
28 November 2024

Alma Mater Studiorum Università di Bologna
Archivio istituzionale della ricerca

Casadei Roberto, Fortino Giancarlo, Pianini Danilo, Russo Wilma, Savaglio Claudio, Viroli Mirko (2019).
A development approach for collective opportunistic Edge-of-Things services. INFORMATION SCIENCES,
498, 154-169 [10.1016/j.ins.2019.05.058].

Published Version:

A development approach for collective opportunistic Edge-of-Things services

Published:
DOI: http://doi.org/10.1016/j.ins.2019.05.058

Terms of use:

(Article begins on next page)

Some rights reserved. The terms and conditions for the reuse of this version of the manuscript are
specified in the publishing policy. For all terms of use and more information see the publisher's website.

Availability:
This version is available at: https://hdl.handle.net/11585/715990 since: 2020-01-21

This is the final peer-reviewed author’s accepted manuscript (postprint) of the following publication:

This item was downloaded from IRIS Università di Bologna (https://cris.unibo.it/).
When citing, please refer to the published version.

http://doi.org/10.1016/j.ins.2019.05.058
https://hdl.handle.net/11585/715990

A Development Approach for Collective Opportunistic
Edge-of-Things Services

Roberto Casadeia, Giancarlo Fortinob, Danilo Pianinia, Wilma Russob,
Claudio Savagliob, Mirko Virolia

aAlma Mater Studiorum—Università di Bologna, Italy
{roby.casadei,danilo.pianini,mirko.viroli}@unibo.it

bUniversità della Calabria, Italy
{g.fortino,w.russo}@unical.it, csavaglio@dimes.unical.it

Abstract

Technological advances have recently fostered the Internet of Things vision, in

which systems of situated entities perceive and act upon the world, and interact

with one another to provide novel kinds of services, which are inherently cyber-

physical, increasingly contextual and opportunistic in nature, and possibly span

different scales and domains. The requirements of such IoT applications, how-

ever, pose significant non/functional challenges to engineering efforts, mitigated

by emerging computing paradigms. On the infrastructure side, Cloud, Fog, and

Edge Computing provide virtualised, on-demand, elastic resource provisioning

– at the distant data centres, Network core and Edge – supporting the abstrac-

tion and scalability needs of IoT settings while also altogether giving options for

QoS-driven trade-offs. However, despite intense research in these fields, there is

still a gap of approaches supporting the engineering of dynamic, heterogeneous

smart environments, such as those involving “collectives” of devices coordinat-

ing in a complex fashion to provide “global” services. In this paper, we integrate

the Aggregate Computing and Opportunistic IoT Service models and propose

a full-fledged approach for the engineering – from analysis to simulation – of

complex “Edge of Things” applications. We compare by simulation two deploy-

ment targets for the same collective application: one centralised/Cloud-based,

and the other decentralised/Edge-based. We discuss the trade-offs each one

introduces, and we draw recommendations on application-driven choices of the

Preprint submitted to Journal of Information Sciences January 21, 2020

appropriate deployment.

Keywords: Internet of Things, Edge Computing, Smart City, Opportunistic

Services, Aggregate Computing

1. Introduction

Recent advances in Information and Communication Technology have fos-

tered the Internet of Things (IoT) vision, where heterogeneous entities situated

in our environments (i.e., cities, places, homes, and bodies) and capable of

sensing, actuation, and processing, are interconnected with one another and5

with other infrastructural components in order to enable novel kinds of appli-

cations and services. Such new services tend to exploit what the environment

and infrastructure have to offer, and are increasingly cyber-physical, context-

aware, opportunistic and collective, with the staunch goal of unleashing the full

Internet of Things ecosystem potential [17, 18, 16]. In other words, the en-10

vironment itself is made smart through Smart Objects (SOs) and innovative

services based on those which also span multiple scales and domains [30]—with

examples including energy-optimised management of smart buildings [24], aug-

mented logistics capabilities in smart ports [39], infrastructural maintenance in

smart cities [13], energy-efficient monitoring in ecological scenarios [32], cogni-15

tive robot-supported smart manufacturing [22], etc.

However, the “layout” of smart environments is often based on heteroge-

neous infrastructure (e.g., access points, base stations) and heterogeneous de-

vices with different physical forms, communication capabilities, energetic needs,

storage capacities, and processing power. Concerning storage and processing,20

the Cloud Computing paradigm extends the capabilities of SOs by allowing them

to offload data and computations to distant data centres. Moreover, the recent

Fog [7] and Edge Computing [33] paradigms promise to provide the benefits of

Cloud Computing without incurring in its problems (e.g., high latency, data

rate consumption etc.), by bringing virtualised infrastructure and on-demand,25

elastic resource provisioning closer to end-devices, at the Edge or core of the

2

network. Actually, Edge Computing is not an alternative to Cloud Computing

but extends and complements it, by inclusively supporting resource-constrained

devices and near real-time scenarios, and paving the path to Quality of Service

(QoS) improvements. However, all this heterogeneity pushes additional com-30

plexity to engineering endeavours and stresses traditional approaches, methods

and programming paradigms [15].

In this paper, we present an approach for seamlessly supporting the de-

velopment (from the analysis to simulation) of collective, opportunistic Edge-

of-Things (EoT) applications [14]. In particular, we model Smart Environ-35

ments as ecosystems hosting opportunistic IoT services that may exploit Edge

and cloud resources and may be collective in nature. The approach integrates

the Opportunistic IoT Service model and the Aggregate Computing paradigm,

whose conceptual alignment has been shown in [9]. As proof of concept, in

a Smart City scenario, we show a crowd detection application which is first40

modelled as an Opportunistic IoT Service, then designed by following either

a centralised/Cloud-based and a distributed/Edge-based approach, and finally

implemented and simulated according to the Aggregate Computing paradigm.

Simulation results show how a distributed/Edge-based approach can provide

improved reactivity of collective applications at the expense of precision due to45

data from different SOs being processed in different Edge Servers.

The novel contributions with respect to our previous work [9] are threefold:

1. a unified domain model for describing Collective and Opportunistic IoT

Services to be provided both at the core and at the Edge of the network;

2. a computation and communication performance model for enabling a50

quantitative analysis of the performed simulations;

3. a detailed comparison and result analysis of the centralised/Cloud-based

and distributed/Edge-based approaches, in order to analyse their pros and

cons in supporting EoT applications.

The remainder of the paper is organised as follows. Section 2 provides a brief55

overview about the SO-based IoT vision – highlighting the importance of SOs

3

in service provision and eliciting the features characterising an Opportunistic

IoT Service – as well as about main concepts of emerging paradigms such as

Cloud, Fog and Edge Computing. Such background is functional to introduce

in Section 3 what we intend for EoT applications and our approach for their60

full-fledged development. This approach integrates Opportunistic IoT Service

models and Aggregate Computing paradigm thus providing theoretical concepts

and practical tools for engineering EoT applications from the modelling to the

simulation phase. A crowd detection EoT application based on a real world

urban mass event data set is developed according to the proposed approach65

in Section 4. We first describe it through the Opportunistic IoT Service model

and then evaluate its performance in terms of responsiveness (measured as mean

packet delay) and precision (measured as the number of SOs which are alerted

of not entering crowded areas) in different scenarios of centralised/Cloud-based

and decentralised/Edge-based computing. Finally, conclusions are drawn and70

future work delineated.

2. Background

2.1. SO-based IoT and Opportunistic Services

A Smart Environment can be defined as a cyber-physical environment in

which a collection of heterogeneous devices elaborate data and interact with75

each other and people in a continuous interplay. In the IoT vision, such devices

or SOs are everyday artefacts augmented with computing, communication, sens-

ing, actuation and storing functionalities but, at the same time, constrained by

limited hardware resources (CPU, RAM and storage), physical dimensions, and

contextual factors (sharing of limited data rate, difficulty in energy harvesting,80

market-imposed pricing, etc.) [15]. On the basis of both physical inputs and

data from on-off-site sources, conscious of the surrounding environment and able

to act upon it, SOs eventually provide novel and advanced applications across

different scales and domains. Indeed, SOs are increasingly embedded into the

global information network as active participants in business, logistics, informa-85

4

tion and social processes, wherever and whenever needed and proper. Moreover,

SOs are not only useful by their individual capabilities, but also through the

intelligence that emerges from cooperation and negotiation among connected

SOs [8].

On these premises, it is not surprising that the promising impact of such90

novel class of applications or IoT services on every aspect of our daily routine

is revolutionary and with not entirely predictable consequences. In details, dif-

ferently from conventional computing services (e.g., web-services) IoT services

tend to exploit SOs functionalities and what the environment and infrastruc-

ture have to offer, so as to result inherently (i) cyber-physical, involving both95

disembodied and embodied agents interacting in non-trivial ways, (ii) context-

aware, leveraging any implicit or explicit information about the current location,

identity, activity, and physical condition of the involved stakeholders, (iii) co-

located, being simultaneously available for different stakeholders sharing local

cyber-physical resources, (iv) dynamic, being not a-priori created, (v) transient,100

lasting for a temporary time or existing until certain conditions are met, and

(vi) collective, providing high-level features that result from coordinated activity

of (possibly large-scale) “aggregates” (also known as “ensembles”) of devices.

The aforementioned features are crucial to actually typify IoT services and

their opportunistic characteristic of tactically exploiting transient conditions105

and resources. Therefore, such considerations lead to the definition of “Op-

portunistic IoT Service” [16, 18] as an interface that allows an IoT entity to

be engaged, under specific constraints and pre/post-conditions, in a temporary,

contextualised and localised usage relationship. The service provision impacts

the service provider(s) and service consumer(s) (and, in some cases, third par-110

ties indirectly involved to the service provisioning) by modifying their properties

and/or their status. Alongside an outstanding potential, however, the provi-

sion of inherently cyber-physical, increasingly context-aware, and opportunistic

in nature IoT services from heterogeneous and resource constrained SOs pose

significant functional and non-functional challenges. Indeed, an IoT service de-115

ployment phase is typically complex, time-consuming, and error-prone, involv-

5

ing not only software distribution but also the configuration of (even thousands

of) heterogeneous devices according to their specific resources and surrounding

environment [17]. Therefore, IoT services demand for full-fledged development

methodologies and proper computing paradigms so to be thoughtfully modelled,120

designed, implemented and simulated before their actual deployment.

2.2. From Cloud, Fog and Edge Computing towards Edge of Things

In past years, industry and academia have focussed on Cloud Computing

paradigm to overcome SO’s hardware limitations. By delegating data processing

and storage to powerful yet remote data centres, a plethora of high-demanding125

but time-insensitive SO-enabled applications have been successfully developed,

although disregarding their responsiveness, data rate, energy utilisation, and

cost. Indeed, handling the massive and fast data generated by the SOs in a

centralised manner creates congestion in the Cloud Servers and backhaul links,

with the resulting latency, reliability, scalability, energy, and price issues.130

Recently, the explosive growth in various access devices, the even rising

IoT applications’ demands as well as the ballooning end-users’ expectations

in terms of Quality of Service and Experience (QoS and QoE) [19] have jointly

motivated huge industry investments and research interest on the network Edge.

In particular, both the Fog [7] and Edge Computing [33] paradigms push some135

intelligence from the Cloud Servers closer to data sources and hence to end-

users, following decentralised and often two-/three-tiers architectural models.

Indeed, by shifting the function of centralised cloud computing into the SOs of

networks there is a drastic reduction in the latency, data rate utilisation and

energy consumption, resulting in a smooth IoT service provision. According140

to that, the IoT landscape is managed in terms of sub-networks (e.g., Local

Area Networks) where SOs locally interact and perform lightweight computing

before connecting to a powerful node a.k.a. Edge Server, serving both as base

station, to collect data and perform tasks too much demanding for a single

SO, and as gateway to mitigate SOs heterogeneity of different data formats145

and communication protocols [2]. Both SOs and Edge Servers can transmit

6

tasks and data streams for batch processing to the Cloud Server, and such

offloading [1] is typically regulated by an Orchestrator or Control Node, which

monitors the resource availability of the whole system and dispatches tasks

according to certain policies.150

More recently, in order to establish a mutually beneficial, transparent and

inter-dependent continuum of (latency sensitive, reliable, cyber-physical and

opportunistic) IoT services involving both heterogeneous devices and differ-

ent stakeholders across different domains, the Edge of Things (EoT) [14] has

arisen as the seamless integration among the Cloud, Fog, and Edge Computing155

paradigms. Indeed, some functions are naturally better suited at the network

core while others at the Edge: inspecting such a dynamic trade-off is an open

research line.

3. Developing Edge of Things Applications: Aggregate Computing

for Collective Opportunistic IoT Services160

For a number of reasons, IoT services promise to be notably more compli-

cated, heterogeneous and large-scale than conventional ones. As discussed in

Section 2, the Edge Computing paradigm ideally enables time-sensitive, context-

aware, and co-located applications by providing low latency, scalability, and

distributed computation, even in presence of resource-constrained devices at165

the network’s Edge. However, from a programming perspective, a computing

paradigm is also required that provides useful features (global-to-local mapping,

behaviour compositionality, abstraction, etc.) to realise, in practice, dynamic,

collective and opportunistic applications. On this basis, we present an approach

for seamlessly supporting the development (from the analysis to simulation) of170

this kind of Edge of Things applications by modelling them as Opportunistic

IoT Services (see Section 3.1), by designing them through the Aggregate Com-

puting paradigm (see Section 3.2) and, finally, by implementing and simulating

them (see Section 3.3). The proposed approach follows the process shown in

Figure 2.175

7

MAN

WAN

WLAN WLAN

Cloud

Edge Server Edge Server

AP AP

Orchestrator

SOs SOs

Figure 1: System architecture.

3.1. Modelling: Edge-oriented Collective Opportunistic IoT Services Model

The IoT domain model shown in Figure 3 elicits the main entities involved

in the provision of an Edge-oriented, Collective Opportunistic IoT Service.

This high-level representation outlines the key components (and relationships

among them) of service-oriented IoT applications; hence, it provides a descrip-180

tive framework which is particularly useful for the initial analysis phase. In

particular, the IoT domain model comprises the following classes of entities:

• IoT Entity : any subject that, according to its own attributes (indicated

as “features”) and cyber-physical capabilities (indicated as “functional-

ities”), provides and/or consumes an IoT Service. For a more detailed185

8

Opportunistic IoT
Service

Edge-based Application

Edge
Computing

enables

modeled as

implements
and simulates
(Alchemist)

Aggregate Computing

exemplifies

(meets requirements of)

implements
and simulates
(Alchemist)

Figure 2: Process of the approach.

modelling, IoT Entities can be classified into three subcategories: Hu-

mans, Smart Objects, and Computer Systems (in their turn comprising

Edge Servers, Cloud Systems, and Access Points, according to the Edge-

oriented computing architecture). IoT Entities are inherently networked

and can constitute collections defined as IoT Ensemble;190

• IoT Environment : the physical and non-augmented environment (a lake,

a wood, an agricultural field, etc.) in which IoT Entities and physical

elements (e.g., trees, obstacles, and weather phenomena) are co-located

during the service execution;

• IoT Service: a cyber-physical service provided by an IoT Entity. Oppor-195

tunistic features of any IoT Service are reported by the Service Profile and

Service Model which enable its accurate description, automatic discovery,

composition, and fruition. The Service Profile represents a high-level de-

scription and contains main attributes characterising the IoT Service itself

9

and its relationships with the IoT Entities and the IoT Environment in-200

volved in the service provision (e.g., functional requirements for a valid

IoT Service execution, the resulted events with associated service qual-

ity parameters). The Service Model, instead, describes in detail how the

service works, providing information (in terms of Preconditions, Effects,

Inputs, and Outputs) about the operations that concretely contribute to205

realising the IoT Service. If collectively provided by an IoT Ensemble, an

IoT Service becomes a Collective IoT Service;

• Context : dependencies among IoT services and both IoT Entities and IoT

Environment. Indeed, service provision is expected to exploit any implicit

or explicit information regarding IoT Entity, IoT Environment, or other210

IoT Services.

The presented IoT domain model extends the one reported in [9] with an

explicit account of the collective dimension of opportunistic, service-based IoT

applications, which is expressed in terms of a specialised kind of Opportunistic

IoT Services, defined “collective” in the sense that it is provided and consumed215

by an IoT Ensemble (i.e., a collection of IoT Entities).

3.2. Design: Aggregate Computing—an Engineering Approach for Collective

IoT Services

Aggregate Computing [5] is an engineering approach for collective adaptive

systems and smart environments—suitable for Opportunistic IoT Services, as220

shown in [9]. Its distinguishing feature is a global stance on system design and

programming: the developer directly targets a distributed collective of devices

as a whole (also called an aggregate), like it was an individual computational

machine, through an aggregate program expressed as a functional composition

of building blocks of collective behaviour. Ultimately, the aggregate behaviour225

will emerge by a complex set of computation and interaction acts carried out

by individual devices, which is driven by a context-aware, local interpretation of

the aggregate specification.

10

IoT Entity
IoT

Environment

IoT Service

im
pacts

Functionality

Feature

pr
od
uc
es
/c
on
su
m
es

im
pa
ct
s

Context

C
ontext

Service
Profile

Service
Model

Physical
Environment

Physical
Element

Computer
System

Smart
Objects

Edge ServerAccess Point

1..* 1..*

1

1

1..*

1..*

1..*

1..*

1..*

Cloud
System

Human

ne
tw
or
k

IoT
Ensemble

2..* Collective
IoT Service

produces/consumes

impacts

Figure 3: Edge-oriented Aggregate Computing-based IoT domain model.

By a structural point of view, an aggregate system is just a logical network

of nodes, where communication links derive from an application-specific neigh-230

bouring relationship. Typically, there is a correspondence (i) between a logical

node and a physical device, such that the former inherits the position in space

of the latter, and (ii) between logical and physical neighbourhoods, such that

the logical links map network connectivity. An aggregate system is also usually

11

situated into some environment, which is abstracted in each node through a235

logical set of sensors and actuators. The behaviour of an aggregate system is

given by having each node repeatedly: (i) sample the environment, to update its

context; (ii) compute the aggregate specification according to the local opera-

tional semantics; and (iii) perform deliberate actuations—this is overall called a

(local) computational round. Interaction is continuous, driven by the aggregate240

specification, and possible only among neighbours.

The fundamental characteristics of Aggregate Computing make it a suit-

able paradigm for modelling complex situated coordination and adaptive, self-

organising behaviour in Edge-of-Things applications. First, it directly sup-

ports decentralised computation and asynchronous, neighbourhood-driven com-245

munication, allowing systems to scale to large numbers of devices. Second,

when targeting a capillary network of devices immersed into some environ-

ment, it provides abstractions for “programming the space” – due to its roots

in spatial/field-based computing [36] –, as in the pervasive/ubiquitous comput-

ing vision, and supports a set of situated activity algorithms that leverage the250

spatio-temporal and locality features of systems. Note that the ability to relate

and manipulate elements (both people and devices) according to their spatio-

temporal relationships [26] is particularly important in forthcoming scenarios

like EoT and opportunistic computing. Third, thanks to its abstract model,

Aggregate Computing supports different deployment strategies [37], ranging255

from fully decentralised, peer-to-peer to multi-layer architectural styles involv-

ing Edge/Fog/Cloud layers; moreover, it can in principle support adaptivity of

the execution strategy of aggregate systems, for fault-tolerance (e.g., switching

to physical neighbouring interactions when remote connectivity is absent) or

improved QoS (e.g., by moving computations and interactions to cloud or fog260

nodes in order to apply various sorts of optimisations) [37], possibly driven by

opportunistic infrastructure. To see how this is possible, it is sufficient to note

that the logical nodes can be deployed as “avatars” to machines different from

the corresponding physical devices, which ultimately must be responsible only

for providing sensor data and controlling actuators. More details of why this is265

12

desirable and how it might work in practice can be found in [37].

In summary, Aggregate Computing provides declarative abstractions for self-

adaptive, collective opportunistic computing that are paramount for novel, dy-

namic scenarios such as those emerging in the context of smart cities, IoT and

Edge Computing [11].270

3.3. Implementation and Simulation Strategies

In our approach, a Collective Opportunistic IoT Service is first implemented

– using aggregate computing techniques – and then simulated to verify both

its functional correctness and its non-functional characteristics. Simulation is

a key step to assess the behaviour of a service in a range of virtual environ-275

ments – capturing the salient, expected real-world circumstances – before the

deployment phase, which is time/cost expensive, especially for the large-scale

scenarios we consider.

The implementation of a service consists of two main parts: (i) the aggregate

program expressing the logic of system behaviour, and (ii) the software platform280

that deals with sensor/actuator management, communication, and scheduling

of computational rounds. Currently, support for aggregate system development

is provided by two projects: Protelis [28] and Scafi [10]. An aggregate program

is written in an aggregate programming Domain-Specific Language (DSL) and

compiled/interpreted into a set of local, device-wise instructions executed by285

a proper “virtual machine” in a functional, deterministic way against the lo-

cal context, which is kept up-to-date by the platform. Protelis [28] provides

an external DSL [38] (implemented in Xtext [6]), targeting the Java Virtual

Machine (JVM); it has a C-/Java-like syntax, is duck-typed and provides bidi-

rectional integration with JVM-compliant code. Scafi [10] has the goal of pro-290

viding a seamless integration of the Aggregate Programming paradigm in the

mainstream JVM platform; accordingly, it provides a strongly-typed internal

DSL, embedded into the Scala programming language [25]. Concerning plat-

form support, Protelis includes a set of interfaces and base abstract classes to

be implemented, capturing required capabilities of the host device. By contrast,295

13

Scafi provides an actor-based middleware [37, 12] supporting two architectural

styles: a (i) fully decentralised, peer-to-peer model and (ii) a centralised model

where a server mediates communications (allowing, e.g., to model logical neigh-

bouring relationships). Both projects provide simulation support, e.g., through

incarnations of the Alchemist meta-simulator [27]. In its essence, a simula-300

tor for aggregate systems needs to (i) control the scheduling of computational

rounds, and (ii) control the update of local contexts against which rounds are

executed; this second step involves handling communications (including, e.g.,

neighbourhood interaction, network properties), device evolution (e.g., state,

local failures), and environment evolution (e.g., physical configuration, dynam-305

ics).

Simulation is of paramount importance in at least two phases in the design

of aggregate-based Edge-of-Things applications. Simulation is usually the best

tool (often, due to the complexity of the target deployments, the only tool)

available for inspecting how the system works. Since the results depend in gen-310

eral on the perception and communication of situated devices, it is hard to get a

picture of how the system works, and under which conditions, without a simula-

tion of a number of actual interacting devices. Usually, however, further details

are included in the simulation once designers are confident that the system com-

plies to its requirements. These details are often related to the final deployment,315

and include network aspects. For instance, in the case of a distributed sensing

application, a first step would be verifying that the aggregation and processing

of the information works correctly. Once this first step is completed, further

requirements could be injected; for instance, an accurate simulation of packages

lost due to network jamming (e.g. with varying antenna power), several dis-320

placements of the sensing devices, or a comparison between different network

deployments (e.g. with a different count of SOs). In a sense, simulation is used

first as a tool to gather guarantees about functional requirements, as well as a

rapid prototyping support tool; and then used as a means to acquire insights

on performance and other non-functional requirements, by executing on a more325

detailed model.

14

4. Case Study and Simulations: An Edge-of-Things Application for

Mass Urban Events

In this section, we discuss an example evaluation of an existing aggregate

application for large scale urban events on different deployment targets on the330

Edge and on the cloud. Our goal is to evaluate the expected performance of an

application which showed promising results, evaluating under which conditions

we would achieve good performance. The core application has been presented

in a previous work [9]: it is a crowd detection and steering application for large

scale urban events. The application has been conceived and developed in the335

framework of aggregate computing. For the sake of simplicity, in this work

we reuse the crowd detection aggregate algorithm, but we turn off the steering

system. In fact, we are interested in evaluating the reactivity of the application

and its cost on the infrastructure, rather than the efficacy of the steering system.

4.1. Scenario Modelling340

Our case study leverages data from a real-world mass event, during which,

by means of the official event app, 1497 high-quality, anonymised GPS traces of

attendees were recorded [3]. The IoT domain model of Section 3.1 is instanced

on the case study in Figure 4. The CrowdSafety service exploits Smart Lamps,

Smart Cameras and Smart Traffic Lights deployed around Vienna’s Bridges,345

Squares and Streets and aimed to monitor overcrowded zones (Crow Tracking

process). All the data are hence elaborated by a Data Processing Centre and,

when a zone crowding is reaching the concerning levels, a warning to Citizens

close to such zone is spread (User Alert process). The Context information

required are the Citizen position, the estimated density of the monitored zone350

and its topology, since bridges, squares and streets have different concerning

levels. In this case study, we do not consider coordination among Edge Servers

or the adoption of Orchestrators to regulate activity of the Edge Servers (e.g.,

by dynamically tuning density thresholds for crowd danger), though this could

be useful to enact global-level, application-specific policies. As per any well-355

written aggregate program, the application can work under the assumption

15

Crowd Safety
Service

im
pacts

density level,
topology

Crowd Safety
Service Profile

Crowd Safety
Service Model

User

City's
Smart Objects

alerts
consumes

position

pr
od

uc
es

Data Processing
Center

exploits

Bridge

Street

City

User
Alert

Process

Crowd
Tracking
Process

IoT Entity IoT Environment IoT Service

Legend

m
on

ito
rs

Context

Square

Smart Lamp Smart Traffic LightSmart Camera

Figure 4: CrowdSafety Service model.

that nearby devices have means to communicate. Due to the inherent model of

aggregate programming, the specific communication means of devices, whether

purely P2P, mediated by the cloud, or happening at some intermediate level

(such as on edge servers), it is entirely transparent to the software—besides for360

what concerns its actual responsiveness. In order not to introduce unwanted

(and unrealistic) synchronisation, we let SOs compute at a slightly different

frequency: 1Hz ± 5%.

In this work, we want to compare the same software as executed in two

different deployments:365

1. a Cloud deployment, where single devices communicate by sending data

to the cloud via cellular network technology;

2. an Edge deployment, where devices communication is mediated by local

edge servers, each one coupled with a Wi-Fi access point, with which

nearby SOs can communicate with using a Wi-Fi connection. For the370

remainder of this work, the term access points refers to the networking

wireless interface of an Edge Server, and not to stand-alone access points

16

components.

Relying on the cloud opens the possibility of letting very far away devices com-

municate. By sending everything to a centralised service, and retrieving any375

subset of such data, it is in fact possible to emulate a network of very long

range P2P devices. The larger the cloud-emulated P2P network range, the

greater is the computational effort required for the infrastructure to sustain the

computation. The cost for this operation is paid primarily in terms of reactivity

and network resource occupancy: the round trip time for a message to reach380

one of its designated neighbours must in fact take into account the time to reach

the cloud and get processed. Moreover, the cellular network may face issues in

case of a very-high device density, which results in the best case in performance

drops (further increasing the round trip time and decreasing the reactivity of

the program as a consequence), and in a loss of connectivity in the worst.385

On the other hand, the Edge deployment has much shorter round trip times,

but features two relevant downsides: (i) there must be access point-equipped

edge servers scattered around the city for nearby users to connect to; and (ii)

communication is limited to the areas surrounding such access points, the ap-

plication will not be able to work appropriately in case none is available in the390

surroundings of some device.

Approximate localisation of smart objects, which is required for the crowd

sensing aggregate program to work, is provided in the Edge case by proximity

with the closest Edge Server, and in the Cloud case by GPS positioning. In this

work, we assume the GPS to be precise, and we do not simulate drifts between395

the SOs’ position and their reported GPS location.

For this work, we decided not to take into account the case of opportunistic,

purely peer-to-peer network. This choice is rooted in the lack of purely peer-to-

peer communication means of commercial devices by the time of writing, hence

the difficulty in estimating their network properties. Should we consider a real400

implementation of the software for an upcoming event, we would be realistically

limited to the two options in analysis: whether to send everything towards

17

the Cloud, or dislocate access points around the event areas and use them as

communication promoters.

4.1.1. Dislocating Edge Servers for an Edge Computing Platform405

For the Edge case, it is relevant to discuss the dislocation of access points.

Considered the extension of the area where the simulation takes place (about

300km2), it is rather unrealistic to propose a coverage made by randomly-

displaced access points. Considering a Wi-Fi range of 100 meters, this would

result in about 30000 access points to cover the area with optimal displacement.410

At the same time, the “hot spots” of an urban event are usually known to the

organisers in advance: if a concert, or the start or finish line of a race is located

at some point, it is very likely that a larger crowd will form around those areas.

Moreover, organisers of the event may have access to historical data regarding

past editions of the same event.415

Despite this knowledge, however, access points can not get installed just

everywhere: some places may have physical obstacles, or may be not equipped

with the necessary technology (usually at least an electricity source and possibly

a network port for Internet access). Namely, a certain amount of randomness is

part of the displacement process. In order to emulate a “best effort” displace-420

ment of access points, we adopted the following strategy:

1. for each location sampled in our GPS trace, we computed a bivariate

normal distribution [20] centred in the sample position;

2. we use such distributions as base for a mixture bivariate normal distribu-

tion [29], weighting each sample equally;425

3. we then randomly sample from the latter distribution the position of our

access points-equipped edge servers.

As a result, there will be higher probability of finding an access point where it

is actually useful, but, nevertheless, it is also likely that some of them will be

positioned in areas with few or no users. This way, we attempt at emulating430

both knowledge of the scenario by the organisers, and potential mistakes due to

the imperfection of such knowledge.

18

4.1.2. Network Delay Model

In order for us to compare the two potential deployments, it is necessary to

define network measures, and, in particular, how messages are delayed depend-

ing on deployment and characteristics of the involved hardware. Inspired by

[34], we compute our delay d as a function of: a propagation delay p, which is

constant and depends on the network deployment; the message size s; and the

data rate b:

d = p +
s

b

For Edge communication, we set p to zero, as there is no additional delivery to

perform after the data packet has arrived to its destination. At the same time,435

however, we compute b differently between the Cloud case and the Edge case:

we impose the communication data rate with the Cloud to be fixed, while we

modulate the data rate of the access points depending on the count of connected

SOs: if n SOs are attached to an access point, its actual data rate will be b = b0
n ,

with b0 being the nominal data rate of the device. Packet size is evaluated by440

measuring the size of the outgoing message objects produced by the aggregate

language.

4.1.3. Measures and Free Variables

In this experiment, we are interested in four measures:

1. the average network delay time, as a measure of the reactivity of our445

application;

2. the number of people informed that they are getting close to an over-

crowding area, as a metric of precision;

3. the average packet size generated by the application;

4. and, finally, the overall amount of data processed, which we use as indirect450

metric of energy consumption.

In our model, in fact, we did not include an accurate simulation of SO resource

consumption. We can, however, link the overall power consumption of the

system to the overall amount of data processed in a time unit by respectively,

19

Cloud Edge

Edge Server count 0 geometric in [10, 2000]m

Wi-Fi range n.a. geometric in [5, 500]m

Computation effort geometric in [10, 1000]m n.a.

Propagation delay geometric in [10−4, 10]s 0s

Device bit rate geometric in [100, 107]B/s

Table 1: Free variables for the two scenarios in exam. Computation effort represents the

communication range used by Cloud-emulated P2P network. Geometrically distributed values

have been chosen to correctly sample over multiple orders of magnitude. Values sampled from

such distribution are not, in general “round” numbers. We used nine different samples per

geometric variable.

Edge Servers and the Cloud. In fact, we argue that higher data volumes imply455

both higher energy consumption by the network apparatuses (included the radio

of things participating the system), and by Edge Servers and Cloud CPUs (which

ultimately must deal with a higher amount of data). On the other hand, this

metric has obvious limitations, such as processing efficiency: it is likely that

a Cloud data centre have highly optimised energy consumption and resource460

sharing via virtualisation, and, as such, it may be more efficient in terms of

energy consumed per byte processed than a setup with multiple Edge Servers.

This effect is however compensated by the energy use by network apparatuses.

Previous studies show that network energy costs for moving data towards data

centres may well compare to the energy required to store and process such data465

[4]. Our goal in this work is not to provide accurate energy estimates for diverse

deployments, but rather to get a picture of how energetic requirements may

compare from different setups, using the overall processed data as metric.

Free variables are summarised in Table 1, the Cartesian product of every

combination is executed ten times with a different random seed. Reported470

values are the mean of those runs.

20

4.1.4. Implementation Details of the Case Study

Once the experiment design phase was completed, we implemented the case

study according to the strategies described in Section 3.3. Protelis [28] was

chosen as language for writing the aggregate program, while Alchemist [27] was475

selected as simulation platform. Data generated by the simulator was processed

with NumPy [35] and xarray [21], finally, matplotlib [23] was leveraged for chart-

ing. For the sake of reproducibility, the software project for the experiment is

publicly available and released as open source1: including: the Protelis code, the

simulator configuration, software patches, data processing and chart generation480

scripts, and execution automation scripts.

4.2. Simulation Results

We first separately evaluate the Cloud and the Edge setups in order to

understand how the network and deployment target characteristics influence

the reactivity and the performance of the aggregate software.485

4.2.1. Using the Cloud

For what concerns the Cloud setup, we are interested in understanding how

data rate, propagation delay, and amount of computational effort invested by

the Cloud service provider influence the computation performance, reactivity,

packet size and power consumption. We tune the computational effort by chang-490

ing the maximum distance at which the Cloud allows SOs to communicate—

namely, the Cloud systems uses, for computing the crowding at a device location,

data generated by all devices situated within the maximum allowed range.

Figure 5 depicts how data rate influences the quality of the results and the

reactivity of the application. For what concerns the ability of the application to495

detect overcrowded areas, a larger data rate does not influence the results, which

are instead very sensible to the computational effort. In particular, the system

requires considering at least the information of SOs within 56 meters to achieve

1https://bitbucket.org/danysk/experiment-2018-information-sciences

21

https://bitbucket.org/danysk/experiment-2018-information-sciences

103 104 105 106 107 108

Data rate (B/s)

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

M
ea

n
pa

ck
et

 d
el

ay
 (s

) EDGE HSPA HSPA+ LTE-AC6

Delay with data rate and computation effort

10
17

31
56

100
177

316
562

1000

103 104 105 106 107 108

Data rate (B/s)

200

300

400

500

No
tif

ie
d

us
er

s

EDGE HSPA HSPA+ LTE-AC6

Users notified with data rate and computation effort

10
17

31
56

100
177

316
562

1000

103 104 105 106 107 108

Data rate (B/s)

600

800

1000

1200

1400

1600

Pa
ck

et
 si

ze
 (B

yt
es

)

EDGE HSPA HSPA+ LTE-AC6

Packet size with data rate and computation effort

10
17

31
56

100
177

316
562

1000

103 104 105 106 107 108

Data rate (B/s)

105

106

107

108

M
ea

n
da

ta
 p

ro
ce

ss
ed

 (B
/s

)

EDGE HSPA HSPA+ LTE-AC6

Appr. energy use with data rate and computation effort

10
17

31
56

100
177

316
562

1000

Figure 5: Impact of data rate on packet delay (top left), notified users (top right), packet size

(bottom left) and total data processed (bottom right). Different computational efforts (see

Table 1) on the Cloud side are depicted as lines of different colours. The associated number

represents the virtual range within which the Cloud allows SOs to share data. Numbers are not

“round” as they geometrically space the range of interest (see Table 1). The system obtains

reasonable performance from 56m+ simulated meters of connectivity. Larger data rates have

no direct impact on the number of warned people, however they do have an important effect

on the application reactivity: the mean packet delay steadily decreases until the data rate

typical of a 3G-HSPA+ connection. Data rates are not correlated with package size nor with

increased amount of data generated and processed (and, hence, energy consumed). They

are instead both influenced by the effort invested in the computation: packet size reaches a

plateau when at 31m of simulated connection range, while power consumption linearly grows

with the increase in computation effort.

22

acceptable results. The importance of larger ranges decreases progressively,

reaching a plateau at about 177 meters. Data rate impacts instead the reactivity500

of the application. Interestingly, the larger amount of data gathered by raising

the communication range (and, hence, raising the computational effort required

by the Cloud) partially compensates for lower data rates, with more densely-

connected scenarios achieving sensibly lower mean packet delays than sparsely-

connected ones. In order to achieve low delays, a data rate similar to that offered505

by current 3G/HSPA+ or better is required. This is seemingly a requirement

which is not unrealistic to achieve, however, when many SOs are located within

the same area, the performance of the network may degrade consistently (also

dependently on the user behaviour) [31]. As such, achieving the typical data

rate of some kind of connection cannot be taken for granted during crowded510

public events. Packet size is not influenced by data rate. Once the system is

connected enough (namely, the computational effort is high enough) to allow for

the crowd detection system to actually work with acceptable performance, the

measured packet size reaches a plateau. Power consumption is not influenced

by data rate as well, but grows approximately linearly with the computation515

effort.

Propagation delay depends mostly on the backbone performance and Cloud

data process time. Our experiments, whose outcome is framed in Figure 6,

show that on average the effect of propagation delay is higher as higher is the

data rate, and on average the propagation delay becomes the bottleneck to520

application reactivity when it reaches about 500ms. Results on the number of

detected overcrowded areas (and notified people) are consistent with the data

provided by the experiments performed varying data rate in Figure 5: a decrease

in the reactivity of the application does not prevent detection of overcrowded

areas, instead, so does lowering the computational effort of the Cloud below525

a certain threshold. Results concerning packet size and energy consumption

return similar results as well: those two metrics are not measurably influenced

by propagation delay as they are not by data rate.

23

10 3 10 2 10 1 100 101

Propagation delay (s)

1

2

3

4

5

6

M
ea

n
pa

ck
et

 d
el

ay
 (s

)

typical delay

Delay with prop. delay and comp. effort
10
17

31
56

100
177

316
562

1000

10 3 10 2 10 1 100 101

Propagation delay (s)

200

300

400

500

No
tif

ie
d

us
er

s

typical delay

Users notified with prop. delay and comp. effort

10
17

31
56

100
177

316
562

1000

10 3 10 2 10 1 100 101

Propagation delay (s)

600

800

1000

1200

1400

1600

Pa
ck

et
 si

ze
 (B

yt
es

)

typical delay

Packet size with prop. delay and comp. effort

10
17

31
56

100
177

316
562

1000

10 3 10 2 10 1 100 101

Propagation delay (s)

105

106

107

108

M
ea

n
da

ta
 p

ro
ce

ss
ed

 (B
/s

)

typical delay

Appr. energy use with prop. delay and comp. effort

10
17

31
56

100
177

316
562

1000

Figure 6: Impact of propagation delay on packet delay (top left), notified users (top right),

packet size (bottom left) and total data processed (bottom right). Different computational

efforts (see Table 1) on the Cloud side are depicted as lines of different colours. The associated

number represents the virtual range within which the Cloud allows SOs to share data. Num-

bers are not “round” as they geometrically space the range of interest (see Table 1). Results

are consistent with those depicted in Figure 5: longer delays do not decrease significantly the

count of people warned, however, they can compromise the reactivity of the application, espe-

cially if such times get past one second. Similarly to data rate, propagation delay does neither

significantly affect packet size nor power requirements, which are both instead influenced by

the simulated P2P range: the former reaches a plateau when the computational effort crosses

31 meters, while the latter scales linearly with such value.

24

4.2.2. Using the Edge

For the Edge setup, we are interested in understanding how the number of530

available SOs, the wireless connection data rate, and the wireless connection

range impact computation performance, application reactivity, packet size, and

energy consumption (measured indirectly by evaluating the overall amount of

data processed by Edge Servers).

Results for data rate are depicted in Figure 7. Larger data rates are beneficial535

for both the application reactivity and the crowd detection precision, however,

benefits reach a plateau well before the typical performance of a modern Wi-Fi

connection is reached: the data rate provided by a modern Wi-Fi connection

does not represent a bottleneck for the performance of an aggregate crowd de-

tection application. The behaviour of packet size is interesting, as it reaches a540

plateau when there are just enough Edge Servers to cover the event area, then

decreases due to the presence of multiple servers covering the same area, thus

splitting the load. The overall energetic expenditure is not directly influenced

by higher data rates, at least for realistic conditions with modern Wi-Fi connec-

tions; predictably, however, it grows linearly with the count of installed Edge545

Servers.

Much more interesting are the results of connection ranges depicted in Fig-

ure 8. Data shows a relationship between the number of SOs, their connection

range, and the overall system precision and performance. The more SOs are

available, the lower is the actual wireless range required to obtain sufficient550

precision in crowd detection. Such precision reaches a peak, then it slowly de-

creases progressively with larger ranges. This is likely due to competition for

time on air by multiple devices and saturation of the network capabilities of the

access points. Packet size behaves similarly to system performance: it reaches a

peak approximately corresponding to the best system performance, then slowly555

decreases. Such small reduction in the amount of data generated per smart

object, however, does not compensate for the impact on energy consumption

of larger wireless ranges and consequent higher count of SOs connected to each

25

103 104 105 106 107 108

Data rate (B/s)

1

2

3

4

5

M
ea

n
pa

ck
et

 d
el

ay
 (s

)

typical Wi-Fi data rate

Delay with data rate and edge server count
10
19

37
72

141
274

531
1031

2000

103 104 105 106 107 108

Data rate (B/s)

0

50

100

150

200

250

300

350

No
tif

ie
d

us
er

s

typical Wi-Fi data rate

Users notified with data rate and edge server count
10
19

37
72

141
274

531
1031

2000

103 104 105 106 107 108

Data rate (B/s)

400

450

500

550

600

650

700

750

Pa
ck

et
 si

ze
 (B

yt
es

)

typical Wi-Fi data rate

Packet size with data rate and edge server count

10
19

37
72

141
274

531
1031

2000

103 104 105 106 107 108

Data rate (B/s)

104

105

106

107

M
ea

n
da

ta
 p

ro
ce

ss
ed

 (B
/s

)

typical Wi-Fi data rate

Appr. energy use with data rate and edge server count

10
19

37
72

141
274

531
1031

2000

Figure 7: Impact of wireless channel data rate on packet delay (top left), notified users (top

right), packet size (bottom left) and total data processed (bottom right). Different Edge

Server counts are depicted as lines of different colours, associated to such count. Numbers are

not “round” as they geometrically space the range of interest (see Table 1). Data shows that

(predictably) the system benefits from a higher number of Edge Servers: the denser the Edge

Servers, the better the software performs (more users are warned). Data rate seems to be

less important for reactivity: in fact, in the range of data rates to be expected by a modern

Wi-Fi connection, there is no appreciable difference. Very low data rate connections may

cause longer delays and ultimately negatively affect the system performance, however, this

happens in our case only for connections with a data rate lower than 100KB/s. Interestingly,

packet size grows until it reaches a peak around 300/500 total Edge Servers. It then decreases.

This is likely due to the effect of better coverage of denser areas: for undercovered scenarios,

there are simply not enough things connected to each Edge Server to let the packet size grow

(packet size is related to the count of other things the aggregate systems is exchanging data

with). With 300/500 Edge Servers, the scenario begins to be reasonably covered, with further

Edge Server density the load can be split among close ones, decreasing the packet size as

well. Energetic expenditure is not directly influenced by data rates, unless they get lower

than a dozen KB/s: the system performance is so degraded that little data actually gets to

the Edge Servers to be processed, lowering the power consumption. It is, however, an extreme

situation, since the system in this condition does not perform adequately, as demonstrated

by the top two charts. Finally, energetic expenditure grows approximately linearly with the

count of Edge Servers deployed.

26

101 102

Wireless range (m)

0.0

0.5

1.0

1.5

2.0

2.5

M
ea

n
pa

ck
et

 d
el

ay
 (s

) typical Wi-Fi range

Delay with range and edge server count

10
19

37
72

141
274

531
1031

2000

101 102

Wireless range (m)

0

100

200

300

400

No
tif

ie
d

us
er

s

typical Wi-Fi range
Users notified with range and edge server count

10
19
37
72
141
274
531
1031
2000

101 102

Wireless range (m)

0

200

400

600

800

1000

1200

Pa
ck

et
 si

ze
 (B

yt
es

) typical Wi-Fi range

Packet size with range and edge server count

10
19

37
72

141
274

531
1031

2000

101 102

Wireless range (m)

101

103

105

107

M
ea

n
da

ta
 p

ro
ce

ss
ed

 (B
/s

)

typical Wi-Fi range

Appr. energy use with range and edge server count

10
19

37
72

141
274

531
1031

2000

Figure 8: Impact of wireless communication range on packet delay (top left), notified users

(top right), packet size (bottom left) and total data processed (bottom right). Different Edge

Server counts are depicted as lines of different colours, associated to such count. Numbers are

not “round” as they geometrically space the range of interest (see Table 1). Data shows that

the system benefits from a higher number of access points, and the lower the Wi-Fi range,

the stronger the benefit of a denser coverage. Higher ranges, however, are also correlated with

higher delays, as there will be more SOs connected, and the available bandwidth capacity

will need to be shared, decreasing reactivity. The behaviour of the packet size is interesting:

it grows to a plateau which is correlated to the Edge Server count: denser deployments will

feature smaller packet size, assuming a communication range which allows for the same final

quality of service. Finally, power consumption grows linearly with increased wireless range:

even though packet size (and, hence, the amount of data produced by single smart objects

participating the system) does not grow over a threshold, and actually in fact slowly decreases,

such effect does not compensate for the much greater count of reachable SOs, that must be

taken into account by Edge Servers when processing information.

27

Edge Server. Energy consumption, here indirectly measured by considering the

gross amount of data processed by Edge Servers, linearly grows with higher560

wireless ranges. For large urban areas, with typical Wi-Fi ranges, a number of

Edge Servers in the order of a few thousands seems the most reasonable choice.

In general, however, a good Edge deployment must take multiple factors into

account:

• SO count and wireless range must be considered together;565

• a shortage of SOs may confer the global system an erratic behaviour;

• different wireless technologies require possibly very different amount of

SOs;

• just throwing as many SOs as possible and using as a large connection

range as possible is not going to offer the best performance, as, once an570

efficiency peak is reached, performance then degrades;

• even worse, both the latter factors contribute linearly to the energy ex-

penditure, so increasing any of them should be considered with care.

4.2.3. Cloud/Edge Comparison

Finally, we pick six configurations that we consider to be representative of575

possible real world deployments, and compare their performance in time. The

rationale behind each configuration is summarised in Table 2, while Table 3

shows the parameters of each experiment.

Results are depicted in Figure 9. Cloud deployments can achieve higher

precision than Edge deployments, due to the fact that all devices participate580

the system, while those out of the coverage of the local access point cannot

participate in computation in the Edge deployment. On the other hand, how-

ever, Edge-based deployments have very high reactivity. In order for a Cloud

deployment to achieve similar reactivity, a good, last generation cellular connec-

tion with good signal coverage is required. Moreover, Edge setups generate and585

elaborate much less data per unit of time due to locality, which directly impacts

28

Name Rationale

Edge-sparse An Edge deployment with not enough SOs, communication

on a classic 802.11 Wi-Fi network

Edge-dense An Edge deployment with barely enough SOs, communica-

tion on a classic 802.11 Wi-Fi network

Edge-denser A dense, well-designed Edge deployment, communication on

a classic 802.11 Wi-Fi network

Cloud-2G A low performance Cloud deployment with SOs communi-

cating over a typical 2G (Edge) cellular connection (or where

the current performance is comparable due to high density)

Cloud-3G A reasonably performant Cloud deployment with SOs com-

municating over a typical 3G (HSPA+) cellular connection

(or where the current performance is comparable due to high

density)

Cloud-LTE A very performant Cloud deployment with SOs communi-

cating over a high performance 4G-LTE cellular connection

Table 2: Rationale behind the configurations chosen for the comparison.

Name Edge-

sparse

Edge-

dense

Edge-

denser

Cloud-

2G

Cloud-

3G

Cloud-

LTE

Data rate (b/s) 43M 43M 43M 32K 2.4M 180M

SOs 274 1031 2000 0 0 0

Propagation delay (ms) 0 0 0 1000 316 100

Range/Effort (m) 89 89 89 32 56 100

Table 3: Free variables for the two scenarios in exam.

29

0 100 200 300 400 500 600
Simulated time (s)

200

250

300

350

400

450

500

No
tif

ie
d

us
er

s

Users notified: edge/cloud comparison

edge-sparse
edge-dense
edge-denser

cloud-2G
cloud-3G
cloud-LTE

0 100 200 300 400 500 600
Simulated time (s)

100

M
ea

n
pa

ck
et

 d
el

ay
 (s

)

Delay: edge/cloud comparison

edge-sparse
edge-dense
edge-denser

cloud-2G
cloud-3G
cloud-LTE

0 100 200 300 400 500 600
Simulated time (s)

103

104

105

106

107

M
ea

n
da

ta
 p

ro
ce

ss
ed

 (B
/s

)

Appr. energy use: edge/cloud comparison

edge-sparse
edge-dense
edge-denser

cloud-2G
cloud-3G
cloud-LTE

Figure 9: Edge (cold colours) and Cloud (warm colours) compared with different configura-

tions, whose parameters are described in Table 3, and the rationale of the choices is explained

in Table 2. Cloud deployments equipped with enough processing power to sustain complex

computations can achieve higher precision than Edge deployments, due to the fact that all de-

vices participate to the system, while those out of the coverage of the local access points cannot

participate in computation in the Edge deployment. On the other hand, however, Edge-based

deployments have very high reactivity. In order for a Cloud deployment to achieve similar

reactivity, a good, last generation cellular connection with good signal coverage is required.

Data locality typical of Edge deployments, which hinders the quality of the results with re-

spect, allows for much lower (three orders of magnitude) data processed per unit of time. This

aspect has direct consequences on the overall power required to make the system work.

30

energy requirements. According to our data, in choosing between a Cloud or an

Edge (or a hybrid) deployment type three very relevant factors must be taken

into account: how important is for the application to quickly respond to new

situations with respect to how important it is to collect information from every590

possible source, and how relevant is the power usage and environmental sustain-

ability of the application. The higher reactivity is required and the more power

consumption is a concern, the more an Edge-based deployment is preferable,

since it generally provides lower packet delays and higher resilience to high SO

density, as well as lower power consumption.595

5. Conclusion

In this paper, we illustrated a conceptual and operative framework for the

development of IoT applications and ecosystems. Specifically, we extended the

model in [9] with an explicit account of Collective Opportunistic IoT Services,

which are globally offered by dynamic ensembles of entities comprising things,600

humans, and infrastructural elements including Access Points, Cloud, and Edge

Servers. We believe that extending the traditional viewpoint by (also) thinking

and working by a “systems” perspective – i.e., considering dynamic aggregate-

level behaviour and properties – is key to unlock the potential of the IoT. Also

the ability of exploiting the Edge/Fog/Cloud continuum for both enabling and605

improving the QoS of applications is crucial. Accordingly, in this paper we quan-

titatively analysed, by means of simulations, the impact of executing Collective

Opportunistic IoT Services for crowd management in large-scale urban events

(implemented with the Aggregate Computing framework) across different infras-

tructural configurations. Data from our experiments showed that Edge deploy-610

ments provide increased reactivity for aggregate applications, whereas Cloud

deployments may provide additional precision at the expense of reactivity and

centralisation issues.

In future work, we intend to investigate two main directions. One direction

focusses on how aggregate computations may be automatically and opportunisti-615

31

cally deployed and executed on hybrid Edge/Cloud infrastructures. That is, the

goal is to understand how to exploit the declarativity of the Aggregate Program-

ming paradigm through context-aware execution platforms, and accordingly de-

sign proper middleware support—hence substantiating the first proposals ad-

vanced in [37]. The other direction concerns actual design and programming620

of Collective Opportunistic IoT Services and Edge-of-Things applications. Ag-

gregate Programming already provides useful abstractions that leverage spatial

distribution and context propagation, but additional mechanisms are needed to

better capture – also linguistically – opportunistic computation and formation

of dynamic teams of devices.625

References

[1] Alam, M. G. R., Hassan, M. M., Uddin, M. Z., Almogren, A., Fortino, G.,

2019. Autonomic computation offloading in mobile edge for iot applications.

Future Generation Computer Systems 90, 149–157.

[2] Aloi, G., Caliciuri, G., Fortino, G., Gravina, R., Pace, P., Russo, W.,630

Savaglio, C., 2017. Enabling IoT interoperability through opportunistic

smartphone-based mobile gateways. Journal of Network and Computer Ap-

plications 81, 74–84.

[3] Anzengruber, B., Pianini, D., Nieminen, J., Ferscha, A., 2013. Predict-

ing social density in mass events to prevent crowd disasters. In: Social635

Informatics - 5th International Conference, SocInfo 2013, Kyoto, Japan,

November 25-27, 2013, Proceedings. pp. 206–215.

[4] Baliga, J., Ayre, R. W. A., Hinton, K., Tucker, R. S., jan 2011. Green

cloud computing: Balancing energy in processing, storage, and transport.

Proceedings of the IEEE 99 (1), 149–167.640

URL https://doi.org/10.1109/jproc.2010.2060451

[5] Beal, J., Pianini, D., Viroli, M., 2015. Aggregate programming for the

Internet of Things. IEEE Computer 48 (9).

32

https://doi.org/10.1109/jproc.2010.2060451

[6] Bettini, L., 2016. Implementing Domain-Specific Languages with Xtext

and Xtend. Birmingham, ISBN: 9781786464965, Packt Publishing Ltd.,645

UK.

URL /files/https://www.packtpub.com/application-development/

implementing-domain-specific-languages-xtext-and-xtend-second-edition

[7] Bonomi, F., Milito, R., Zhu, J., Addepalli, S., 2012. Fog computing and

its role in the internet of things. In: Proceedings of the first edition of the650

MCC workshop on Mobile cloud computing. ACM, pp. 13–16.

[8] Bui, K.-H. N., Jung, J. J., 2019. Computational negotiation-based edge

analytics for smart objects. Information Sciences 480, 222–236.

[9] Casadei, R., Fortino, G., Pianini, D., Russo, W., Savaglio, C., Viroli, M.,

feb 2019. Modelling and simulation of opportunistic IoT services with ag-655

gregate computing. Future Generation Computer Systems 91, 252–262.

URL https://doi.org/10.1016/j.future.2018.09.005

[10] Casadei, R., Pianini, D., Viroli, M., 2016. Simulating large-scale aggregate

MASs with Alchemist and Scala. In: Computer Science and Information

Systems (FedCSIS), 2016 Federated Conference on. IEEE, pp. 1495–1504.660

[11] Casadei, R., Viroli, M., 2018. Collective abstractions and platforms for

large-scale self-adaptive iot. In: 2018 IEEE 3rd International Workshops

on Foundations and Applications of Self* Systems (FAS* W). IEEE, pp.

106–111.

[12] Casadei, R., Viroli, M., 2018. Programming actor-based collective adaptive665

systems. In: Programming with Actors. Springer, pp. 94–122.

[13] Cicirelli, F., Guerrieri, A., Spezzano, G., Vinci, A., 2017. An edge-based

platform for dynamic smart city applications. Future Generation Computer

Systems 76, 106–118.

[14] El-Sayed, H., Sankar, S., Prasad, M., Puthal, D., Gupta, A., Mohanty, M.,670

Lin, C.-T., 2018. Edge of things: the big picture on the integration of edge,

33

/files/https://www.packtpub.com/application-development/implementing-domain-specific-languages-xtext-and-xtend-second-edition
/files/https://www.packtpub.com/application-development/implementing-domain-specific-languages-xtext-and-xtend-second-edition
/files/https://www.packtpub.com/application-development/implementing-domain-specific-languages-xtext-and-xtend-second-edition
https://doi.org/10.1016/j.future.2018.09.005

iot and the cloud in a distributed computing environment. IEEE Access 6,

1706–1717.

[15] Fortino, G., Russo, W., Savaglio, C., Shen, W., Zhou, M., 2017. Agent-

oriented cooperative smart objects: From IoT system design to implemen-675

tation. IEEE Transactions on Systems, Man, and Cybernetics: Systems,

1–18.

[16] Fortino, G., Russo, W., Savaglio, C., Viroli, M., Zhou, M., Jun. 2017. Mod-

eling opportunistic IoT services in open IoT ecosystems. In: De Meo, P.,

Postorino, M. N., Rosaci, D., Sarné, G. M. (Eds.), WOA 2017 – 18th Work-680

shop “From Objects to Agents”. Vol. 1867 of CEUR Workshop Proceedings.

Sun SITE Central Europe, RWTH Aachen University, pp. 90–95.

[17] Fortino, G., Russo, W., Savaglio, C., Viroli, M., Zhou, M., Feb 2018. Op-

portunistic cyberphysical services: A novel paradigm for the future internet

of things. In: 2018 IEEE 4th World Forum on Internet of Things (WF-IoT).685

pp. 488–492.

[18] Fortino, G., Savaglio, C., Zhou, M., Aug 2017. Toward opportunistic ser-

vices for the industrial internet of things. In: 2017 13th IEEE Conference

on Automation Science and Engineering (CASE). pp. 825–830.

[19] Ghahramani, M. H., Zhou, M., Hon, C. T., 2017. Toward cloud computing690

qos architecture: Analysis of cloud systems and cloud services. IEEE/CAA

Journal of Automatica Sinica 4 (1), 6–18.

[20] Hamedani, G. G., Tata, M. N., nov 1975. On the determination of the

bivariate normal distribution from distributions of linear combinations of

the variables. The American Mathematical Monthly 82 (9), 913.695

URL https://doi.org/10.2307/2318494

[21] Hoyer, S., Hamman, J. J., apr 2017. xarray: N-d labeled arrays and datasets

in python. Journal of Open Research Software 5.

34

https://doi.org/10.2307/2318494

[22] Hu, L., Miao, Y., Wu, G., Hassan, M. M., Humar, I., 2019. irobot-factory:

An intelligent robot factory based on cognitive manufacturing and edge700

computing. Future Generation Computer Systems 90, 569–577.

[23] Hunter, J. D., 2007. Matplotlib: A 2d graphics environment. Computing

in Science & Engineering 9 (3), 90–95.

[24] Minoli, D., Sohraby, K., Occhiogrosso, B., 2017. Iot considerations, re-

quirements, and architectures for smart buildingsenergy optimization and705

next-generation building management systems. IEEE Internet of Things

Journal 4 (1), 269–283.

[25] Odersky, M., Rompf, T., 2014. Unifying functional and object-oriented

programming with scala. Communications of the ACM 57 (4), 76–86.

[26] Pedrycz, W., 2018. Granular computing for data analytics: a manifesto of710

human-centric computing. IEEE/CAA Journal of Automatica Sinica 5 (6),

1025–1034.

[27] Pianini, D., Montagna, S., Viroli, M., 2013. Chemical-oriented simulation

of computational systems with Alchemist. Journal of Simulation.

[28] Pianini, D., Viroli, M., Beal, J., 2015. Protelis: Practical aggregate pro-715

gramming. In: Proceedings of ACM SAC 2015. ACM, Salamanca, Spain,

pp. 1846–1853.

[29] Ray, S., Lindsay, B. G., oct 2005. The topography of multivariate normal

mixtures. The Annals of Statistics 33 (5), 2042–2065.

URL https://doi.org/10.1214/009053605000000417720

[30] Savaglio, C., Fortino, G., Zhou, M., 2016. Towards interoperable, cogni-

tive and autonomic IoT systems: an agent-based approach. In: Internet of

Things (WF-IoT), 2016 IEEE 3rd World Forum on. IEEE, pp. 58–63.

[31] Shafiq, M. Z., Ji, L., Liu, A. X., Pang, J., Venkataraman, S., Wang, J., jun

2016. Characterizing and optimizing cellular network performance during725

35

https://doi.org/10.1214/009053605000000417

crowded events. IEEE/ACM Transactions on Networking 24 (3), 1308–

1321.

URL https://doi.org/10.1109/tnet.2016.2533612

[32] Sheng, Z., Pfersich, S., Eldridge, A., Zhou, J., Tian, D., Leung, V. C., 2019.

Wireless acoustic sensor networks and edge computing for rapid acoustic730

monitoring. IEEE/CAA Journal of Automatica Sinica 6 (1), 64–74.

[33] Shi, W., Cao, J., Zhang, Q., Li, Y., Xu, L., 2016. Edge computing: Vision

and challenges. IEEE Internet of Things Journal 3 (5), 637–646.

[34] Sonmez, C., Ozgovde, A., Ersoy, C., may 2017. EdgeCloudSim: An environ-

ment for performance evaluation of edge computing systems. In: 2017 Sec-735

ond International Conference on Fog and Mobile Edge Computing (FMEC).

IEEE.

URL https://doi.org/10.1109/fmec.2017.7946405

[35] van der Walt, S., Colbert, S. C., Varoquaux, G., mar 2011. The NumPy ar-

ray: A structure for efficient numerical computation. Computing in Science740

& Engineering 13 (2), 22–30.

[36] Viroli, M., Beal, J., Damiani, F., Audrito, G., Casadei, R., Pianini, D.,

2018. From field-based coordination to aggregate computing. In: Lecture

Notes in Computer Science. Springer International Publishing, pp. 252–

279.745

URL https://doi.org/10.1007/978-3-319-92408-3_12

[37] Viroli, M., Casadei, R., Pianini, D., 2016. On execution platforms for large-

scale aggregate computing. In: Proceedings of the 2016 ACM International

Joint Conference on Pervasive and Ubiquitous Computing: Adjunct. ACM,

pp. 1321–1326.750

[38] Voelter, M., 2013. DSL Engineering: Designing, Implementing and Us-

ing Domain-specific Languages. CreateSpace Independent Publishing Plat-

36

https://doi.org/10.1109/tnet.2016.2533612
https://doi.org/10.1109/fmec.2017.7946405
https://doi.org/10.1007/978-3-319-92408-3_12

form.

URL https://books.google.it/books?id=J2i0lwEACAAJ

[39] Yang, Y., Zhong, M., Yao, H., Yu, F., Fu, X., Postolache, O., 2018. Internet755

of things for smart ports: Technologies and challenges. IEEE Instrumenta-

tion & Measurement Magazine 21 (1), 34–43.

37

https://books.google.it/books?id=J2i0lwEACAAJ

	Introduction
	Background
	SO-based IoT and Opportunistic Services
	From Cloud, Fog and Edge Computing towards Edge of Things

	Developing Edge of Things Applications: Aggregate Computing for Collective Opportunistic IoT Services
	Modelling: Edge-oriented Collective Opportunistic IoT Services Model
	Design: Aggregate Computing—an Engineering Approach for Collective IoT Services
	Implementation and Simulation Strategies

	Case Study and Simulations: An Edge-of-Things Application for Mass Urban Events
	Scenario Modelling
	Dislocating Edge Servers for an Edge Computing Platform
	Network Delay Model
	Measures and Free Variables
	Implementation Details of the Case Study

	Simulation Results
	Using the Cloud
	Using the Edge
	Cloud/Edge Comparison

	Conclusion

