
samples. (B) β value density estimation of the Infinium EPIC CpG sites in the eight colorectal cancer stem cell lines. (C) For each sample, β

value density estimation of the Infinium EPIC CpG sites divided according to probe category. Not normalized data are plotted.

Supplementary Table 4). Among the genes, MERTK, CPE, HEY2 and FOXO3 stood out because of their known
association with cancer aggressiveness and metastatic potential [45–49].

Genome-wide methylation analysis of CR-CSC xenografts
As demonstrated by unsupervised clustering, the CR-CSCs and the CSCs derived from the xenografts formed after
their engraftment into NOD-SCID (CR-XenoCSCs) tended to maintain similar genome-wide DNA methylation
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Figure 3. Gr1 versus Gr2 DNA methylation profile. (A) Volcano plot of differentially methylated probes between Gr1 and Gr2. The
difference between mean DNA methylation values in Gr1 and Gr2 samples is plotted on the x axis, while the nominal
Benjamini–Hochberg-corrected p-value (q-value) is reported on the y axis (-1 × log10 scale). The dotted line corresponds to a
Benjamini–Hochberg-corrected p-value of 0.05. (B) Hierarchical clustering of samples based on the methylation values of the 262
differentially methylated probes between Gr1 and Gr2.

profiles (Figure 4A). Accordingly, the peculiar distribution of β values of Gr1 and Gr2 samples was also maintained
in CR-XenoCSCs (Supplementary Figure 1B). Paired t-test identified 3176 DMPs (BH corrected p < 0.05;
Supplementary Table 5) between the CR-CSC and CR-XenoCSCs pairs, but intrapair methylation differences
were low, mostly >-0.1 or <0.1 (Figure 4B).

In vitro & in vivo characterization of CR-CSC lines
We characterized the eight CR-CSCs for their proliferative and tumorigenic capacity through in vitro and in vivo
experiments. The proliferative potential was assessed in vitro in presence or absence of oxaliplatin, to establish
whether chromosomal or MSI status could correlate with proliferation and chemoresistance. Despite the low
number of cell lines tested, our results show a less proliferative phenotype in the Gr1/MSI-H subset compared
with the Gr2/MSS. Interestingly, CR-CSC #21 (Gr3) showed very low growth rate coupled with resistance to
oxaliplatin (Supplementary Figure 2A–C). The little differences observed in vitro disappeared in vivo when the
CR-CSCs were injected subcutaneously into NOD/SCID mice. No significant differences in tumor growth or
survival rate of the xenografted mice were identified (Supplementary Figure 2D).

Comparison between the DNA methylation signatures of the CR-CSC lines & of patient-derived
normal & neoplastic colorectal tissues
Two Infinium450k datasets were downloaded from the Gene Expression Omnibus – GEO repository. The first
dataset (GSE42752) [50] included 22 primary CRCs, their matched healthy mucosa samples and 19 cancer-
unrelated colon tissues. The second dataset (GSE53051) [25] included 18 normal colon tissues, 10 colon adenomas,
9 primary CRCs and 16 CRC lung or liver metastases. Only common probes (intersection between datasets:
450626 probes) were considered to compare the β value distributions in the Infinium450k and EPIC datasets.
The DNA methylation landscape of the CRCs and of the CR-CSCs was largely different, with the CSCs generally
hypomethylated compared with the CRCs (Figure 5A). We cannot exclude a priori that the observed differences
are at least in part the result of a batch effect, as the CR-CSCs and the CRCs datasets have been generated by
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596 Epigenomics (2019) 11(6) future science group



DNA methylation of colorectal cancer stem cells Research Article

different laboratories using different versions of the same microarray platform. However, two considerations suggest
that the distinct patterns observed in CR-CSCs and CRCs have a true biological basis. First of all, a small dataset
(GSE98990) containing two normal samples and two CRC samples, processed using the EPIC microarray, had a
distribution of β values similar to that of the samples in GSE42752 and GSE53051 datasets and completely distinct
from the CR-CSCs (Figure 5A). Secondly, hypomethylation of CR-CSCs was not generalized, as it was specific for
shores, shelves and open sea CpGs, while a trend toward hypermethylation was observed for the distribution of the
β values in CpG islands (Supplementary Figure 3).

To gain further insights into the DNA methylation differences between CRCs and CR-CSCs, we compared our
dataset of CR-CSCs with CRCs samples from datasets GSE42752 and GSE53051. To minimize the potentially
confounding batch effect discussed above and to maximize the identification of biologically relevant signals, we
focused on the DMRs mapping in regions associated to genes [32]. Using stringent criteria (Bonferroni corrected
p-value < 0.01, at least two adjacent CpG sites with >0.2 concordant difference of methylation between CRCs
and CR-CSCs) we selected 2967 DMRs mapping in 2688 genes (Supplementary Table 6). Compared with CRCs,
we found that in CR-CSCs DNA methylation increased at CpG islands (hypermethylation in 78% of the DMRs)
but decreased in shores and shelves (hypomethylation in 84 and 97% of the DMRs, respectively).

We used the DMRs associated to genes to cluster the samples of normal mucosa, adenoma, primary CRC
and metastases included in the GSE42752 and in GSE53051 datasets. Cluster analysis using the most significant
CpG site within each DMR suggested that the epigenetic profile of the selected DMRs tended to accompany
CRC progression (Figure 5B). Figure 6 shows examples of hypermethylation of gene promoters in CR-CSCs,
intermediate methylation in CRCs and hypomethylation in non-neoplastic mucosa.

17 DMRs mapped in microRNA genes (Supplementary Table 6), including miR-124-3 and miR-129-2, both
found hypermethylated in CR-CSCs in this study and already described as hypermethylated in CRCs compared
with normal tissue [51,52]. Moreover, we found 31 DMRs mapping in imprinted loci (Supplementary Table 6),
including the IGF2/H19 locus and the KCNQ1 gene both at 11p15, associated in several studies with CRC [53–55].

We plotted the CpG methylation status of the genes associated to cell stemness [6]. We found these genes, with
few exceptions, having complete promoter demethylation in CR-CSCs (Supplementary Figure 4), which could
attest promoter accessibility of these genes to sustain stemness and/or the reprogramming of differentiated CRC
cells toward the CR-CSC phenotype [56–58].

Finally, we analyzed the GSE42752 and GSE53051 datasets to evaluate the DNA methylation values of 262
DMPs that distinguish Gr1 and Gr2 CR-CSCs (Supplementary Table 3). Of these, 135 were included in both
datasets. Unsupervised clustering using these 135 probes showed that the Gr1 CR-CSCs clustered separately from
the other samples (Figure 7). Furthermore, the GEO samples tended to cluster according to CRC progression
from normal mucosa to CRC. We performed the same analyses for the 83 DMPs that had methylation values
between 0.3 and 0.5 in Gr1 but not in Gr2, 38 of which were included in GSE42752 and GSE53051 datasets
(Supplementary File 1). Clustering of GEO samples according to CRC progression tended to be recapitulated also
using this small set of probes (Supplementary Figure 5; K-means clustering with k = 4, adjusted rand index: 0.38).

Discussion
We analyzed the global methylation status of eight primary CR-CSC lines obtained from both primary CRCs and
their respective xenograft-derived tumors. Genetic investigation revealed a high grade of homogeneity in each of the
seven out of eight CR-CSC lines, thus permitting a remarkable degree of accuracy in the epigenetic analysis. Only
one out of eight lines presented a genetic profile that could reflect the presence of subclones. The homogeneity
of the CR-CSCs was also epigenetically maintained after rounds of in vitro and in vivo passages, highlighting the
experimental and technical sustainability to the propagation and study of the CR-CSC lines. These cells presented
a typical CRC cells mutational landscape involving TP53, KRAS, SMAD4 and APC genes [35]. However, MSI status
differed in these cells, a finding that could be relevant for therapeutic targeting. In fact, high immunogenicity,
induced by neo-antigen expression of neo-antigen through mismatch repair deficiency [59] could be relevant for the
eradication of the CR-CSC fraction of CR-CSCs within MSI-H CRCs.

By using three different techniques, we were able to discriminate the MSI-H CR-CSCs (Group 1) from those
with MSS/MSI-L features and CIN phenotype (Group 2). These two groups were distinguishable based on:
frequencies of genetic variations in 20 CRC associated genes investigated by next generation sequencing (NGS),
CNV analysis of seven chromosomal regions frequently deleted or amplified in CRC or methylation status of 262
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Figure 6. Methylation levels of a selection of differentially methylated regions between colorectal cancer stem cells and colorectal
cancers.

CpG dinucleotides. Moreover, we saw a weak increase in surface level of the metastatic marker CD44v6 [30] in
Group 2 relative to Group 1.

The MSI-H CRCs rarely metastasize [60]. In this respect MSI-H status is mutually exclusive with CIN, which
has been associated with metastatic potential [39]. Here, we identified a CR-CSC DNA methylation signature
associated to CIN. However, in vivo experiments did not confirm greater aggressiveness of the CIN relative to
the MSI CR-CSCs, since no differences in tumorigenic potential were identified between the two groups. This
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N1 Naumov
N1 Timp
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ADE Timp
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Color key

Value
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Figure 7. Clustering of GSE42752 and GSE53051 samples on the basis of differentially methylated probes between
Gr1 and Gr2 colorectal cancer stem cell lines.
Hierarchical clustering of CR-CSC lines, normal mucosa, adenoma, primary and metastatic CRCs samples included in
GSE42752 and in GSE53051 datasets, based on DNA methylation values of the differentially methylated probes that
distinguish Gr1 and Gr2 CR-CSC lines and that are included in the Infinium 450 k design (135 probes).
ADE: Adenoma; CRC: Colorectal cancer; CR-CSC: Colorectal cancer stem cell; MET: Metastatic.

result could reflect the fact that increased immunogenic potential [59,61–63], a hallmark of MSI-H CRCs, cannot
be evaluated in in vivo models based on immune-deficient mice. Furthermore, it is worth to note that the most
significant DMR between Gr1 and Gr2 fits with the DNA regulative elements of the MERTK gene, methylated
in the MSI-H and demethylated in the MSI-L/MSS CR-CSCs, respectively. MERTK is a tyrosine kinase receptor
that possesses several roles in cellular biology, including immune suppression through PDL-1 expression [64]. Thus,
our data suggest a possible role of epigenetics in immune escape, independently of neo-antigen expression. Another
significant difference between MSI-H and MSS CRCs is the lack of benefit of adjuvant 5-FU-based chemotherapy
in stage II colon MSI-H cancer patients [65]. We did not find DMRs in genes associated with 5-FU resistance [66,67],
but we registered miR-193a hypermethylation in Gr1 versus Gr2 (Supplementary Table 4), accordingly with its
methylation and involvement in 5-FU resistance in hepatocellular carcinoma cells [68]. However, this does not
exclude that our DMR regions, which are mostly shore, shelves and open sea, could be involved in tumor drug
resistance.

One of the most relevant epigenetic differences between the MSI-H (Gr1) and MSS/MSI-L (Gr2) subsets is
that most of the significant DMPs are localized in shelf, shore and open sea CpG positions. This is evident in the
light of the Gr1 specific-peak around 0.4 of β values, composed mostly of shelve, shore and open sea CpGs. Due
to the homogeneity of our cell lines, we assume that this value identifies CpGs that are monoallelically methylated,
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although we cannot exclude a specific CpGs hemimethylated pattern in CR-CSCs [69]. In the view of mono-allelic
methylation, since Irizarry et al. show that most of the cancer- and tissue-specific CpG methylations occurs at shore
positions and not at CpG islands of gene promoter [43], we acknowledge the possibility that the MSS/MSI-L (Gr2)
could have lost its tissue-specific epigenetic footprint when compared with the MSI group (Gr1) and/or gained
other methylation hallmarks.

Other studies correlated epigenetics to aneuploidy, but whether CIN could be caused [70,71] from or be the
cause [26,72] of aberrant DNA methylation is still unresolved. Our specific epigenetic signatures separating CR-
CSCs with or without CIN could provide insights into this unsolved issue by indicating new genomic regulative
elements for the chromosomal stability.

Next, we compared the methylation profiles of the CR-CSCs with those of non-neoplastic mucosa, adenoma,
primary and metastatic CRC and found a progression in methylation alterations from normal mucosa to CR-
CSCs. The overall hypomethylation of the CR-CSCs does not reflect the methylation status of the different
genomic compartments. In the CR-CSCs, CGIs were essentially hypermethylated, whereas shelves and shores were
hypomethylated. However, a more specific analysis identified demethylation of several gene promoters controlling
cell stemness. This suggests that demethylation of these genes is not necessary for cellular differentiation but
relevant/required for possible reprogramming of differentiated cells to a stem status. Therefore, as already stated for
intestinal stem cell differentiation, gene regulation by DNA methylation might play a role in the differentiation steps
of colorectal tumorigenesis [22,73]. However, given the molecular complexity of gDNA methylation, it is unclear
how this could occur. For example, an unexpected molecular mechanism was recently described by Roulois et al.,
who demonstrated that the demethylating agent 5-aza-2-deoxycytidine targets CRC-initiating cells by inducing
viral mimicry through activation of endogenous double-strand RNAs [74].

Conclusion
In conclusion, our findings provide further characterization of CR-CSCs and could help in the identification of
novel targets to be used for the eradication of resistant stem-like cancer cells in preclinical and clinical settings.
Moreover, the genetic and epigenetic homogeneity of the CR-CSCs derived from both primary and xenograft
tumors suggests that these models could be used to test the effectiveness of therapies against the CSC compartment
in vitro and in vivo.

Future perspective
CR-CSCs are implicated in tumor development, metastasis and therapy resistance; however, little is known about
their epigenetic features. The results presented in this manuscript pave the way for further researches that will
functionally characterize the involvement of CR-CSC DNA methylation in the regulation of cellular stemness
behavior and of metastatic potential, taking into account the differences that we have described between CR-CSCs
with or without MSI. It will be challenging to understand if these epigenetics alterations are affecting, consequence
or both of the CR-CSC phenotype, with particular regard to those CpGs that do not reside within CpG islands.
Finally, future research should address the prognostic potential of the methylation profiles of CR-CSC lines,
especially when purified from primary tumors of early-stages CRC patients.

Supplementary data

To view the supplementary data that accompany this paper please visit the journal website at:

www.futuremedicine.com/doi/full/10.2217/epi-2018-0158
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Summary points

• Accumulating evidence support the central role of cancer stem cells in colorectal cancer (CRC) initiation and
progression.

• The identification of a reliable signature characterizing colorectal cancer stem cells (CR-CSCs) with different
tumorigenic/metastatic capacities is crucial to design innovative therapeutic regimens.

• We genetically and epigenetically characterized eight CR-CSC lines isolated from primary CRC tissues.
• The analysis of nucleotide and copy number variations, microsatellite instability (MSI) and expression levels of

genes related to cancer stemness concordantly distinguished the CR-CSCs lines in three groups.
• Unsupervised clustering of DNA methylation profiles reproduced the classification of the CR-CSC lines in three

groups.
• CR-CSCs with high MSI exhibited a higher proportion of probes occurring in shores, shelves and open sea regions

displaying intermediate DNA methylation levels.
• These distinctive DNA methylation profiles were maintained after in vivo passages in immuno-deficient mouse

models.
• We defined an epigenetic signature distinguishing CR-CSCs with high and low MSI.
• The identification of these specific methylation signatures of CR-CSCs could have important implications in the

clinical setting for the management of CRC patients.

References
Papers of special note have been highlighted as: • of interest; •• of considerable interest

1. Torre LA, Bray F, Siegel RL, Ferlay J, Lortet-Tieulent J, Jemal A. Global cancer statistics, 2012. CA Cancer J. Clin. 65(2), 87–108 (2015).

2. SEER Cancer Stat Facts: Colon and Rectum Cancer. National Cancer Institute.
(2017) https://seer.cancer.gov/statfacts/html/colorect.html

3. Siegel R, Desantis C, Jemal A. Colorectal cancer statistics, 2014. CA Cancer J. Clin. 64(2), 104–117 (2014).

4. Fiori ME, Villanova L, De Maria R. Cancer stem cells: at the forefront of personalized medicine and immunotherapy. Curr. Opin.
Pharmacol. 35, 1–11 (2017).

5. Barker N, Ridgway RA, Van Es JH et al. Crypt stem cells as the cells-of-origin of intestinal cancer. Nature 457(7229), 608–611 (2009).

6. Zeuner A, Todaro M, Stassi G, De Maria R. Colorectal cancer stem cells: from the crypt to the clinic. Cell Stem Cell 15(6), 692–705
(2014).

7. Sangiorgi E, Capecchi MR. Bmi1 is expressed in vivo in intestinal stem cells. Nat. Genet. 40(7), 915–920 (2008).

8. Barker N, Van Es JH, Kuipers J et al. Identification of stem cells in small intestine and colon by marker gene Lgr5. Nature 449(7165),
1003–1007 (2007).

future science group www.futuremedicine.com 601

https://www.seer.cancer.gov/statfacts/html/colorect.html
https://www.futuremedicine.com/action/showLinks?doi=10.2217%2Fepi-2018-0153&pmid=24639052&crossref=10.3322%2Fcaac.21220&citationId=p_4
https://www.futuremedicine.com/action/showLinks?doi=10.2217%2Fepi-2018-0153&pmid=28527911&crossref=10.1016%2Fj.coph.2017.04.006&coi=1%3ACAS%3A528%3ADC%252BC2sXnsl2gurs%253D&citationId=p_5
https://www.futuremedicine.com/action/showLinks?doi=10.2217%2Fepi-2018-0153&pmid=19092804&crossref=10.1038%2Fnature07602&coi=1%3ACAS%3A528%3ADC%252BD1MXhtFOmsbg%253D&citationId=p_6
https://www.futuremedicine.com/action/showLinks?doi=10.2217%2Fepi-2018-0153&pmid=25479747&crossref=10.1016%2Fj.stem.2014.11.012&coi=1%3ACAS%3A528%3ADC%252BC2cXhvF2mtr%252FN&citationId=p_7
https://www.futuremedicine.com/action/showLinks?doi=10.2217%2Fepi-2018-0153&pmid=18536716&crossref=10.1038%2Fng.165&coi=1%3ACAS%3A528%3ADC%252BD1cXnslKkurg%253D&citationId=p_8
https://www.futuremedicine.com/action/showLinks?doi=10.2217%2Fepi-2018-0153&pmid=17934449&crossref=10.1038%2Fnature06196&coi=1%3ACAS%3A528%3ADC%252BD2sXht1Wgtr3E&citationId=p_9
https://www.futuremedicine.com/action/showLinks?doi=10.2217%2Fepi-2018-0153&pmid=25651787&crossref=10.3322%2Fcaac.21262&citationId=p_2


Research Article Visone, Bacalini, Di Franco et al.

9. Ricci-Vitiani L, Lombardi DG, Pilozzi E et al. Identification and expansion of human colon-cancer-initiating cells. Nature 445(7123),
111–115 (2007).

10. Jordan CT, Guzman ML, Noble M. Cancer stem cells. N. Engl. J. Med. 355(12), 1253–1261 (2006).

11. Meacham CE, Morrison SJ. Tumour heterogeneity and cancer cell plasticity. Nature 501(7467), 328–337 (2013).

12. Easwaran H, Tsai HC, Baylin SB. Cancer epigenetics: tumor heterogeneity, plasticity of stem-like states, and drug resistance. Mol. Cell
54(5), 716–727 (2014).

13. Gehart H, Clevers H. Tales from the crypt: new insights into intestinal stem cells. Nat. Rev. Gastroenterol. Hepatol. 16(1) 19–34 (2019)

•• A review article describing the new insight in the control of homeostasis and regeneration of the intestinal epithelium.

14. Douville J, Beaulieu R, Balicki D. ALDH1 as a functional marker of cancer stem and progenitor cells. Stem Cells Dev. 18(1), 17–25
(2009).

15. Medema JP. Cancer stem cells: the challenges ahead. Nat Cell Biol. 15(4), 338–344 (2013).

16. Soteriou D, Fuchs Y. A matter of life and death: stem cell survival in tissue regeneration and tumour formation. Nat. Rev.
Cancer 18 187–201 (2018).

17. Botchkina G. Colon cancer stem cells – from basic to clinical application. Cancer Lett. 338(1), 127–140 (2013).

18. Huang EH, Wicha MS. Colon cancer stem cells: implications for prevention and therapy. Trends Mol. Med. 14(11), 503–509 (2008).

19. Kreso A, Dick JE. Evolution of the cancer stem cell model. Cell Stem Cell 14(3), 275–291 (2014).

20. Esteller M, Herman JG. Cancer as an epigenetic disease: DNA methylation and chromatin alterations in human tumours. J. Pathol.
196(1), 1–7 (2002).

21. Song L, Li Y. The role of stem cell DNA methylation in colorectal carcinogenesis. Stem Cell Rev. 12(5), 573–583 (2016).

22. Kaaij LT, Van De Wetering M, Fang F et al. DNA methylation dynamics during intestinal stem cell differentiation reveals enhancers
driving gene expression in the villus. Genome Biol. 14(5), R50 (2013).

23. Toh TB, Lim JJ, Chow EK. Epigenetics in cancer stem cells. Mol. Cancer 16(1), 29 (2017).

24. De Sousa EMF, Colak S, Buikhuisen J et al. Methylation of cancer-stem-cell-associated Wnt target genes predicts poor prognosis in
colorectal cancer patients. Cell Stem Cell 9(5), 476–485 (2011).

25. Timp W, Bravo HC, Mcdonald OG et al. Large hypomethylated blocks as a universal defining epigenetic alteration in human solid
tumors. Genome Med. 6(8), 61 (2014).

26. Rodriguez J, Frigola J, Vendrell E et al. Chromosomal instability correlates with genome-wide DNA demethylation in human primary
colorectal cancers. Cancer Res. 66(17), 8462–9468 (2006).

27. Prasetyanti PR, Medema JP. Intra-tumor heterogeneity from a cancer stem cell perspective. Mol. Cancer 16(1), 41 (2017).

28. Lombardo Y, Scopelliti A, Cammareri P et al. Bone morphogenetic protein 4 induces differentiation of colorectal cancer stem cells and
increases their response to chemotherapy in mice. Gastroenterology 140(1), 297–309 (2011).

29. Todaro M, Alea MP, Di Stefano AB et al. Colon cancer stem cells dictate tumor growth and resist cell death by production of
interleukin-4. Cell Stem Cell 1(4), 389–402 (2007).

30. Todaro M, Gaggianesi M, Catalano V et al. CD44v6 is a marker of constitutive and reprogrammed cancer stem cells driving colon
cancer metastasis. Cell Stem Cell 14(3), 342–356 (2014).

31. Assenov Y, Muller F, Lutsik P, Walter J, Lengauer T, Bock C. Comprehensive analysis of DNA methylation data with RnBeads. Nat.
Methods 11(11), 1138–1140 (2014).

32. Bacalini MG, Boattini A, Gentilini D et al. A meta-analysis on age-associated changes in blood DNA methylation: results from an
original analysis pipeline for Infinium 450 k data. Aging 7(2), 97–109 (2015).

33. Yang H, Wang K. Genomic variant annotation and prioritization with ANNOVAR and wANNOVAR. Nat. Protoc. 10(10), 1556–1566
(2015).

34. Skidmore ZL, Wagner AH, Lesurf R et al. GenVisR: genomic visualizations in R. Bioinformatics 32(19), 3012–3014 (2016).

35. Fumagalli A, Drost J, Suijkerbuijk SJ et al. Genetic dissection of colorectal cancer progression by orthotopic transplantation of
engineered cancer organoids. Proc. Natl Acad. Sci. USA 114(12), E2357–E2364 (2017).

36. Drost J, Van Jaarsveld RH, Ponsioen B et al. Sequential cancer mutations in cultured human intestinal stem cells. Nature 521(7550),
43–47 (2015).

37. Picelli S, Zajac P, Zhou XL et al. Common variants in human CRC genes as low-risk alleles. Eur. J. Cancer 46(6), 1041–1048 (2010).

38. Campo C, Kohler A, Figlioli G et al. Inherited variants in genes somatically mutated in thyroid cancer. PLoS ONE 12(4), e0174995
(2017).

39. Bakhoum SF, Ngo B, Laughney AM et al. Chromosomal instability drives metastasis through a cytosolic DNA response. Nature
553(7689), 467–472 (2018).

602 Epigenomics (2019) 11(6) future science group

https://www.futuremedicine.com/action/showLinks?doi=10.2217%2Fepi-2018-0153&pmid=24607403&crossref=10.1016%2Fj.stem.2014.02.006&coi=1%3ACAS%3A528%3ADC%252BC2cXjvFWju7c%253D&citationId=p_21
https://www.futuremedicine.com/action/showLinks?doi=10.2217%2Fepi-2018-0153&pmid=24905005&crossref=10.1016%2Fj.molcel.2014.05.015&coi=1%3ACAS%3A528%3ADC%252BC2cXpslCrtrg%253D&citationId=p_13
https://www.futuremedicine.com/action/showLinks?doi=10.2217%2Fepi-2018-0153&pmid=28270604&crossref=10.1073%2Fpnas.1701219114&coi=1%3ACAS%3A528%3ADC%252BC2sXjvVyjsLw%253D&citationId=p_37
https://www.futuremedicine.com/action/showLinks?doi=10.2217%2Fepi-2018-0153&pmid=28209166&crossref=10.1186%2Fs12943-017-0600-4&citationId=p_29
https://www.futuremedicine.com/action/showLinks?doi=10.2217%2Fepi-2018-0153&pmid=11748635&crossref=10.1002%2Fpath.1024&coi=1%3ACAS%3A528%3ADC%252BD38XhtFOhs7g%253D&citationId=p_22
https://www.futuremedicine.com/action/showLinks?doi=10.2217%2Fepi-2018-0153&pmid=30429586&crossref=10.1038%2Fs41575-018-0081-y&citationId=p_14
https://www.futuremedicine.com/action/showLinks?doi=10.2217%2Fepi-2018-0153&pmid=25924068&crossref=10.1038%2Fnature14415&coi=1%3ACAS%3A528%3ADC%252BC2MXnsVWrur4%253D&citationId=p_38
https://www.futuremedicine.com/action/showLinks?doi=10.2217%2Fepi-2018-0153&pmid=18371377&crossref=10.1016%2Fj.stem.2007.08.001&coi=1%3ACAS%3A528%3ADC%252BD2sXht1eku7fJ&citationId=p_31
https://www.futuremedicine.com/action/showLinks?doi=10.2217%2Fepi-2018-0153&pmid=27402365&crossref=10.1007%2Fs12015-016-9672-6&coi=1%3ACAS%3A528%3ADC%252BC28XhtFynsL7L&citationId=p_23
https://www.futuremedicine.com/action/showLinks?doi=10.2217%2Fepi-2018-0153&pmid=20149637&crossref=10.1016%2Fj.ejca.2010.01.013&coi=1%3ACAS%3A528%3ADC%252BC3cXjs1alt7Y%253D&citationId=p_39
https://www.futuremedicine.com/action/showLinks?doi=10.2217%2Fepi-2018-0153&pmid=28410400&crossref=10.1371%2Fjournal.pone.0174995&citationId=p_40
https://www.futuremedicine.com/action/showLinks?doi=10.2217%2Fepi-2018-0153&pmid=23714178&crossref=10.1186%2Fgb-2013-14-5-r50&citationId=p_24
https://www.futuremedicine.com/action/showLinks?doi=10.2217%2Fepi-2018-0153&pmid=18573038&crossref=10.1089%2Fscd.2008.0055&coi=1%3ACAS%3A528%3ADC%252BD1MXhslChtrw%253D&citationId=p_16
https://www.futuremedicine.com/action/showLinks?doi=10.2217%2Fepi-2018-0153&pmid=29342134&crossref=10.1038%2Fnature25432&coi=1%3ACAS%3A528%3ADC%252BC1cXhtVOisb0%253D&citationId=p_41
https://www.futuremedicine.com/action/showLinks?doi=10.2217%2Fepi-2018-0153&pmid=25262207&crossref=10.1038%2Fnmeth.3115&coi=1%3ACAS%3A528%3ADC%252BC2cXhs1yhtrbK&citationId=p_33
https://www.futuremedicine.com/action/showLinks?doi=10.2217%2Fepi-2018-0153&pmid=28148257&crossref=10.1186%2Fs12943-017-0596-9&citationId=p_25
https://www.futuremedicine.com/action/showLinks?doi=10.2217%2Fepi-2018-0153&pmid=23548926&crossref=10.1038%2Fncb2717&coi=1%3ACAS%3A528%3ADC%252BC3sXltVygtrw%253D&citationId=p_17
https://www.futuremedicine.com/action/showLinks?doi=10.2217%2Fepi-2018-0153&pmid=17122771&crossref=10.1038%2Fnature05384&coi=1%3ACAS%3A528%3ADC%252BD2sXhsFOmug%253D%253D&citationId=p_10
https://www.futuremedicine.com/action/showLinks?doi=10.2217%2Fepi-2018-0153&pmid=22056143&crossref=10.1016%2Fj.stem.2011.10.008&citationId=p_26
https://www.futuremedicine.com/action/showLinks?doi=10.2217%2Fepi-2018-0153&pmid=29348578&crossref=10.1038%2Fnrc.2017.122&coi=1%3ACAS%3A528%3ADC%252BC1cXht1SitLs%253D&citationId=p_18
https://www.futuremedicine.com/action/showLinks?doi=10.2217%2Fepi-2018-0153&pmid=16990388&crossref=10.1056%2FNEJMra061808&coi=1%3ACAS%3A528%3ADC%252BD28XpvFKgtLY%253D&citationId=p_11
https://www.futuremedicine.com/action/showLinks?doi=10.2217%2Fepi-2018-0153&pmid=26379229&crossref=10.1038%2Fnprot.2015.105&coi=1%3ACAS%3A528%3ADC%252BC2MXhsVyrtbzO&citationId=p_35
https://www.futuremedicine.com/action/showLinks?doi=10.2217%2Fepi-2018-0153&pmid=25191524&crossref=10.1186%2Fs13073-014-0061-y&citationId=p_27
https://www.futuremedicine.com/action/showLinks?doi=10.2217%2Fepi-2018-0153&pmid=22537805&crossref=10.1016%2Fj.canlet.2012.04.006&coi=1%3ACAS%3A528%3ADC%252BC38XmvFKrsrk%253D&citationId=p_19
https://www.futuremedicine.com/action/showLinks?doi=10.2217%2Fepi-2018-0153&pmid=18929507&crossref=10.1016%2Fj.molmed.2008.09.005&coi=1%3ACAS%3A528%3ADC%252BD1cXht12ltLrK&citationId=p_20
https://www.futuremedicine.com/action/showLinks?doi=10.2217%2Fepi-2018-0153&pmid=24048065&crossref=10.1038%2Fnature12624&coi=1%3ACAS%3A528%3ADC%252BC3sXhsVOnurjN&citationId=p_12
https://www.futuremedicine.com/action/showLinks?doi=10.2217%2Fepi-2018-0153&pmid=27288499&crossref=10.1093%2Fbioinformatics%2Fbtw325&coi=1%3ACAS%3A528%3ADC%252BC2sXht1ajtbfI&citationId=p_36
https://www.futuremedicine.com/action/showLinks?doi=10.2217%2Fepi-2018-0153&pmid=16951157&crossref=10.1158%2F0008-5472.CAN-06-0293&coi=1%3ACAS%3A528%3ADC%252BD28XovF2isLk%253D&citationId=p_28


DNA methylation of colorectal cancer stem cells Research Article

•• A research article describing how chromosomal instability drive metastatic potential through the chronic activation of the
cytosolic DNA sensing pathway.

40. Jamal-Hanjani M, Wilson GA, Mcgranahan N et al. Tracking the evolution of non-small-cell lung cancer. N. Engl. J. Med. 376(22),
2109–2121 (2017).

41. Turajlic S, Swanton C. Metastasis as an evolutionary process. Science 352(6282), 169–175 (2016).

42. Fortin JP, Labbe A, Lemire M et al. Functional normalization of 450 k methylation array data improves replication in large cancer
studies. Genome Biol. 15(12), 503 (2014).

43. Irizarry RA, Ladd-Acosta C, Wen B et al. The human colon cancer methylome shows similar hypo- and hypermethylation at conserved
tissue-specific CpG island shores. Nat. Genet. 41(2), 178–186 (2009).

• A research article showing that most methylation alterations in colon cancer occur in specific-tissue CpG island shores.

44. Sandoval J, Heyn H, Moran S et al. Validation of a DNA methylation microarray for 450,000 CpG sites in the human genome.
Epigenetics 6(6), 692–702 (2011).

45. Cummings CT, Deryckere D, Earp HS, Graham DK. Molecular pathways: MERTK signaling in cancer. Clin. Cancer Res. 19(19),
5275–5280 (2013).

46. Liang XH, Li LL, Wu GG et al. Upregulation of CPE promotes cell proliferation and tumorigenicity in colorectal cancer. BMC Cancer
13, 412 (2013).

47. Lee TK, Murthy SR, Cawley NX et al. An N-terminal truncated carboxypeptidase E splice isoform induces tumor growth and is a
biomarker for predicting future metastasis in human cancers. J. Clin. Invest. 121(3), 880–892 (2011).

48. Vinson KE, George DC, Fender AW, Bertrand FE, Sigounas G. The Notch pathway in colorectal cancer. Int. J. Cancer 138(8),
1835–1842 (2016).

49. Bullock MD, Bruce A, Sreekumar R et al. FOXO3 expression during colorectal cancer progression: biomarker potential reflects a tumour
suppressor role. Br. J. Cancer 109(2), 387–394 (2013).

50. Naumov VA, Generozov EV, Zaharjevskaya NB et al. Genome-scale analysis of DNA methylation in colorectal cancer using Infinium
HumanMethylation450 BeadChips. Epigenetics 8(9), 921–934 (2013).

51. Lujambio A, Ropero S, Ballestar E et al. Genetic unmasking of an epigenetically silenced microRNA in human cancer cells. Cancer Res.
67(4), 1424–1429 (2007).

52. Bandres E, Agirre X, Bitarte N et al. Epigenetic regulation of microRNA expression in colorectal cancer. Int. J. Cancer 125(11),
2737–2743 (2009).

53. Veronese A, Lupini L, Consiglio J et al. Oncogenic role of miR-483-3p at the IGF2/483 locus. Cancer Res. 70(8), 3140–3149 (2010).

54. Cancer Genome Atlas N. Comprehensive molecular characterization of human colon and rectal cancer. Nature 487(7407), 330–337
(2012).

55. Cui H, Cruz-Correa M, Giardiello FM et al. Loss of IGF2 imprinting: a potential marker of colorectal cancer risk. Science 299(5613),
1753–1755 (2003).

56. Chaffer CL, Brueckmann I, Scheel C et al. Normal and neoplastic nonstem cells can spontaneously convert to a stem-like state. Proc.
Natl Acad. Sci. USA 108(19), 7950–7955 (2011).

57. Bjerkvig R, Tysnes BB, Aboody KS, Najbauer J, Terzis AJ. Opinion: the origin of the cancer stem cell: current controversies and new
insights. Nat. Rev. Cancer 5(11), 899–904 (2005).

58. Plaks V, Kong N, Werb Z. The cancer stem cell niche: how essential is the niche in regulating stemness of tumor cells? Cell Stem Cell
16(3), 225–238 (2015).

59. Germano G, Lamba S, Rospo G et al. Inactivation of DNA repair triggers neoantigen generation and impairs tumour growth. Nature
552(7683), 116–120 (2017).

•• A research article demonstrating how mismatch repair deficiency drives the generation of neoantigens with subsequent increase
of cancer cell immunogenicity.

60. Brenner H, Kloor M, Pox CP. Colorectal cancer. Lancet 383(9927), 1490–1502 (2014).

61. Chang K, Taggart MW, Reyes-Uribe L et al. Immune profiling of premalignant lesions in patients with lynch syndrome. JAMA
Oncol. 4(8), 1085–1092 (2018) (Epub ahead of print).

62. Phillips SM, Banerjea A, Feakins R, Li SR, Bustin SA, Dorudi S. Tumour-infiltrating lymphocytes in colorectal cancer with
microsatellite instability are activated and cytotoxic. Br. J. Surg. 91(4), 469–475 (2004).

63. Le Gouvello S, Bastuji-Garin S, Aloulou N et al. High prevalence of Foxp3 and IL17 in MMR-proficient colorectal carcinomas. Gut
57(6), 772–779 (2008).

64. Nguyen KQ, Tsou WI, Calarese DA et al. Overexpression of MERTK receptor tyrosine kinase in epithelial cancer cells drives
efferocytosis in a gain-of-function capacity. J. Biol. Chem. 289(37), 25737–25749 (2014).

future science group www.futuremedicine.com 603

https://www.futuremedicine.com/action/showLinks?doi=10.2217%2Fepi-2018-0153&pmid=16327766&crossref=10.1038%2Fnrc1740&coi=1%3ACAS%3A528%3ADC%252BD2MXht1Wgu73K&citationId=p_61
https://www.futuremedicine.com/action/showLinks?doi=10.2217%2Fepi-2018-0153&pmid=23828518&crossref=10.1038%2Fbjc.2013.355&coi=1%3ACAS%3A528%3ADC%252BC3sXhtFOit7zP&citationId=p_53
https://www.futuremedicine.com/action/showLinks?doi=10.2217%2Fepi-2018-0153&pmid=25074939&crossref=10.1074%2Fjbc.M114.570838&coi=1%3ACAS%3A528%3ADC%252BC2cXhsFeqsr3J&citationId=p_69
https://www.futuremedicine.com/action/showLinks?doi=10.2217%2Fepi-2018-0153&pmid=25748930&crossref=10.1016%2Fj.stem.2015.02.015&coi=1%3ACAS%3A528%3ADC%252BC2MXjtlGjsr0%253D&citationId=p_62
https://www.futuremedicine.com/action/showLinks?doi=10.2217%2Fepi-2018-0153&pmid=19151715&crossref=10.1038%2Fng.298&coi=1%3ACAS%3A528%3ADC%252BD1MXntFGrtA%253D%253D&citationId=p_46
https://www.futuremedicine.com/action/showLinks?doi=10.2217%2Fepi-2018-0153&pmid=29186113&crossref=10.1038%2Fnature24673&coi=1%3ACAS%3A528%3ADC%252BC2sXhvVynsLbM&citationId=p_63
https://www.futuremedicine.com/action/showLinks?doi=10.2217%2Fepi-2018-0153&pmid=17308079&crossref=10.1158%2F0008-5472.CAN-06-4218&coi=1%3ACAS%3A528%3ADC%252BD2sXhvVWrurk%253D&citationId=p_55
https://www.futuremedicine.com/action/showLinks?doi=10.2217%2Fepi-2018-0153&pmid=19521961&crossref=10.1002%2Fijc.24638&coi=1%3ACAS%3A528%3ADC%252BD1MXht1WmsLnM&citationId=p_56
https://www.futuremedicine.com/action/showLinks?doi=10.2217%2Fepi-2018-0153&pmid=24225001&crossref=10.1016%2FS0140-6736%2813%2961649-9&citationId=p_65
https://www.futuremedicine.com/action/showLinks?doi=10.2217%2Fepi-2018-0153&pmid=23833304&crossref=10.1158%2F1078-0432.CCR-12-1451&coi=1%3ACAS%3A528%3ADC%252BC3sXhsFyns7nL&citationId=p_49
https://www.futuremedicine.com/action/showLinks?doi=10.2217%2Fepi-2018-0153&pmid=24006921&crossref=10.1186%2F1471-2407-13-412&citationId=p_50
https://www.futuremedicine.com/action/showLinks?doi=10.2217%2Fepi-2018-0153&pmid=29710228&crossref=10.1001%2Fjamaoncol.2018.1482&citationId=p_66
https://www.futuremedicine.com/action/showLinks?doi=10.2217%2Fepi-2018-0153&pmid=22810696&crossref=10.1038%2Fnature11252&citationId=p_58
https://www.futuremedicine.com/action/showLinks?doi=10.2217%2Fepi-2018-0153&pmid=21285511&crossref=10.1172%2FJCI40433&coi=1%3ACAS%3A528%3ADC%252BC3MXjtVWktLg%253D&citationId=p_51
https://www.futuremedicine.com/action/showLinks?doi=10.2217%2Fepi-2018-0153&pmid=28445112&crossref=10.1056%2FNEJMoa1616288&coi=1%3ACAS%3A528%3ADC%252BC2sXhtlyksrvM&citationId=p_43
https://www.futuremedicine.com/action/showLinks?doi=10.2217%2Fepi-2018-0153&pmid=15048750&crossref=10.1002%2Fbjs.4472&coi=1%3ASTN%3A280%3ADC%252BD2c7lsVWnsg%253D%253D&citationId=p_67
https://www.futuremedicine.com/action/showLinks?doi=10.2217%2Fepi-2018-0153&pmid=26264352&crossref=10.1002%2Fijc.29800&coi=1%3ACAS%3A528%3ADC%252BC2MXhtl2lt7zP&citationId=p_52
https://www.futuremedicine.com/action/showLinks?doi=10.2217%2Fepi-2018-0153&pmid=27124450&crossref=10.1126%2Fscience.aaf2784&coi=1%3ACAS%3A528%3ADC%252BC28XlsFSmu74%253D&citationId=p_44
https://www.futuremedicine.com/action/showLinks?doi=10.2217%2Fepi-2018-0153&pmid=21498687&crossref=10.1073%2Fpnas.1102454108&coi=1%3ACAS%3A528%3ADC%252BC3MXmsVSkur0%253D&citationId=p_60


Research Article Visone, Bacalini, Di Franco et al.

65. Kawakami H, Zaanan A, Sinicrope FA. Microsatellite instability testing and its role in the management of colorectal cancer. Curr. Treat
Options Oncol. 16(7), 30 (2015).

66. Zhang N, Yin Y, Xu SJ, Chen WS. 5-Fluorouracil: mechanisms of resistance and reversal strategies. Molecules 13(8), 1551–1569 (2008).

67. Kunicka T, Prochazka P, Krus I et al. Molecular profile of 5-fluorouracil pathway genes in colorectal carcinoma. BMC Cancer 16(1), 795
(2016).

68. Ma K, He Y, Zhang H et al. DNA methylation-regulated miR-193a-3p dictates resistance of hepatocellular carcinoma to 5-fluorouracil
via repression of SRSF2 expression. J. Biol. Chem. 287(8), 5639–5649 (2012).

69. Shao C, Lacey M, Dubeau L, Ehrlich M. Hemimethylation footprints of DNA demethylation in cancer. Epigenetics 4(3), 165–175
(2009).

70. Chango A, Abdennebi-Najar L, Tessier F et al. Quantitative methylation-sensitive arbitrarily primed PCR method to determine
differential genomic DNA methylation in Down Syndrome. Biochem. Biophys. Res. Commun. 349(2), 492–496 (2006).

71. Davidsson J, Veerla S, Johansson B. Constitutional trisomy 8 mosaicism as a model for epigenetic studies of aneuploidy. Epigenetics
Chromatin 6(1), 18 (2013).

72. Herrera LA, Prada D, Andonegui MA, Duenas-Gonzalez A. The epigenetic origin of aneuploidy. Curr. Genomics. 9(1), 43–50 (2008).

73. Sheaffer KL, Kim R, Aoki R et al. DNA methylation is required for the control of stem cell differentiation in the small intestine. Genes.
Dev. 28(6), 652–664 (2014).

74. Roulois D, Loo Yau H, Singhania R et al. DNA-demethylating agents target colorectal cancer cells by inducing viral mimicry by
endogenous transcripts. Cell 162(5), 961–973 (2015).

604 Epigenomics (2019) 11(6) future science group

https://www.futuremedicine.com/action/showLinks?doi=10.2217%2Fepi-2018-0153&pmid=23816241&crossref=10.1186%2F1756-8935-6-18&coi=1%3ACAS%3A528%3ADC%252BC3sXhtFyisbvF&citationId=p_76
https://www.futuremedicine.com/action/showLinks?doi=10.2217%2Fepi-2018-0153&pmid=19424483&crossref=10.2174%2F138920208783884883&coi=1%3ACAS%3A528%3ADC%252BD1cXkvFemuro%253D&citationId=p_77
https://www.futuremedicine.com/action/showLinks?doi=10.2217%2Fepi-2018-0153&pmid=26031544&crossref=10.1007%2Fs11864-015-0348-2&citationId=p_70
https://www.futuremedicine.com/action/showLinks?doi=10.2217%2Fepi-2018-0153&pmid=24637118&crossref=10.1101%2Fgad.230318.113&coi=1%3ACAS%3A528%3ADC%252BC2cXlsF2ntr0%253D&citationId=p_78
https://www.futuremedicine.com/action/showLinks?doi=10.2217%2Fepi-2018-0153&pmid=18794772&crossref=10.3390%2Fmolecules13081551&coi=1%3ACAS%3A528%3ADC%252BD1cXhtVCju7jK&citationId=p_71
https://www.futuremedicine.com/action/showLinks?doi=10.2217%2Fepi-2018-0153&pmid=26317465&crossref=10.1016%2Fj.cell.2015.07.056&coi=1%3ACAS%3A528%3ADC%252BC2MXhsVensLbP&citationId=p_79
https://www.futuremedicine.com/action/showLinks?doi=10.2217%2Fepi-2018-0153&pmid=27733154&crossref=10.1186%2Fs12885-016-2826-8&coi=1%3ASTN%3A280%3ADC%252BC2svpsFGlsw%253D%253D&citationId=p_72
https://www.futuremedicine.com/action/showLinks?doi=10.2217%2Fepi-2018-0153&pmid=19287214&crossref=10.4161%2Fepi.4.3.8277&coi=1%3ACAS%3A528%3ADC%252BD1MXptlWnurY%253D&citationId=p_74
https://www.futuremedicine.com/action/showLinks?doi=10.2217%2Fepi-2018-0153&pmid=16949045&crossref=10.1016%2Fj.bbrc.2006.08.038&coi=1%3ACAS%3A528%3ADC%252BD28Xps1Ogs78%253D&citationId=p_75


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /All
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (Coated FOGRA39 \050ISO 12647-2:2004\051)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize false
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness false
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages false
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 400
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /FlateEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages false
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 400
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /FlateEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages false
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /ENU ([Based on 'PPG Indesign CS4_5_5.5'] [Based on 'PPG Indesign CS3 PDF Export'] Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks true
      /AddPageInfo false
      /AddRegMarks true
      /BleedOffset [
        8.503940
        8.503940
        8.503940
        8.503940
      ]
      /ConvertColors /NoConversion
      /DestinationProfileName ()
      /DestinationProfileSelector /NA
      /Downsample16BitImages true
      /FlattenerPreset <<
        /ClipComplexRegions false
        /ConvertStrokesToOutlines false
        /ConvertTextToOutlines false
        /GradientResolution 600
        /LineArtTextResolution 2400
        /PresetName (Pureprint flattener)
        /PresetSelector /UseName
        /RasterVectorBalance 1
      >>
      /FormElements false
      /GenerateStructure false
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MarksOffset 8.835590
      /MarksWeight 0.250000
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /NA
      /PageMarksFile /RomanDefault
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /LeaveUntagged
      /UseDocumentBleed false
    >>
    <<
      /AllowImageBreaks true
      /AllowTableBreaks true
      /ExpandPage false
      /HonorBaseURL true
      /HonorRolloverEffect false
      /IgnoreHTMLPageBreaks false
      /IncludeHeaderFooter false
      /MarginOffset [
        0
        0
        0
        0
      ]
      /MetadataAuthor ()
      /MetadataKeywords ()
      /MetadataSubject ()
      /MetadataTitle ()
      /MetricPageSize [
        0
        0
      ]
      /MetricUnit /inch
      /MobileCompatible 0
      /Namespace [
        (Adobe)
        (GoLive)
        (8.0)
      ]
      /OpenZoomToHTMLFontSize false
      /PageOrientation /Portrait
      /RemoveBackground false
      /ShrinkContent true
      /TreatColorsAs /MainMonitorColors
      /UseEmbeddedProfiles false
      /UseHTMLTitleAsMetadata true
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice


