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ABSTRACT
We study the charge transport properties of a system of liquid crystaldiscotic molecules in two
distinct phases.To differentiate between the two phases, we use a self-consistentmodel that
describes the pairwise interaction between molecules,the electronic coupling between them and
the difference in orbitalenergies.This multi-scale approach hinges upon having systems that are
both accurate (to within atomic resolution) and large (,10,000 molecules).The two phases have
dramatically different charge transport network topologies,directly correlated to their molecular
structures.We quantify the charge transport on both a macroscopic and microscopic scale,taking
advantage of the model’s resolution to understand the role of molecular packing in charge transport.

1. Introduction

Organic electronics are a rapidly advancing technology
and promise many advantages over traditionalsilicon
semiconductors.Aside from being recyclable, light-
weight, flexible and easy to produce [1],the range of
candidate organic molecules, and combinations
thereof, means thatorganic electronics are,in princi-
ple, extremely tunable.As an obvious corollary to this
is that if there are many possible molecules,and the
structure of a molecule affects its electronic properties,
then finding the ‘best’ molecules is a difficult task. Thus
computational screening of candidate moleculesis a
critical requirement for designing organic electronic
devices [2]. Multi-scale modelling of a candidate
organic semiconductor (OSC) must begin with a con-
sideration of a single molecule and end with a descrip-
tion of the electricalproperties of a bulk sample.

Charge conduction in organic systems occurs
through a very different mechanism from conventional
metallic/crystalline conductors and semiconductors.
The transport occurs through a series of discrete charge
carrier hops between localised sites, rather than
through normal band transport [3,4].As such,charge
transport cannot be considered in reciprocal space and
the local real space environment around the mechan-
ism is crucial [5]. The probability of transition between
two molecules is proportional to the overlap of their
electronic orbitals so, broadly speaking, one would
expectan exponential reduction in the hopping rate
as moleculesmove apart. The key charge transport
parameters are primarily influenced by the local orien-
tation, structure and position of the molecules [6] –
without an accurate structure one is forced to assume a
prior value or distribution.



To relate the microscopic transport between a pair of
molecules to the bulk (average) properties of a material
one must consider a series of individual hopping events
for a set of charge carriers distributed through the system.
Intuitively, this is not a series of identical hops; each
depends on the specific molecules involved,as well as
the local electrostatic potential. This can be treated math-
ematically by assuming certain distributions of the mole-
cular energy levels (the distribution of electronic states)
and the pair coupling terms. However, the use of lattice
models to describe fundamentally disordered systems is
limited [7] and neglects the effect of structure on many
length scales:the shape ofan individual molecule,the
local packing geometry of molecules, density fluctuations
associated with long range order.Alternatively,one can
use numerical modelling to explicitly describe trajectories
of the system. This approach means one can describe the
mechanism to varying levels of accuracy.

To self-consistently describe a morphology, one
must: describe the interactions between molecules,
use this to simulate a many-body molecular structure
under a given set of thermodynamic parameters;then

calculate the relative energies of molecules;finally, one
must calculate the electronic coupling between mole-
cules. To make such a multi-scale method feasible, one
cannot simply use brute force; realistic device scales are
of the order of tens of nanometres,equivalent to
~10,000 molecules. To obtain an equilibrated atomistic
structure of this system using molecular dynamics
would be prohibitively expensive.In order to calculate
all of the necessary parameters using consistent meth-
ods,one must use coarse-grained molecular dynamics
(CGMD) to simulate an equilibrium structure.

To investigate the effect of structure on the properties
of an OSC,we will study the charge transport properties
of a single molecule in two distinct structuralphases.
Triphenylenes are a group of organic discotic molecules
that possess radial symmetry and have a large axial pro-
jection of electron density. This is due to the high degree
of carbon–carbon doublebonding within the central
structure of four benzene rings leading to highly deloca-
lised electron density acrossthe molecule[8]. Hexa-
octylthiotriphenylene(HOTT) (see Figure 1) exhibits
semiconducting properties and a structural phase change

Figure 1.(Colour online) A schematic showing the atomic structure of HOTT and the equivalent coarse-grained bead that replaces
the molecule (top),and smallsections of the many-body morphologies (bottom).



between a hexagonally packed columnar phase and an
isotropic phase [9,10].By self-consistently modelling the
charge transportpropertiesof the two phases we will
demonstrate our multi-scale methodology and distinguish
distinct electronic regimes that a lattice model could not.

The development and application of CGMD is a non-
trivial task. To effectively capture the interactions of
multiple, overlapping atomic potentialswith a single,
effective two body potential is a challenge few appreciate.
One cannot implement too many parameters or degrees
of freedom, lest the interaction become too complex and
negate any numerical speed up; however, it cannot be too
coarse an approximation lest it create false degeneracies
in the potential landscape.A coarse-grained modelof
HOTT has been previously developed that recreates the
columnar to isotropic phase transition [8].

2. Method

To simulate the dynamics of HOTT, Zannoni and
coworkers used a Gay-Berne potential [11] that has
both an angular and a separation dependence:

Uð~̂ui;~̂uj;~̂r ijÞ ¼ 420 2 ð~̂ui;~̂uj;~̂r ijÞ

σ0
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whereb~ui is the unit vector that describes the orientation of
molecule i, σ0 ( 0) fixes the scales of length (energy), while
σðb~ui; b~uj; b~r ijÞ and ðb~ui; b~uj; b~r ijÞ correspond to the anisotropic
contact distance and potential well depth, respectively.

Determining the precise expressions for ,σ and σ0
are critical to reproducing the correct potential. This was
performed by Pro.Zannoni’s group;if the reader wants
more information,we would refer them to [9].For this
study it suffices that their modelallowed large systems
(,10,000 molecules) to be equilibrated in two structural
phasesat two temperatures:an amorphous, isotropic
phase at400 K and an ordered phase of hexagonally
packed columns at 280 K. Finally, they were able to map
the positions of individualatoms back onto the coarse-
grained molecular coordinates,resulting in an atomic-
ally resolved equilibrium structure.Figure 1 shows the
atomic structure of HOTT, the size and shape ofthe
coarse-grained bead using in the MD simulations and
the resultant back mapping that can be performed.

We can use the equilibrated structure as the system
that charge transportoccurs throughout.Charge car-
riers can hop between sites of localised charge density –

in HOTT these sites correspond to the central benzene
rings of the molecule.From the atomic structure we
know the positions and, crucially, the orientations of
these sections relative to one another.We calculated
the rate of charge transport events from site i to site j,
kij , using the Marcus rate equation[12]:

κij ¼
jJij j2

h

ffiffiffiffiffiffiffiffiffiffi
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where Jij is the electronic transfer integral between sites, λ
is the reorganisation energy ofthe system during the
charge transfer process,ΔGij is the change in the Gibbs
free energy before and after the process, kB is Boltzmann’s
constantand T is the temperature.The change in the
Gibbs energy is calculated in electron volts as

ΔGij ¼
q
qj j

ðEi  E jÞ þ ðϕj  ϕ iÞ
h i

(3)

where q is the charge of the particle performing the
hop, E is the site energy (equivalent to the HOMO
energy for holes and the LUMO energy for electrons)
and ϕ is the electrostatic potentialat the hopping site
position. In a departure from standard practice, we
solve the discretised Poisson’s equation with a cloud-
in-cell method to allow for the long range nature of the
Coulomb interactions [13],

ϕ ¼ Ñ 2 ρ
(4)

whereϕ is the discretised electric potential and  ¼ 0 r
is the permittivity of free space multiplied by the mate-
rial’s dielectric constant, with appropriate boundary
conditions describing the applied bias. A coarse-grained
3D charge density,ρ, is defined on a grid, projecting the
charges within each voxelonto the eight voxelvertices
before solving Equation 4.Each hopping site’s electro-
static potentialthen comes from mappingϕ onto that
site.The charge density distribution and potentialpro-
file is recalculated after every KMC event.

The use of kinetic Monte Carlo (KMC) models to
describe charge transporton OSCs is well established
[14–16] and flexible enough to incorporate several
levels of detail. A KMC simulation is essentially a
Markov chain that consists of a series of discrete
events,each with its own waiting time, during which
the state of the system does not change.For charge
transport in OSCs, this is equivalent to a series of
hopping events between sites thatare fixed in space.
This can be mapped onto a network transport model;
each individualhopping site becomes a node in a net-
work; network connections (edges) exist between pairs
of sites that a particle can move between in a single



event.The details of the explicit numericalsimulation
determine the number, range and weighting of the
edges between nodes.By using this mapping one can
directly compare the results of different KMC models,
as well as quantify the nature of transport on a micro-
scopic level.

As mentioned above, this approach requires the
calculation of bespoke parameters,Jij , ΔGij , for distinct
pairs ij. We calculated the transfer integrals and the site
energies using VOTCA-CTP [17–22] with a polarisable
Thole model [23]. VOTCA [20] is a toolkit for a variety
of molecular coarse-grainingapplications; VOTCA-
CTP builds upon this by calculating the charge trans-
port properties of coarse-grained systems;in this case,
we are calculating the orbital overlap not between
atoms but between molecules.The electronic orbital
information of isolated molecules,the ground states
and both ionised states, necessary forVOTCA was
calculated using Gaussian [24].We calculated transfer
integrals for all pairs that satisfied the constraint
rij < 2:5 nm, where rij is the centre of mass distance
between sites iand j. This cut-off was chosen as the
magnitude of J2

ij decays exponentially and beyond
2.5 nm; they become sufficiently small while still
including non-nearestneighbours (see Figure 4).The
probability of charge transfer events occurring over
more than 2.5 nm is so small that including these
events would not affect the observed charge transport.
The electrostatic contributions to ΔGij are calculated
using the cloud-in-cell particle-mesh method described
by Hockney & Eastwood [13]. We refer to a set of
hopping site positions, the associated energiesand
coupling parameters as a morphology.

The first reaction method (FRM) was used to select
the next event to be performed in the KMC simulation
[25]. In brief, the FRM method requires us to calculate
the rate (νk) of every possible event in the system, then
for each event draw a waiting time (tðkÞ

w ) from a
Poissonian distribution parameterised by νk. At each
KMC step we perform the event with the shortest
waiting time. We note that given a set of M events
with rates ν1; . . . ; νM and waiting times t ð1Þ

w ; . . . ; tðMÞ
w ,

the probability that the kth event is performed is given
by P t ðkÞ

w ¼ min½tð1Þ
w ; . . . ; tðMÞ

w , which is equivalent to:

Pðkjν1; . . . ; νMÞ ¼ νk=
X

i
νi: (5)

We ran six simulations with different random number
seeds for each morphology. The simulations were
initiated with no charge carriers present in the cell.
As the simulation ran, injection of charge carriers

took place at the top electrode and extraction at the
bottom electrode.Injection was treated as a single step
process in which the rate of a carrier being injected
onto a random, vacant hopping site adjacent to the
electrode is calculated as the Marcus hopping rate
from the electrode site to the site in the bulk of the
device. The difference in energy is considered as
ΔGij ¼ q

qj j ðEi  E ðajcÞ
F Þ þ ðϕj  V ðajcÞÞ

h i
, where EF is

the Fermi energy of the electrode, V is the voltage
applied to the electrode and ajc distinguishes between
the anode or cathode.

We note that in any system of discrete, time-sequen-
tial reactions,reactions that are slower by orders of
magnitude are the rate-determining processes for the
total system trajectory.As such,given that the transfer
integrals span many orders,the slowesthops are the
most important with respect to the macroscopic trans-
port properties. This means we need to capture the full
distribution of reactions, including the tail of slow
reactions,and use a numerical algorithm that allows
slow events to occur. To include all possible events and
rates it is important to model large system sizes that
will feature many of the pairwise arrangements that are
possible at a given statepoint.

Once the dynamics reached steady state with respect
to charge injection and extraction,measurements of the
mean square displacement,hr2ðτÞi,were taken at inter-
vals of Δt ¼ 5  10 3 ps.If Δt is too short, compared to
the carrier transit time,hr2ðτÞi is dominated by charge
transfer back and forth within a strongly coupled pair, in
a rattling motion. To measure the charge carrier motion,
we calculated the mean square distance displacement of
free charge carriers as a function of time τ,

hr2ðτÞi ¼
XM

j¼0

1
N

XN

i¼0
r iðtj þ ΔtÞ  r iðtjÞ

2 (6)

where M is the number of time steps.The maximum
simulation time τmax was set at 108ps. Continuous
measurements, such as the mean squared displacement
(MSD), were averaged over allKMC trajectories.The
mobility was measured using:

μ ¼
D

kBT
; D ¼ Limτ!1

hr2ðτÞi
τ

; (7)

where kB is the Boltzmann constant.

2.1. Network analysis

To investigate the role of a given pair of molecules in
charge transport, as compared to properties of the
entire system,we need to use a description that treats



pairs, rather than individual molecules,as the simplest
individual object. To achieve this we used tools from
graph theory [26] that explicitly considers the connec-
tions between objects as entities in their own right. We
mapped the transfer integrals onto a transportation
network, called a graph,that consists ofnodes linked
by edges;an example is illustrated in Figure 2.In this
case,nodes are the HOTT molecules and edgesare
links between a molecule and all other molecules
within the transfer cut-off rc.

Network analysis has been used to study organic
charge transport networks and kinetic Monte methods
before. Jackson et al. used dynamic network techniques to
study how the charge transportnetwork changes over
time as the molecules move [27]; however,they did not
model the resultant charge transport properties. Cottaar
et al. used percolation theory on a 2D lattice to describe
the effects of correlated and uncorrelated energetic dis-
order [28]; they considered the percolative pathways in
terms of the current density between lattice sites forming
edges.The above study was lattice-based and although
they showed the existence of favoured charge pathways
they could not relate this to any structural properties of
the system,and the energetic disorder was drawn from
chosen distribution.Graph theoreticalapproaches were
also applied to KMC simulations of chemical kinetics by
Stamatakis & Vlachos [29]; this is still a system of discrete
events and the underlying algorithm is similar.

To probe charge transport, we use the charge trajec-
tories to find the elements of a traffic matrix T, an
order N square matrix with rows and columns each
linked to molecules i = 1 to N. Its diagonal elements
are zero.Its off diagonal elements,Tij , are equal to the
number of charges that hopped between site i and site
j, i.e. the traffic from site i to j.

We also define the linked traffic, T̂ij , of an edge as
the average traffic of the set of neighbouring edges in a

given direction. For an edge from i to j this set includes
all edges thatend at i or start from j, excluding the
reverse edge from j to i.We can write T̂ij :

T̂ij ¼
1
2

P
h Thi  T ji

Mi  1
þ

P
k Tjk  T ji

Mj  1
(8)

where Mi (M j) is the number of neighbouring nodes to
node i (j) and h (k) is an index over this set.The sums
are over neighbouring edges,so the first (second) sum
on the right-hand side is over all edges thatbegin at
site i (j) and end at site j (i). Given that the traffic Tij is
an extensive measurement in time,all traffic measure-
ments are made for the same simulation time τ max.
There is a net flux from site i to j:

~Fij ¼ ðTij  T jiÞ~eij=τmax (9)

where~eij is the unit vector linking sites i and j. Note
that the flux matrix is skew symmetric.

3. Results

We have investigated the charge transport properties of the
two morphologies,with a focus on exploiting the micro-
scopic resolution given by the self-consistently generated
atomistic morphology. Figure 3 shows the generated
morphologiesin their entirety: the columnar ordering
spans the entire system at T ¼ 280K, with a well described
separation between columns,the 400K morphology is
amorphous and the molecules have an isotropic orienta-
tion. The T ¼ 280K system consists of 9011 molecules in a
system of size 15.67  15.67  52.85 nm.The T ¼ 400K
system size consists of 8968 molecules in a system of size
16.32  16.32  65.36 nm.

To investigate the topology of the transport net-
work, completely apart from transport and carriers,
we can consider the transfer integrals. They are a static

Figure 2. (Colouronline) Schematic illustration ofthe network. Nodes are the molecules shown as ellipses.For each pairof
molecules separated by less than rc, there are two edges whose directions are shown by the arrows joining the nodes.The node
labels show how the linked traffiĉTij is calculated from Equation 8.



property of the network, pertaining to connections
between nodes and are not affected by the movement
of charges.Figure 4 shows the value oftransfer inte-
grals for each pair against the Cartesian components of
the pair separation.In terms of the hopping network,
the transfer integral between two sites is equalto the
weight of the edge between them.The larger the trans-
fer integral, the more strongly connected the two cor-
responding sites are.

Figure 4(a) shows the edge weights against separa-
tion in the columnar morphology; there is a clear
structure to the distribution. In the x and y compo-
nents there is a single cluster of highly connected edges
(Jij > 1012 eV) around Δrxy ¼ 0 with a second,contin-
uous distribution of edgeswith (J ij < 1012 ). These
edgesare intra-column connections; the axial radius
of HOTT is rk ¼ 0:653 nm so within 2r k the sites
cannot overlap in the xy plane. The most strongly
connected sitesare nearest neighbours in the same
column, weaker edgesare further neighbours, there
are distinct grouping for the second and third nearest
neighbours.At distancesgreater than 2rk, the edges
must correspond to inter-column couplings,consider-
ing the direction of effective coupling is normal to the
axial symmetry of the molecule one would expect this
coupling to be relatively weak.

We now consider the strength of transfer integrals
against the separation in z, the right-hand panel of
Figure 4(a);there is again a distinction between inter-
and intra-column couplings.The dashed line indicates
an exponentialdecay with separation;the clusters that

lie along this trend have separations that correlate with
intra-column couplings and the radial height of HOTT
is r? ¼ 0:172 nm. Recalling that r2

ij ¼ Δx2 þ Δy2 þ Δz2,
we can associate the two strongestsets of couplings
with nearest and second-nearestneighbours within a
column. The spacings are close to 0 in the xy plane and
around  2r ? and  4r ? in the z direction.

The couplings in the amorphous system are iden-
tically distributed in the xy plane and in the z direc-
tion; see Figure 4(b).The distributions are isotropic
with no defined structure beyond a slight inflection
in the outer edge around Δr ¼ 1 nm. The strength
of these transfer integrals is consistent with nearest
neighbour, co-facial couplings. In turn, the pair
separations also fit this kind of arrangement,
although not aligned to any specific Cartesian axis.
This suggests that coupling in the amorphous system
is isotropic with an exponential dependence on
separation,with a secondary short-range increase in
couplings due to molecules with their central aro-
matic sections parallel.

To quantify charge transport on the scale of the
entire system, we measured the MSD, shown in
Figure 5,according to Equation 6.The columnar mor-
phology exhibits an order of magnitude faster charge
transport, compared to the amorphous system.The
MSD does not illustrate why this is; it is simply a
measurementof distance travelled,although we can
glean some insight by looking at the different
Cartesian components.The component of the MSD
parallel to a given vector~d can be written as

Figure 3.(Colour online) A figure showing the complete morphologies. (a) The morphology at T ¼ 280K, the long-range columnar ordering
is clear and the close-up shows the extent of local alignment within a column. (b) The morphology at T ¼ 400K, there is no long-range order
in the system, while the close-up shows that there are some short-range orientational correlations where a few molecules co-align.



Figure 4.(Colouronline) The strength of the electronic coupling between hopping sites againstthe separation between
them, divided into Cartesian components.(a) The couplings in the columnar (T ¼ 280K)system:these show a clear spatial
structure and we can relate transportproperties explicitly to the molecularstructure.(b) The couplings in the amorphous
(T ¼ 400K)system:there is no structure to the couplings beyond an exponential decay with increasing separation,the
transport properties are isotropic.

Figure 5.(Colour online) The MSD measured in the two morphologies in allthree dimensions (solid lines) and parallelto the z
axis (dashed lines),at an applied bias of 2:0V.The charge transport is an order of magnitude slower in the disordered system,
although this does notprovide any information aboutthe nature of the transport nor why it is slower.More tellingly the z
component of the MSD is roughly equalto one third of the total MSD in the amorphous system,while they are roughly equal
in the ordered structure.



hr2dðτÞi ¼
XM

j¼0

1
N
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i¼0
ð~r iðtj þ ΔtÞ ~r iðtjÞÞ b~d
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ð10Þ

In a 3D system with isotropic transport then hr2
di ¼

hr2d0i for any two vectors~d and~d0, and hr2di ¼ 1
3 hr2i. We

measured the component of the MSD parallelto the z
axis, the same direction as the column axis and the
applied field,shown as the dashed lines in Figure 5.

In the amorphous system, hr2
zi is indeed equal to one

third of the total MSD, indicating that the transport is
isotropic. However, there is an applied field in the
z-direction that should drive charge transport. From
measuring the MSD it seems that the field has little effect
on the axis of transport, although it may have an effect on
the net direction of transport (the MSD does not distin-
guish between ‘forward’ and ‘backward’ movement).

In comparison, the columnar system is very different,
meaning thatmost of the carrier motion is parallel to
the column axis.The presence of directional transfer in
columnar discotics was also predicted by Bacchiocchi &
Zannoni using a simplified Monte Carlo model [10].
Thus we can state that the transport in the amorphous
system is isotropic,while in the ordered columnar sys-
tem it is highly directed and responds to an applied

filed. In the context of a full-scale device, this is equiva-
lent to a state which can be switched ‘on’and ‘off’ with
an externalvoltage.In both cases,the transport reflects
the topology of the system and,more importantly, the
underlying transport network.

The MSD is a rather coarse measure of transport
across the system on long length and timescales.With
the detailed, equilibrium molecular morphology pro-
vided by the CGMD it would be a shame not to
investigate transport on a microscopic scale. We
recorded the traffic and flux between allhopping sites
during a simulation and plotted the resulting network
properties in Figure 6. We show the electronic cou-
plings, the traffic and the flux between molecules in
space.The figures showing the traffic (Figure 6 (c–d))
reveal the short-range nature of the hops; this is
expected from the distribution of jJij j2.

The ratio of traffic to flux is the most striking result
of the network analysis.The traffic along an edge can
range up to 105 hops,while the total flux has a max-
imum of 3 hops during a simulation (see Figure 6(c–f)).
A study of coarse-grained transport,such as a drift-
diffusion model or the extended Gaussian disorder
model, would not be able to resolve the extent of this
back and forward ‘rattling’ motion. Quantifying the

Figure 6. (Colouronline) Figuresshowing the microscopic transportbehaviourin the two HOTT systems.(a, b) The spatial
distribution of the electronic couplings,the molecular structure is clear (compared to Figure 4).Note the relative dearth of inter-
column couplings in (a),(c),(d).The traffic between sites as defined in Section 2.1.The traffic is confined within a column in the
280 K system,effectively resulting in filamentary,one-dimensionaltransport.In the amorphous,400 K system the traffic occurs in
isolated pockets with carriers moving between a small number of sites.(e,f) The time integrated flux in the two systems is equal to
the total flux between sites during the simulation.In the columnar system,the flux is necessarily confined to columns,like the
traffic,but with a net direction (indicated by arrows).In the amorphous system,the flux has the same spatialheterogeneity as the
traffic.In both systems,the flux is of similar magnitude.



extent of rattling in organic systems is an important step
forward in charge transport modelling: high levels of
fast, local motion can lead to dissipative heating and
degradation in the worst case;and as a carrier trap,
reducing mobility in all cases.The ability to resolve the
motion is key to understanding and preventing it.

As we can see in Figure 6(c–d), the transport is
extremely heterogeneous and none ofthe conducting
pathways span the entire system in the simulation time
(108 ps).That means that a given charge carrier is not
being injected and extracted in the time observed,
hence there is no flux across the entire system and,in
a sense,all motion is rattling on the length scale of
,50 nm. Given the number of isolated transport
regions, and their difference in size and shape, we
study the properties of these pathways.

Each charge carrier visits a set of moleculesthat
form a connected cluster in the system (a subgraph of
nodes in the transport network); if two clusters overlap
then they combine to form a single,larger cluster.The
smaller and more isolated the clusters are, the faster the
rattling is as the maximum possible length of a closed
loop becomes smaller.On the macroscopic scale,any
cluster that does not span the entire system (percolate
the system) will lead to rattling. Figure 7 shows the size
distribution of clusters, measured along the z axis, with
respect to the number of molecules in the cluster,N.

In the columnar system, the length of the clusters are
linearly correlated with N (see Figure 7), reinforcing
their filamentary nature.More importantly, the length
of the clusters increases with simulation time and the
distribution remains linear with size;thus, the clusters

will eventually percolate the system, unless the column is
structurally disrupted. By contrast, the length of clusters
in the amorphous system is correlated with N1=3, sug-
gesting that the clusters are roughly isotropic.

It is known that one-dimensional transport will
eventually failas a single fault will completely disrupt
the entire transport network.In the system sizes simu-
lated here, the columns percolate; thus, we cannot
describe the effect of dislocations to the charge trans-
port. However, the study of the amorphous system
shows that if two columnar regions are separated by a
small amorphous region (a 1D crystal defect), transport
will still occur,albeit slowly.The regions between col-
umns would effectively transport charge an order of
magnitude more slowly than the columns;they would
be the limiting factor to the overall performance of the
device.The concept that underlying structuralhetero-
geneity causestransport heterogeneity hasbeen dis-
cussed in molecular charge transport systems[30].
The relative sizes, arrangement and speeds of the
‘fast’ and ‘slow’ regions dictate the net transport and
it is key to get all of these correct.

In a more general sense this shows the importance
of obtaining sufficient statistics when modelling disor-
dered systems,either by modelling larger systems or
severalindependentsystems of the same size.Kordt
et al. [31] have calculated the required system sizes to
produce accurate charge transport results as a function
of energetic disorder.However, they do not consider
explicit structural defects.It is known that the colum-
nar phase exhibitsdefectswhere the local columnar
ordering is disrupted by nematic regions, and the

Figure 7.(Colour online) The length of connected clusters of molecules measured parallel to the z axis plotted against the number
of molecules in the cluster.The dashed line shows the expected dependence for isotropic clusters.In the columnar system,the
clusters are one-dimensionalas shown by the linear dependence between length and size.Clusters in the amorphous system are
more isotropic and are smaller in terms of the number of sites.The linear clusters grow with time and will eventually percolate the
system.



coarse-grained model used in this study can reproduce
them [8], although we do not see them in our sample.
However,if we simulate a larger system size (or aver-
aged over multiple independent configurations), we
would expect to observe defectsand thus would be
able to modelthe effect of defects upon transport.

Although this study is not conclusive, we suggest
that our ability to describe an entirely isotropic
system shows that the methodology presented
could accurately predict the charge transport prop-
erties around and across defectregions; the CGMD
model is accurate enough to reproduce defects at
realistic densities and the charge transport para-
meters are calculated for the specific positions and
orientation of molecules. The network terminology
we introduce to quantify charge transport properties
is also completely generaland can be applied to any
discrete hopping system. This reduces the issue of
large statistical sampling down to one of computa-
tional resource, both for morphology generation
and transport modelling, a non-trivial concern
given the costs of molecular dynamics simulations.
Using coarse-grained potentials for molecules is the
only feasible method to generate morphologies on
the scales required.

To get an estimate of how few edges contribute to
charge transport,we can compare N0

e, the number of
edges where Tij > 0, to the total number of edges Ne.
At a bias of 2V in the columnar phase, the ratio
N0

e=Ne ¼ 1:17  10 3 is an indicator of the variability
in transport behaviour between molecules.In the dis-
ordered system the ratio is an order of magnitude
smaller, carrier hops are more localised along fewer
edges.This suggests that the distribution of hopping
rates is more sparse.

To quantify the degree of rattling motion we
calculate ~Nhops ¼ 1

2
P

jFij j, the number of carrier
hops that contribute to a flux. The ratio of ~Nhops
to the total number of recorded hops is small,of the
order 104 in the columnar phase and an order of
magnitude smaller in the disordered phase,suggest-
ing that most carrier hops represent rattling motion.
Table 1 shows the precise values for the calculated

three-dimensional charge mobility, μ, the mobility
parallel to the z axis, μz, the ratio of contributing
edges and the ratio of hops that contribute to flux.

4. Conclusions

To accurately describe charge transport in an OSC sys-
tem requires an accurate description ofthe structure.
The molecular interactions are key to the resultant
structure and,crucially, the regions of high electronic
overlap.These regions are key to the electronic cou-
plings that form the charge transport network.
Without a detailed,atomically resolved structure of the
system,one cannot calculate bespoke transfer integrals
for each pair of molecules. We have demonstrated a self-
consistentmethodology that allows us to model the
charge transport properties of a molecule without para-
meterising the transport.All of the necessary quantities
to compute hopping rates (see Equation 2) are calcu-
lated for each pair of molecules and each possible hop.

The only step which requires parameterisation is the
development of the coarse-grained MD potential.The
use of Gay-Berne potentials to describe the interactions
and structure of liquid crystal molecules,including
triphenylenes,is well proven. It is unfeasible to model
these systems at the length scales required to describe
the structural dependency of inter-molecular charge
transport,without the use of coarse-grained molecular
models. We have shown that the system sizesand
resolution made available by these methods allow accu-
rate description of charge transport in multiple phases.

We have introduced a very general framework, based
upon multiscale modelling and network theory descrip-
tions, to describe any discrete charge transport process
between molecules.Although we have not applied the
method to systemswith acute structural changes,i.e.
localised structuraldefectsor impurities, we hope to
apply the same methodology to these case in the future.

Using CGMD morphologies we have shown thata
system of semiconducting liquid crystaldiscotics vary
their charge mobility by an order of magnitude depend-
ing on the large-scale molecular structure. Note that if we
had used an isotropic exponential decay to describe the
electronic coupling then we would not reproduce these
results. Recall Figure 4 where there are many pairs with
equally small values of rij in both systems;however,the
strongest couplings dominate. This illustrates the impor-
tance of the specific molecular packing in OSCs and the
weakness of using lattice-based or overly parameterised
models. We encourage further investigation of the effect
of molecule shape and packing with respectto charge
transport.

Table 1.The precise values of charge transport observables,as
defined in the main text,from KMC trajectories at TKMC¼ 300K
under an applied bias of 2.0V.

T ¼ 280K T ¼ 400K
μðcm2V1 s1 Þ 1:783  10 6 8:757  10 7

μzðcm2V1 s1 Þ 4:782  10 6 7:938  10 7

N0
e=Ne 1:49  10 3 3:18  10 4

~Nhops=Nhops 1:54  10 4 5:3  10 5
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