
IFAC PapersOnLine 52-16 (2019) 580–585

ScienceDirect

Available online at www.sciencedirect.com

2405-8963 © 2019, IFAC (International Federation of Automatic Control) Hosting by Elsevier Ltd. All rights reserved.
Peer review under responsibility of International Federation of Automatic Control.
10.1016/j.ifacol.2019.12.024

© 2019, IFAC (International Federation of Automatic Control) Hosting by Elsevier Ltd. All rights reserved.

10.1016/j.ifacol.2019.12.024 2405-8963

Adaptive Output Regulation via Nonlinear
Luenberger Observers �

Michelangelo Bin ∗ Pauline Bernard ∗ Lorenzo Marconi ∗

∗ CASY - DEI, University of Bologna.

Abstract: In Marconi et al. 2007, it was shown that a solution to the output regulation problem
for minimum-phase normal forms always exists. That approach, however, yields only an existence
result, and no general analytic procedure is known to actually choose the regulator’s degrees
of freedom, even for simple problems. In this paper we propose an adaptive regulator that,
leveraging the aforementioned existence result, self-tunes online according to an optimization
policy. To this aim, the regulator may employ every system identification scheme that fulfills
some given strong stability properties, and the asymptotic regulation error is proved to be
directly related to the prediction capabilities of the identifier.
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1. INTRODUCTION

Output regulation refers to the class of control problems in
which some outputs of the controlled system are required
to follow some desired reference behaviors, despite the
presence of external disturbances and model uncertainties.
In the seminal works (Francis and Wonham, 1975, 1976),
the output regulation problem for linear systems has been
cast in a very elegant framework, providing a unifying trea-
tise of tracking and disturbance rejection problems under
the assumption that references and disturbances are gener-
ated by a linear external process, called the exosystem. The
authors have shown that any regulator solving the problem
in a “robust” way necessarily embeds, in the control loop,
an internal model of the exosystem. Constructive designs
for linear systems, based on the concept of internal model,
have been given later in (Davison, 1976), thus closing de
facto the problem of linear output regulation.

Output regulation for nonlinear systems is, instead, a
much wider and more challenging problem, nowadays still
open. The research on nonlinear output regulation has
started around the 90s, in the seminal works (Isidori
and Byrnes, 1990; Huang and Rugh, 1990; Huang, 1995;
Byrnes et al., 1997). These first results concerned “local”
designs, and they were still biased by a linear perspective.
Nevertheless, they made clear how, in a nonlinear setting,
the role of the zero dynamics of the controlled plant and
of the exosystem blend together, and how an internal
model of the sole exosystem is far from being sufficient
for the design of a regulator. A purely nonlinear theory of
output regulation has appeared only in the 2000s, starting
with the works (Byrnes and Isidori, 2003; Byrnes et al.,
2003; Byrnes and Isidori, 2004), and related regulator
designs for single-input-single-output normal forms have
been proposed, for instance, in (Byrnes and Isidori, 2004;
Huang and Chen, 2004; Chen and Huang, 2005; Marconi
et al., 2007). In (Marconi et al., 2007), in particular, it
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was shown that for the class of minimum-phase single-
input-single-output normal forms a solution of the output
regulation problem always exists. This result, however, is
not constructive, in the sense that, although the existence
of a regulator is guaranteed, no general procedure is given
to choose all the degrees of freedom characterizing it. By
leveraging this existence result, in (Marconi and Praly,
2008) some methods have been proposed to construct
“approximate” regulators. Nevertheless, the construction
of the regulator remains mostly impractical.

In this paper we propose an adaptive regulator that com-
plements the result of (Marconi et al., 2007) by adding an
adaptation unit in the control loop, whose role is to tune
at run-time the degrees of freedom of the regulator that
cannot be computed analytically in advance. Adaptation
is cast as a user-defined system identification problem,
defined on the closed-loop measurable signals. Sufficient
conditions are given under which a desired identification
algorithm can be used, and the main result relates the
prediction capabilities of the identifier to the asymptotic
regulation performance. The proposed approach shares
some similarities with the “high-gain” approach of (Forte
et al., 2017) and the linear design of (Bin et al., 2019),
insofar as the identifier is characterized by the same sta-
bility properties. However, unlike the latter, the proposed
design is purely nonlinear, and unlike the former, we do
not rely on a high-gain internal models, and a regression is
guaranteed to exist in steady-state between the two input
signals of the identifier without any assumption on the
steady-state error-zeroing input.

The paper is organized as follows. In Section 2 we describe
our nonlinear framework, we recall the main result of
(Marconi et al., 2007), and we highlight the contribution of
the paper. The adaptive regulator is constructed in Section
3, and the main result of the paper is given in Section 4.

Notation: R denotes the set of real numbers, N the set of
naturals and R+ := [0,∞). If S is a set, H(S) denotes the
set of functions S → R+. Norms are denoted by | · |. If S ⊂
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Rn (n ∈ N) is a closed set, |x|S := infs∈S |x − s| denotes
the distance of x ∈ Rn to S. For a signal x : R → Rn,
we let |x|[0,t) := sups∈[0,t) |x(s)| and |x|∞ = |x|[0,∞). We

denote by C1 set of continuously differentiable functions.
A continuous function f : R+ → R+ is of class-K (f ∈ K)
if it is strictly increasing and f(0) = 0. It is of class-K∞
(f ∈ K∞) if f ∈ K and f(s) → ∞ as s → ∞. A continuous
function β : R2

+ → R+ is of class-KL (β ∈ KL) if β(·, t) ∈
K for each t ∈ R+ and β(s, ·) is strictly decreasing to zero
for each s ∈ R+. Id ∈ K denotes the map Id(s) = s. With
h : Rn → R a C1 function in the arguments x1, . . . , xn, and

f : Rn → R, for each i ∈ {1, . . . , n} we denote by L
(xi)
f h

the map x �→ L
(xi)
f(x)h(x) := ∂h/∂xi(x)f(x). In the text

“ISS” stands for Input-to-State Stability (Sontag, 1989).

2. THE FRAMEWORK

2.1 Problem Statement

We consider systems of the form

ż = f(w, z, y)
ẏ = q(w, z, y) + u,

(1)

with state (z, y) taking values in Rnz × R, control input
u ∈ R, measured output y ∈ R, and with w ∈ Rnw an
exogenous input that we suppose to belong to the set of
solutions of an exosystem of the form

ẇ = s(w), (2)

originating in a compact invariant subset W of Rnw . We
further assume that f : Rnw × Rnz × R → Rnz is locally
Lipschitz and q : Rnw × Rnz × R → R is C1. In this paper
we consider the problem of approximate output regulation
for systems of the form (1), which reads as follows: given a
compact set Z0×Y0 ⊂ Rnz×R and a performance measure
µ� : H(W) → R+, find a regulator of the form{

ẋc = fc(xc, y)
u = hc(xc, y),

(3)

with state xc ∈ Rnc , and a set Xc ⊂ Rnc , such that
the solutions x := (w, z, y, xc) of the closed-loop system
(1),(2),(3) originating in W× Z0 ×Y0 ×Xc are complete,
uniformly eventually equibounded 1 and satisfy

lim sup
t→∞

|y(t)| ≤ µ�(w).

For a particular solution w of (2), the positive scalar µ�(w)
represents the desired asymptotic bound on the output y,
thus capturing regulation objectives milder than the usual
asymptotic output stabilization, obtained whenever µ� = 0.

We consider the problem at hand under the following
minimum-phase assumption.

A1) There exists a C1 map π : W → Rnz satisfying

L
(w)
s(w)π(w) = f(w, π(w), 0)

in an open set including W × Rnz , such that the system

ẇ = s(w)
ż = f(w, z, y)

1 That is, there exists a compact set K ⊂ Rnz × R × Rnc and a
τ ≥ 0 such that every solution x := (z, y, xc) of (1)-(3) originating
in Z×Y ×Xc satisfies x(t) ∈ K for all t ≥ τ .

is ISS relative to the compact set

A = {(w, z) ∈ W × Rnz : z = π(w)}
and with respect to the input y.

We observe that, by using the same arguments of (Marconi
et al., 2007), A1 could be weakened to a local asymptotic
stability requirement of the set A for the zero dynamics

ẇ = s(w), ż = f(w, z, 0), (4)

as long as the domain of attraction includes W×Z0 ×Y0.
This, however, comes at the price of a more involved tech-
nical treatise leading to minor conceptual contribution.
Assumption A1 is customary in the literature of output
regulation (see e.g. (Isidori, 2017; Pavlov et al., 2006)).
Necessary and sufficient conditions for the existence of a
single-valued steady-state map π can be found in (Pavlov
et al., 2006). By definition, continuity of π holds whenever
A is closed, while its differentiability has to be assumed.

2.2 The Marconi-Praly-Isidori Regulator

Under A1, it is proved in (Marconi et al., 2007) that the
problem of asymptotic output regulation for systems of
the form (1) can be always solved by means of a controller
of the form

η̇ = Fη +Gu
u = γ(η) + κ(y)

(5)

with state η taking values in Rnη , with nη = 2(nw+nz+1),
(F,G) a controllable pair with F a Hurwitz matrix, and
with γ : Rnη → R and κ : R → R suitably defined
continuous functions. More precisely, in (Marconi et al.,
2007) it was shown that:

(1) the pair (F,G) can be chosen as a real realization
of any complex pair (Fc, Gc) of dimension nη/2,
with Gc a vector with non zero entries, and Fc =
diag(λ1, . . . , λnη/2) such that the eigenvalues λi have
sufficiently negative real part and (λ1, . . . , λnη/2) is
outside a set of zero-Lebesgue measure.

(2) the map κ must verify κ(e)e < 0 for all non zero e
and, if A is also locally exponentially stable for (4),
then it can be taken linear.

2.3 Contribution of the Paper

Although the existence of the map γ is always guaranteed,
its construction is challenging and, apart from linear
systems, there exists no general procedure to construct
it. Some approximating algorithms have been proposed
in (Marconi and Praly, 2008), yet their implementation
remains tedious. In this paper we propose a regulator
that employs online adaptation to find the map γ at run
time, by requiring only a “qualitative” a priori knowledge
on it, necessary to set up a meaningful identification
problem. Leveraging the result of (Marconi et al., 2007),
the proposed regulator is obtained as an extension of (5),
which is equipped with an adaptive unit that produces and
updates an estimate of the “right” function γ to employ.
The adaptive unit, called the identifier, is a system that
solves a user-defined system identification problem (Ljung,
1999), cast on the closed-loop signals. Instead of proposing
a particular design of the identifier, we give sufficient
stability conditions characterizing a class of algorithms
that can be used, thus leaving to the designer a further

2019 IFAC NOLCOS
Vienna, Austria, Sept. 4-6, 2019

1056



	 Michelangelo Bin  et al. / IFAC PapersOnLine 52-16 (2019) 580–585	 581

Rn (n ∈ N) is a closed set, |x|S := infs∈S |x − s| denotes
the distance of x ∈ Rn to S. For a signal x : R → Rn,
we let |x|[0,t) := sups∈[0,t) |x(s)| and |x|∞ = |x|[0,∞). We

denote by C1 set of continuously differentiable functions.
A continuous function f : R+ → R+ is of class-K (f ∈ K)
if it is strictly increasing and f(0) = 0. It is of class-K∞
(f ∈ K∞) if f ∈ K and f(s) → ∞ as s → ∞. A continuous
function β : R2

+ → R+ is of class-KL (β ∈ KL) if β(·, t) ∈
K for each t ∈ R+ and β(s, ·) is strictly decreasing to zero
for each s ∈ R+. Id ∈ K denotes the map Id(s) = s. With
h : Rn → R a C1 function in the arguments x1, . . . , xn, and

f : Rn → R, for each i ∈ {1, . . . , n} we denote by L
(xi)
f h

the map x �→ L
(xi)
f(x)h(x) := ∂h/∂xi(x)f(x). In the text

“ISS” stands for Input-to-State Stability (Sontag, 1989).

2. THE FRAMEWORK

2.1 Problem Statement

We consider systems of the form

ż = f(w, z, y)
ẏ = q(w, z, y) + u,

(1)

with state (z, y) taking values in Rnz × R, control input
u ∈ R, measured output y ∈ R, and with w ∈ Rnw an
exogenous input that we suppose to belong to the set of
solutions of an exosystem of the form

ẇ = s(w), (2)

originating in a compact invariant subset W of Rnw . We
further assume that f : Rnw × Rnz × R → Rnz is locally
Lipschitz and q : Rnw × Rnz × R → R is C1. In this paper
we consider the problem of approximate output regulation
for systems of the form (1), which reads as follows: given a
compact set Z0×Y0 ⊂ Rnz×R and a performance measure
µ� : H(W) → R+, find a regulator of the form{

ẋc = fc(xc, y)
u = hc(xc, y),

(3)

with state xc ∈ Rnc , and a set Xc ⊂ Rnc , such that
the solutions x := (w, z, y, xc) of the closed-loop system
(1),(2),(3) originating in W× Z0 ×Y0 ×Xc are complete,
uniformly eventually equibounded 1 and satisfy

lim sup
t→∞

|y(t)| ≤ µ�(w).

For a particular solution w of (2), the positive scalar µ�(w)
represents the desired asymptotic bound on the output y,
thus capturing regulation objectives milder than the usual
asymptotic output stabilization, obtained whenever µ� = 0.

We consider the problem at hand under the following
minimum-phase assumption.

A1) There exists a C1 map π : W → Rnz satisfying

L
(w)
s(w)π(w) = f(w, π(w), 0)

in an open set including W × Rnz , such that the system

ẇ = s(w)
ż = f(w, z, y)

1 That is, there exists a compact set K ⊂ Rnz × R × Rnc and a
τ ≥ 0 such that every solution x := (z, y, xc) of (1)-(3) originating
in Z×Y ×Xc satisfies x(t) ∈ K for all t ≥ τ .

is ISS relative to the compact set

A = {(w, z) ∈ W × Rnz : z = π(w)}
and with respect to the input y.

We observe that, by using the same arguments of (Marconi
et al., 2007), A1 could be weakened to a local asymptotic
stability requirement of the set A for the zero dynamics

ẇ = s(w), ż = f(w, z, 0), (4)

as long as the domain of attraction includes W×Z0 ×Y0.
This, however, comes at the price of a more involved tech-
nical treatise leading to minor conceptual contribution.
Assumption A1 is customary in the literature of output
regulation (see e.g. (Isidori, 2017; Pavlov et al., 2006)).
Necessary and sufficient conditions for the existence of a
single-valued steady-state map π can be found in (Pavlov
et al., 2006). By definition, continuity of π holds whenever
A is closed, while its differentiability has to be assumed.

2.2 The Marconi-Praly-Isidori Regulator

Under A1, it is proved in (Marconi et al., 2007) that the
problem of asymptotic output regulation for systems of
the form (1) can be always solved by means of a controller
of the form

η̇ = Fη +Gu
u = γ(η) + κ(y)

(5)

with state η taking values in Rnη , with nη = 2(nw+nz+1),
(F,G) a controllable pair with F a Hurwitz matrix, and
with γ : Rnη → R and κ : R → R suitably defined
continuous functions. More precisely, in (Marconi et al.,
2007) it was shown that:

(1) the pair (F,G) can be chosen as a real realization
of any complex pair (Fc, Gc) of dimension nη/2,
with Gc a vector with non zero entries, and Fc =
diag(λ1, . . . , λnη/2) such that the eigenvalues λi have
sufficiently negative real part and (λ1, . . . , λnη/2) is
outside a set of zero-Lebesgue measure.

(2) the map κ must verify κ(e)e < 0 for all non zero e
and, if A is also locally exponentially stable for (4),
then it can be taken linear.

2.3 Contribution of the Paper

Although the existence of the map γ is always guaranteed,
its construction is challenging and, apart from linear
systems, there exists no general procedure to construct
it. Some approximating algorithms have been proposed
in (Marconi and Praly, 2008), yet their implementation
remains tedious. In this paper we propose a regulator
that employs online adaptation to find the map γ at run
time, by requiring only a “qualitative” a priori knowledge
on it, necessary to set up a meaningful identification
problem. Leveraging the result of (Marconi et al., 2007),
the proposed regulator is obtained as an extension of (5),
which is equipped with an adaptive unit that produces and
updates an estimate of the “right” function γ to employ.
The adaptive unit, called the identifier, is a system that
solves a user-defined system identification problem (Ljung,
1999), cast on the closed-loop signals. Instead of proposing
a particular design of the identifier, we give sufficient
stability conditions characterizing a class of algorithms
that can be used, thus leaving to the designer a further
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degree of freedom. The main result of the paper consists in
relating the asymptotic bound on the regulated variable y
to the prediction capabilities of the identifier chosen, thus
leading to asymptotic regulation whenever the “right” γ
is reproducible by the identifier.

3. THE REGULATOR STRUCTURE

We consider a controller of the form 2

η̇ = Fη +Gu

ξ̇ = ϕ(ξ, η, u)

ζ̇ = �(ζ, y)
u̇ = κ(y, ζ) + ψ(ξ, η, u)

(6)

with state (η, ξ, ζ, u) ∈ Rnη × Rnξ × Rnζ × R, input y,
and output u. We refer to the subsystems η, ξ, ζ and u
respectively as the internal model unit, the identifier, the
derivative observer and the stabilizer. These subsystems
are constructed in the next subsections.

3.1 The Internal Model Unit

The dimension nη of η and the pair (F,G) are chosen
according to (Marconi et al., 2007), by following the
guidelines reported in Section 2.2. This choice of (nη, F,G)
and the arguments of (Marconi et al., 2007) yield the
following result.

Lemma 1. Suppose that A1 holds and pick nη = 2(nw +
nz + 1). Then there exist a Hurwitz matrix F ∈ Rnη×nη ,
a matrix G ∈ Rnη×1, and continuous maps τ : Rnw ×
Rnz → Rnη and γ : Rnη → R such that

γ ◦ τ(w, z) = −q(w, z, 0) ∀(w, z) ∈ A (7)

and the system

ẇ = s(w)
ż = f(w, z, y)
η̇ = F η −Gq(w, z, y) + δ0.

is ISS relative to the set

G :=
{
(w, z, η) ∈ A× Rnη : η = τ(w, π(w))

}
,

and with respect to the input (y, δ0).

Lemma 1, and in particular the equality (7), claims that,
when y and δ0 are small, the quantity γ(η) gives a proxy
for the ideal feedforward action

u�(w) := −q(w, π(w), 0)

that holds the regulated variable y to zero in steady state
(hence its use in (5)). We stress that the map γ is only
used for the analysis and it is not used by the controller.
The identifier subsystem described hereafter has indeed
the aim of identifying it online.

3.2 The Identifier

The identifier subsystem is a system built to estimate
online the unknown map γ given by Lemma 1. The esti-
mation of γ here is cast as a system identification problem
defined on generic inputs, and the data (nξ, ϕ) defining the
identifier are constructed according to a “design require-
ment” detailed hereafter, representing sufficient conditions
2 We notice that (6) has the form (3) with xc := col(η, ξ, ζ, u),
fc(xc, y) := col(Fη +Gu, ϕ(ξ, η, u), �(ζ, y), κ(y, ζ) + ψ(ξ, η, u)) and
hc(xc) := u.

for its correct successive embedding in the closed-loop
system. In this respect, we stress that we do not rely
on a particular choice of (nξ, ϕ), and every identification
algorithm that fulfills the requirement can be used.

We consider a class I of functions of the form (αin, αout),
with αin : R+ → Rnη , αout : R+ → R, and compact sets
Ain ⊂ Rnη , Aout ⊂ R such that for each α� = (α�

in, α
�
out) ∈

I, we have α�(R+) ⊆ Ain × Aout. Based on the available
knowledge on I, we fix nξ, nθ ∈ N, a function ϕ : Rnξ ×
Rnη ×R → Rnξ , a bounded function h : Rnξ → Rnθ , a C1

map γ̂ : Rnθ × Rnη → R, and we consider the following
virtual system

ξ̇ = ϕ(ξ, αin, αout)
θ = h(ξ).

(8)

The design of ϕ is approached in such a way that the
virtual system (8) asymptotically converges to a trajectory
ξ� : R+ → Rnξ whose output θ� := h(ξ�) is such that the
inferred prediction model

αout = γ̂(θ�, αin) (9)

fits “at best” the measurements available of the inputs
αin and αout. The meaning of “at best” is made formal
throughout the definition of a cost functional associated
to the elements in I, assigning to each value of θ and each
t ∈ R+ a comparable value. More precisely, to each α :=
(αin, αout) ∈ I, we associate a function Jα : R+ → H(Rnθ )
of the form

Jα(t)(θ) :=

∫ t

0

c
(
ε(α(s), θ), t, s

)
ds+ �(θ), (10)

in which

ε(α(s), θ) := αout(s)− γ̂(θ, αin(s))

denotes the prediction error of the model γ̂(θ, ·) computed
at time s and corresponding to a given choice of θ ∈ Rnθ ,
c : R × R+ × R+ → R+ assigns to each prediction error
and each time instant s a “cost” to be weighted in the
integral, and � : Rnθ → R+ is a regularization term. To
the cost functional (10) we associate the set-valued map
ϑ◦
α : R+ ⇒ Rnθ defined as

ϑ◦
α(t) := argmin

θ∈Rnθ

Jα(t)(θ).

The functions ϕ and h in (8) are then designed to satisfy
the conditions stated in the following requirement, consist-
ing of a robust stability property relative to an “optimal
steady state” ξ� whose output θ� := h(ξ�) is a pointwise
solution to the minimization problem associated with (10).

Requirement 1. The pair (ϕ, h) is said to fulfill the iden-
tifier requirement relative to I if h is bounded and there
exist βξ ∈ KL, ρξ ∈ K, and a compact set Ξ ⊂ Rnξ , such
that for each α = (α�

in, α
�
out) ∈ I, there exists a function

ξ� : R+ → Rnξ satisfying ξ�(t) ∈ Ξ for all t ≥ 0 and such
that the following properties hold:

(1) Optimality: the output θ� := h(ξ�) satisfies

θ�(t) ∈ ϑ◦
α(t)

for each t ∈ R+.
(2) Stability: for each d = (din, dout) : R+ → Rnη × R

the system

ξ̇ = ϕ(ξ, α�
in + din, α

�
out + dout)

satisfies

|ξ(t)− ξ�(t)| ≤ max
{
βξ(|ξ(0)− ξ�(0)|, t), ρξ(|d|[0,t))

}
each t ∈ R+.
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(3) Regularity: the map

λ(ξ, αin, αout) := lim
ε→0

h(ξ + εϕ(ξ, αin, αout))− h(ξ)

ε
is well-defined and continuous on Ξ×Ain ×Aout.

Examples of identifiers that fulfill such conditions include
least-square algorithms and can be found for instance
in (Forte et al., 2017; Bin et al., 2019; Bin, 2018). The
identifier is interconnected with the rest of the regulator
by setting

αin = η, αout = u.

This choice is motivated by the fact that, close to the
attractor G introduced in Lemma 1, η is a good “proxy
variable” for the quantity τ(w, π(w)) while, as detailed
in the next section, u provides a proxy for the quantity
u�(w) = −q(w, π(w), 0). Thus, in view of the relation
(7), if η and u are close enough to the ideal quantities
τ(w, π(w)) and u�(w), the identification problem solved by
the identifier provides an estimate of the ideal unknown
function γ close to the optimal one. In view of this
discussion, we make the following assumption

A2) The pair (ϕ, h) fulfills the identifier requirement
relative to a class of functions I satisfying

I ⊃
{
(α�

in, α
�
out) : R → Rnη × R :

α�
in = τ(w, π(w)), α�

out = −q(w, π(w), 0)),

w solves (2) with w(0) ∈ W
}

and with Ain ⊂ Rnη and Aout ⊂ R compact supersets of
τ(W, π(W)) and −q(W, π(W), 0).

To make the dependency on w explicit, we associate with
each solution w of (2) a signal ξ�w defined as the optimal
steady state of ξ introduced in the identifier requirement
corresponding to the inputs

α�
in := τ(w, π(w)), α�

out := −q(w, π(w), 0), (11)

and we let θ�w(t) := h(ξ�w(t)) be the corresponding optimal
parameter. According to (7), the quantities (11) satisfy
α�
out = γ(α�

in), so that we can associate with each solution
w of (2) the signal

ε�w := γ
(
τ(w, π(w))

)
− γ̂

(
θ�w, τ(w, π(w))

)
, (12)

which represents the optimal prediction error, i.e. the
prediction error attained by the optimal model, along the
solution w.

We remark that, while the knowledge of the maps (11)
is not assumed in this paper, the choice of the identifier,
and in particular of the structure and parametrization of
the map γ̂, is necessarily guided by the a priori qualitative
and quantitative information that the designer has on the
ideal steady-state signals (α�

in(t), α
�
out(t)). We underline,

however, that such information is only needed for the
purpose of setting up the identification problem. In turn,
the choice of the structure of γ̂, and thus of the correspond-
ing identification algorithm, depends on the amount and
quality of the available information on (11), and it may
range from a very specific set of functions, such as linear
regressions, to universal approximators, such as wavelet
bases or neural networks. We also stress that the inferred
parametrization of γ̂ does not hide any assumption on the
structure of the map γ, and the fact that there may not
exist any θ� ∈ Rnθ such that γ(·) = γ̂(θ, ·) jut implies that

the optimal prediction error (12) may not be zero at the
steady state. In turn, the main result of the paper relates
the asymptotic bound on the regulated variable y to the
optimal prediction error (12) (i.e., to the best prediction
performance of the identifier), and it thus results in an ap-
proximate regulation property, which can be strengthened
to asymptotic regulation only if γ is reproducible by the
identifier for some θ�.

3.3 The Stabilizer

As q is C1, we can immerse (1) into the system

ż = f(w, z, χ1)
χ̇1 = χ2

χ̇2 = q′(w, z, χ) + u̇,
(13)

with χ1 = y, χ2 = q(w, z, y) + u, and where

q′(w, z, χ) :=
(
L
(w)
s(w) + L

(z)
f(w,z,χ1)

+ L(χ1)
χ2

)
q(w, z, χ1).

According to Lemma 1, the internal model unit must
be ideally fed by the input u�(w) = −q(w, π(w), 0),
which is, however, not available for feedback. A natural
proxy variable for −q(w, π(w), 0), is given by the quantity
−q(w, z, χ1), which, on the heels of (Freidovich and Khalil,
2008), can be expressed in terms of the new state variables
and inputs of (13) as

−q(w, z, χ1) = u− χ2. (14)

Clearly, as χ2 = ẏ is not measured, neither (14) is available
for feedback. Nevertheless, we can obtain an estimate of
χ2 by means of a derivative observer, here provided by the
subsystem ζ. We postpone the definition of ζ to Section
3.4, and here we provide the necessary background by
designing the stabilizer assuming that χ2 is available.

As a first step, with γ̂ the prediction model of the identifier
given in (9), and with λ the map introduced in the
identifier requirement, we define the continuous map γ̂′ :
Ξ×Ain ×Aout → R as

γ̂′(ξ, αin, αout)

:=
(
L
(h(ξ))
λ(ξ,αin,αout)

+ L
(αin)
Fαin+Gαout

)
γ̂(h(ξ), αin).

We then let ψ : Rnξ × Rnη × R → R be any bounded
and uniformly continuous function that agrees with γ̂′ on
Ξ×Ain×Aout, and we consider the following virtual system

ẇ = s(w),
ż = f(w, z, χ1)
η̇ = Fη +G(−q(w, z, χ1) + χ2 + δ)

ξ̇ = ϕ(ξ, η,−q(w, z, χ1) + χ2 + δ)
χ̇1 = χ2 + δ
χ̇2 = ∆(w, z, η, χ1, χ2 + δ) + κ0(χ).

(15)

with
∆(w, z, η, χ) = q′(w, z, χ)− q′(w, π(w), 0)

+ ψ(ξ�w, η,−q(w, z, χ1) + χ2)

− γ̂′(ξ�w, τ(w, π(w)),−q(w, π(w), 0)),
(16)

with input δ, and with κ0 a “nominal” stabilizing action
to be fixed. For compactness, we define

G̃ :=
{
(w, z, η, ξ) ∈ G × R2 : ξ = ξ�w

}
,

B :=
{
(w, z, η, ξ, χ) ∈ G̃ × R2 : χ = 0

}
.

Then, the following result holds.
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(3) Regularity: the map

λ(ξ, αin, αout) := lim
ε→0

h(ξ + εϕ(ξ, αin, αout))− h(ξ)

ε
is well-defined and continuous on Ξ×Ain ×Aout.

Examples of identifiers that fulfill such conditions include
least-square algorithms and can be found for instance
in (Forte et al., 2017; Bin et al., 2019; Bin, 2018). The
identifier is interconnected with the rest of the regulator
by setting

αin = η, αout = u.

This choice is motivated by the fact that, close to the
attractor G introduced in Lemma 1, η is a good “proxy
variable” for the quantity τ(w, π(w)) while, as detailed
in the next section, u provides a proxy for the quantity
u�(w) = −q(w, π(w), 0). Thus, in view of the relation
(7), if η and u are close enough to the ideal quantities
τ(w, π(w)) and u�(w), the identification problem solved by
the identifier provides an estimate of the ideal unknown
function γ close to the optimal one. In view of this
discussion, we make the following assumption

A2) The pair (ϕ, h) fulfills the identifier requirement
relative to a class of functions I satisfying

I ⊃
{
(α�

in, α
�
out) : R → Rnη × R :

α�
in = τ(w, π(w)), α�

out = −q(w, π(w), 0)),

w solves (2) with w(0) ∈ W
}

and with Ain ⊂ Rnη and Aout ⊂ R compact supersets of
τ(W, π(W)) and −q(W, π(W), 0).

To make the dependency on w explicit, we associate with
each solution w of (2) a signal ξ�w defined as the optimal
steady state of ξ introduced in the identifier requirement
corresponding to the inputs

α�
in := τ(w, π(w)), α�

out := −q(w, π(w), 0), (11)

and we let θ�w(t) := h(ξ�w(t)) be the corresponding optimal
parameter. According to (7), the quantities (11) satisfy
α�
out = γ(α�

in), so that we can associate with each solution
w of (2) the signal

ε�w := γ
(
τ(w, π(w))

)
− γ̂

(
θ�w, τ(w, π(w))

)
, (12)

which represents the optimal prediction error, i.e. the
prediction error attained by the optimal model, along the
solution w.

We remark that, while the knowledge of the maps (11)
is not assumed in this paper, the choice of the identifier,
and in particular of the structure and parametrization of
the map γ̂, is necessarily guided by the a priori qualitative
and quantitative information that the designer has on the
ideal steady-state signals (α�

in(t), α
�
out(t)). We underline,

however, that such information is only needed for the
purpose of setting up the identification problem. In turn,
the choice of the structure of γ̂, and thus of the correspond-
ing identification algorithm, depends on the amount and
quality of the available information on (11), and it may
range from a very specific set of functions, such as linear
regressions, to universal approximators, such as wavelet
bases or neural networks. We also stress that the inferred
parametrization of γ̂ does not hide any assumption on the
structure of the map γ, and the fact that there may not
exist any θ� ∈ Rnθ such that γ(·) = γ̂(θ, ·) jut implies that

the optimal prediction error (12) may not be zero at the
steady state. In turn, the main result of the paper relates
the asymptotic bound on the regulated variable y to the
optimal prediction error (12) (i.e., to the best prediction
performance of the identifier), and it thus results in an ap-
proximate regulation property, which can be strengthened
to asymptotic regulation only if γ is reproducible by the
identifier for some θ�.

3.3 The Stabilizer

As q is C1, we can immerse (1) into the system

ż = f(w, z, χ1)
χ̇1 = χ2

χ̇2 = q′(w, z, χ) + u̇,
(13)

with χ1 = y, χ2 = q(w, z, y) + u, and where

q′(w, z, χ) :=
(
L
(w)
s(w) + L

(z)
f(w,z,χ1)

+ L(χ1)
χ2

)
q(w, z, χ1).

According to Lemma 1, the internal model unit must
be ideally fed by the input u�(w) = −q(w, π(w), 0),
which is, however, not available for feedback. A natural
proxy variable for −q(w, π(w), 0), is given by the quantity
−q(w, z, χ1), which, on the heels of (Freidovich and Khalil,
2008), can be expressed in terms of the new state variables
and inputs of (13) as

−q(w, z, χ1) = u− χ2. (14)

Clearly, as χ2 = ẏ is not measured, neither (14) is available
for feedback. Nevertheless, we can obtain an estimate of
χ2 by means of a derivative observer, here provided by the
subsystem ζ. We postpone the definition of ζ to Section
3.4, and here we provide the necessary background by
designing the stabilizer assuming that χ2 is available.

As a first step, with γ̂ the prediction model of the identifier
given in (9), and with λ the map introduced in the
identifier requirement, we define the continuous map γ̂′ :
Ξ×Ain ×Aout → R as

γ̂′(ξ, αin, αout)

:=
(
L
(h(ξ))
λ(ξ,αin,αout)

+ L
(αin)
Fαin+Gαout

)
γ̂(h(ξ), αin).

We then let ψ : Rnξ × Rnη × R → R be any bounded
and uniformly continuous function that agrees with γ̂′ on
Ξ×Ain×Aout, and we consider the following virtual system

ẇ = s(w),
ż = f(w, z, χ1)
η̇ = Fη +G(−q(w, z, χ1) + χ2 + δ)

ξ̇ = ϕ(ξ, η,−q(w, z, χ1) + χ2 + δ)
χ̇1 = χ2 + δ
χ̇2 = ∆(w, z, η, χ1, χ2 + δ) + κ0(χ).

(15)

with
∆(w, z, η, χ) = q′(w, z, χ)− q′(w, π(w), 0)

+ ψ(ξ�w, η,−q(w, z, χ1) + χ2)

− γ̂′(ξ�w, τ(w, π(w)),−q(w, π(w), 0)),
(16)

with input δ, and with κ0 a “nominal” stabilizing action
to be fixed. For compactness, we define

G̃ :=
{
(w, z, η, ξ) ∈ G × R2 : ξ = ξ�w

}
,

B :=
{
(w, z, η, ξ, χ) ∈ G̃ × R2 : χ = 0

}
.

Then, the following result holds.
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Lemma 2. Suppose that A1 and A2 hold. Then for each
pair of compact sets Z0 ⊂ Rnz and Y0 ⊂ R, and for each
δ̄ > 0, there exist a C1 function κ0, β0 ∈ KL, and ρ0 ∈ K,
such that for every input δ : R → R fulfilling |δ|∞ ≤ δ̄, each
solution of (15) originating in W×Z0×Rnη ×Rnξ ×Y0×R
satisfies

|(w(t), z(t), η(t), ξ(t), χ(t))|B
≤ max

{
β0

(
|(w(0), z(0), η(0), ξ(0), χ(0))|B, t

)
, ρ0(|δ|[0,t))

}

for all t ≥ 0.

The proof of Lemma 2 can be deduced from the “small-
gain arguments” in the proofs of Theorem 2 and 3 of
(Marconi et al., 2007), once noted that: i) A1 and Lemma 1
suffice to show that the subsystem (w, z, η) of (15) is
ISS with respect to the set G and relative to the input
(χ, δ); ii) from A2, with din = η − τ(w, π(w)) and dout =
−q(w, z, χ1) + χ2 + q(w, π(w), 0), we deduce that the

cascade (w, z, η, ξ) is ISS with respect to the set G̃ and
relative to the input (χ, δ); iii) by boundedness of ψ and
continuity of q′, given δ̄ and the sets W, Z0 and Y0, there
exist compact sets Z ⊂ Rnz and Y ⊂ R, and a map
κ0 such that for all κ0 satisfying |κ0(y)| ≥ |κ0(y)| and
κ0(y)y < 0 for all y, every solution of (15) initialized in
W × Z0 × Rnη × Y0 × R and corresponding to an input
δ satisfying |δ|∞ ≤ δ̄ is bounded, complete and such that
(z, y) ∈ Z × Y at all times; iv) by continuity of q′ and
from the definition of ψ, there exists � ∈ K such that
|∆0(w, z, η, ξ, χ)| ≤ �(max{|(w, z, η, ξ)|G̃ , |χ|}) on W ×
Z × Rnη × Rnξ × Y × R and κ0 can be chosen so that
a small-gain condition holds in the overall interconnection
between (w, z, η, ξ) and χ.

We further notice that, in view of (Marconi et al., 2007,
Theorem 3), if ∆0 is locally Lipschitz and if A, defined in
A1, is locally exponentially stable for the zero-dynamics
(4), then κ0 can be taken linear of the form κ0(χ) =
−k(χ2 + aχ1) with a > 0 and with k > 0 sufficiently
large. The design of the stabilizer is then concluded in the
following section by choosing κ in (6) on the basis of the
functions κ0 defined here and by substituting to χ2 its
estimate provided by the derivative observer.

3.4 The Derivative Observer

Since many design techniques already exist in the liter-
ature (see e.g. (Teel and Praly, 1995; Atassi and Khalil,
1999; Andrieu et al., 2008)), we do not detail here a
particular choice of the derivative observer, represented
in (6) by the subsystem ζ. Rather, we suppose that the
designer has already available a design choice of the de-
grees of freedom (nζ , �) such that, for some known map
ν : Rnζ → R, the unimplementable stabilizing control
law claimed by Lemma 2 can be substituted by a control
action which employs the estimate χ̂2 := ν(ζ) in place of
the unmeasured derivative χ2 of the output y = χ1. We
thus rely on a separation principle for the stabilization
problem (15) by assuming that the new control law makes
the interconnection (w, z, η, ξ, χ, ζ) ISS relative to the set

D :=
{
(w, z, η, ξ, χ, ζ) ∈ B × Rnζ : ν(ζ) = 0

}

and with respect to the input δ, thus complementing the
result of Lemma 2.

A3) For each pair of compact subsets Z0 ⊂ Rnz and
Y0 ⊂ R, and for each δ̄ > 0, there exist a function
κ : R2 → R, β ∈ KL, ρ ∈ K and a non-empty subset
T0 ⊂ Rnζ such that, for every solution of the system

ẇ = s(w),
ż = f(w, z, χ1)
η̇ = Fη +G(−q(w, z, χ1) + χ2 + δ)

ξ̇ = ϕ(ξ, η,−q(w, z, χ1) + χ2 + δ)
χ̇1 = χ2 + δ
χ̇2 = ∆(w, z, η, χ1, χ2 + δ) + κ(χ1, ν(ζ))

ζ̇ = �(ζ, χ1)

(17)

originating in W × Z0 × Rnη × Y0 × R × T0, and corre-
sponding to an input δ : R → R fulfilling |δ|∞ ≤ δ̄, the
following bound holds

|(w(t), z(t), η(t), ξ(t), χ(t), ζ(t))|D
≤ max

{
β
(
|(w(0), z(0), η(0), χ(0), ζ(0))|D, t

)
, ρ(|δ|[0,t))

}

for all t ∈ R+.

We remark that, in view of the separation principle of
(Atassi and Khalil, 1999), if ∆ is locally Lipschitz then
(nη, �) and ν can be chosen to implement a “dirty” high-
gain observer, i.e. such that

ζ̇1 = ζ2 + L(χ1 − ζ1), ζ̇2 = L2(χ1 − ζ1), ν(ζ) = ζ2

with L sufficiently large, and κ can be taken as a saturated
version of κ0.

4. MAIN RESULT

We now consider the interconnection of the forced plant
(1), (2) with the controller (6), which is a system with state
(w, z, y, η, ξ, ζ, u) ∈ O := W×Rnz×R×Rnη×Rnξ×Rnζ×R.
For the sake of readability, we define the set

M :=
{
(w, z, y, η,ξ, ζ, u) ∈ O : (w, z, η, ξ) ∈ G̃, y = 0

}
.

Then the main result reads as follows.

Proposition 1. Suppose that A1, A2 and A3 hold. Then
for each pair of compact subsets Z0 ⊂ Rnz and Y0 ⊂ R
there exist κ : R2 → R, βx ∈ KL, ρx ∈ K, and
a non-empty subset T0 ⊂ Rnζ such that each solution
x := (w, z, y, η, ξ, ζ, u) of the closed-loop system (1), (2),
(6) originating in W×Z0×Y0×Rnη ×Rnξ ×T0×R fulfills

|x(t)|M ≤ max
{
βx(|x(0)|M, t), ρx(|ε�w|[0,t))

}
,

for all t ∈ R+. In particular, each of those solutions satisfies

lim sup
t→∞

|y(t)| ≤ ρx

(
lim sup
t→∞

|ε�w(t)|
)
.

The claim of the proposition states that the regulation
performance, expressed in terms of the asymptotic bound
on y, are directly related to the prediction performance of
the identifier, expressed in terms of the optimal prediction
error ε�w defined in (12), with the latter depending on how
well the estimate γ̂(θ�w, ·) approximates γ(·). Finally, we
remark that if there exists θ� such that γ = γ̂(θ�, ·), then
ε�w = 0 and asymptotic regulation is achieved.

Proof. Consider a solution x of (1), (2), (6) originating
in W×Z0 ×Y0 ×Rnη ×Rnξ ×T0 ×R, and let χ := (y, ẏ).
Then, (w, z, χ, η, ξ, ζ, u) is solution to
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ẇ = s(w)
ż = f(w, z, χ1)
χ̇1 = χ2

χ̇2 = q′(w, z, χ) + κ(χ1, ν(ζ)) + ψ(ξ, η, ζ)
η̇ = Fη +Gu

ξ̇ = ϕ(ξ, η, u)

ζ̇ = �(ζ, χ1)
u̇ = κ(χ1, ν(ζ)) + ψ(ξ, η, ζ).

(18)

Consider the change of coordinates χ �→ χ̃, in which

χ̃1 := χ1

χ̃2 := χ2 − q(w, π(w), 0)− γ̂(θ�w, τ(w, π(w))).

Noting that −q(w, π(w), 0) = γ(τ(w, π(w))), (12) yields
χ = χ̃− Eε�w, with E := col(0, 1). Moreover, we have

˙̃χ1 = χ̃2 − ε�w, ˙̃χ2 = Λ(w, z, η, χ̃, ξ, u) + κ(χ̃1, ν(ζ))

where

Λ(·) := q′(w, z, χ̃− Eε�w)− q′(w, π(w), 0) + ψ(ξ, η, u)

− γ̂′(ξ�w, τ(w, π(w)),−q(w, π(w), 0)
)
.

We thus notice that, in view of (14),

u = −q(w, z, χ̃1) + χ̃2 − ε�w
and, in view of (16), Λ can be written as

Λ(w, z, η, χ̃, ξ, u) = ∆(w, z, η, χ̃1, χ̃2 + δ).

with δ = −ε�w. Now from (12), by boundedness of h and
continuity of γ, τ , π and γ̂, there exists a nonnegative
scalar ε�w such that |ε�w(t)| ≤ ε�w for all t and for any
solution w of (2) in W. The result then follows directly
from A3 with δ̄ = ε�w. �

5. CONCLUSION

This paper provides a constructive design of a regulator
solving the (approximate) output regulation problem for
a class of single-input-single-output normal forms. The
proposed regulator is based on the existence result of
(Marconi et al., 2007), and it employs adaptation to tune
online the unknown quantities characterizing the internal
model unit. Adaptation is cast as a system identification
problem, and the main result relates the asymptotic reg-
ulation performances to the prediction capabilities of the
chosen identification algorithm. The proposed approach
thus complements the framework of (Marconi et al., 2007),
providing a constructive adaptive design that yields an
“optimal”, and possibly asymptotic, regulation result.
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