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1. Introduction 
According to the European Environment Agency (EEA, 2016), a significant part of the 
European population is estimated to be living in, or near to, a flood-prone area. This 
tendency, with historical (e.g., Barredo, 2007) and projected (e.g., Alfieri et al., 2015) 
consequences of flood disasters tied to it, represents a serious challenge to flood risk 
management that is also emphasized by the Flood Directive (EU, 2007). Further investments 
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with flood warnings, observations and remote sensing data to inform decision makers 
through a web-based system. 
 
The web application we present here represents a step forward in flood hazard assessment 
and management and its scientific worth is considered manifold: 
 

•  It provides fast and inexpensive estimates of flood-prone areas for specific return 
periods that complement but do not replace results from hydrodynamic simulations. 
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2. Hydrogeomorphic flood hazard mapping: a 
review
Simplified data-driven methods for delineating flood-prone areas aim at informing users 
rapidly in the absence of detailed studies and in data-scarce (e.g., ungauged basins) or 
resource limited settings, while they enable large-scale analyses without incurring high 
computational time penalties In some cases these methods may not depend explicitly on
hydrolog
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Leopold 
mean ve e 
on avera ry 
different 
(2005) p d 
one abov to 
bankfull 
Based o ch 
to deline
Inundatio
bankfull 
presente
specified
stream p
generaliz
obtained
stage. 
 
Rennó e
index by 
as define
(Williams
(2011) s
flood-pro
contribut
combina
and false
 
Degiorgi
hazard in
morpholo
return pe
nearest s
 
Manfreda et al. (2014) compare
topographic index and the indice
hydrogeomorphic approach of N
classification using the elevation
for delineating flood-prone areas
of the HAND model by Westerh
and by Zheng et al. (2018). Man
tested the ability of single and c



ACCEPTED MANUSCRIPT
Tavares da Costa et al. / Environmental Modelling & Software (2018) 

 

6

Geomorphic Flood Index (GFI, Samela et al., 2017), was found to be the best performing 
and the most consistent index (Manfreda et al., 2015; Samela et al., 2016, 2017). 
 
As alternatives to the classification of flood-prone areas using the GFI, other data mining 
techniques somewhat relating to this work have been reported in literature, with good results 
(Tehrany et al., 2013, 2014; Rahmati and Pourghasem, 2017). 
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3.1. Morphological descriptor 
The GFI corresponds to the morphological descriptor adopted and used as classifier in the 
web application; it is a composite index derived directly from terrain analysis and is defined 
as: 
 
GFIij = ln(hij

ch/Hij)          (1) 
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3.2. Discrete statistical classification 

To delineate flood-prone areas, the dichotomous classification of Degiorgis et al. (2012) is 
implemented in the web application. The classification consists of a mathematical 
optimization problem, where the objective is to find the GFI threshold that produces the best 
possible representation of a reference flood hazard map. Several thresholds are 
subsequently used to convert the GFI layer to binary and delineate the flood-prone areas.
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and fn the number of false negatives. The true negative rate (or specificity: the probability of 
a correct miss), tnr, is given by: 
 
tnr = 1-fpr = tn/n = tn/tn+fp         (8) 
 
with fpr being the false positive rate (or fall-out: the probability of an incorrect hit; Fawcett, 
2006), tn the number of true negatives (i.e., number of flood-free pixels in both the test and 
the reference) n the total number of negative samples and fp the number of false positives. 
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higher than a randomly chosen negative (Bradley, 1997; Fawcett, 2006). The AUC is 
invariant to selected thresholds and prior probabilities (Bradley, 1997; Schumann, Vernieuwe 
et al., 2014). Provided that a reasonable number of thresholds are considered, the AUC can 
be estimated by a trapezoidal rule approximation of the definite integral. In our case, the 
number of thresholds considered can surpass the one million mark, depending on the river 
basin. 
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4.1. Architecture 
A cloud-based client-server model is adopted as the web application architecture. The 
implementation of the web application is illustrated as a network diagram in Fig. 3. The 
server host functions as a web and file server for restricted uploading and storing of static 
layers and results, as well as for their retrieval. Clients and server communicate over the 
internet via any modern web browser. The web application framework incorporates a Web-
GIS front-end made of a combination of HTML5 (a markup language) and OpenLayers (an 
open sou
source g
core mod
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4.2. Back-end  
Web application I/O is done using GDAL and is available in any raster file format supported 
by this library. The core model functions accessible to users consist of: 
 

1. preparing data for supervised classification; 
2. linear binary classification of the morphological descriptor GFI; 
3. computation of classification performance measures. 
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constricted by the map bounding box. Finally, we took advantage of having static layers in 
the file server to render maps faster across scales using pre-built tile caching (MapCache). 
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4.4. Parallelization strategy 
The same concurrent programming model is used in different phases of the methodological 
workflow, from pre-processing and morphological characterization to classification and 
validation. An exception was made for terrain analysis, which followed a different 
parallelization strategy, used as an out-of-the-box feature of TauDEM utilities (Tarboton, 
2015). The domain is decomposed in logical units (i.e., hydrological unique river basins and 
sub-catchments) used as natural geometric domain partitions for parallel computation (data 
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overestimate runoff). In fact, the flood hazard map for Europe for the 100-year return period 
event presents hit rates between 59% and 78% and critical success between 43% and 65% 
evaluated based on specific national/regional hazard maps. Therefore, we are aware of the 
limitation of such datasets that offer a preliminary description of flood hazard at the 
European scale. In case new maps become available, they can easily be incorporated in the 
proposed web application. 
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Table 1 
Open-access datasets used in the delineation of flood-prone areas across Europe. (two-column fitting table) 
Name File format Description Reference 

European Digital Elevation Model (EU-
DEM), version 1.0  GeoTIFF raster 

image 
Terrain elevation data for 
Europe EEA (2015) 

Flood haza

10-year 
return 
period 

Dottori et al. 
(2016a) 

. 

. 

. 

. 

. 

Catchmen
(CCM) Riv
version 2.1
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5.2. Results 

5.2.1. Web application generated flood hazard maps 
The delineation, downscaling and extrapolation of hydrogeomorphic flood-prone areas can 
be performed online using the web application. In Fig. 9, we show an output of the web 
application relative to a specific classification The figure provides a comparison between the 
hydrogeo
and dark rd 
map for 
example
control th ets 
an imme
pixels) fl
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5.2.2. Optimal classifier thresholds and Youden’s statistic 
The classification of the morphological descriptor GFI within the pre-defined classification 
area resulted in an optimal GFI threshold for each European river basin, each Po river sub-
catchment, and each return period considered. In this section, we compare the delineated 
and downscaled hydrogeomorphic flood-prone areas with the reference flood hazard maps 
for Europe, to understand how well the former replicates the latter. We must acknowledge 
that the aim of such comparison is more to test the potential of the geomorphic procedures
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5.2.3. Analysis of classifier skill 
The skill of the GFI-based method is assessed by means of the ROC and AUC obtained 
within the pre-defined classification areas and is examined for each major river basin in 
Europe and return period considered (10, 20, 50, 100, 200 and 500-year), as well as for the 
sub-catchments of the river Po in Italy. In Fig. 14, a sample of ROC curves and respective 
AUC values are presented, providing an overview of different performances obtained. 
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5.2.4. Map correlation 
The MCC is reported here to complement the analysis with a more balanced measure (see 
subsection 3.2.1. for details) of magnitude and direction of the linear relationship between 
the hydrogeomorphic delineated flood-prone areas and the flood hazard maps for Europe 
that can be retrieved from Dottori et al. (2016a-f). 
 
Figures 17 and 18 (see also Figures 26 and 27 in supplementary material) highlight the
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5.2.5. Synthesis of descriptive statistics 
To complement the spatial distribution of optimal GFI thresholds and performance measures 
presented in the previous subsections, and to have a more complete overview of the results, 
we summarize the data distribution in a set of box plots (Figures 19 and 20). Additional 
information about the data distribution can be found in supplementary material (tables 2 and 
3). Fig. 19 refers to the optimal GFI thresholds obtained by performing the linear binary 
classification of flood-prone areas within the 270 major river basins of Europe and the 64
sub-catc
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5.6. Discussion 
In this work, we have developed a flood hazard mapping web application based on a data-
mining method where the morphological descriptor GFI is used as a classifier of flood-prone 
areas. Our web application enables users to delineate, downscale and extrapolate flood-
prone areas over large scales and we have showcased here its wide spectrum of possible 
utilizations through an extended analysis at both the European and sub-catchment scale (Po 
River). The study has been extremely instructive in quantifying the potential of the
methodo
scales. 
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consideration neither in the reference flood hazard maps for Europe (see subsection 5.1) nor 
in the GFI computation. 
 
In spite of the limitations, to be seen as opportunities for further improving the web 
application, results are very encouraging. We show that European flooded areas for any of 
the return periods are well approximated by the outputs of the web application. On the one 
hand, factors affecting performances may be hard to pinpoint and confirm over such large 
domains with some issues requiring localized hydraulic studies However the clear need for 
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evaluate their quality within major European basins, relative to the flood hazard maps for 
Europe (Alfieri et al., 2014; Dottori et al., 2016a-f). 
 
We obtained an average efficiency, measured in terms of ROC analysis and AUC of 
88.59%. In the analysis focusing on sub-catchments of the river Po in Italy, we obtained an 
average AUC of 84.23%, in line with results presented in other studies (e.g., Manfreda et al., 
2015; Samela et al., 2017). The selected hydrogeomorphic method was found to be valid in 
replicating downscaling and extrapolating the flood hazard maps for Europe (Alfieri et al
2014; Do rd 
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Table 2 
Summary statistics for the area under the receiver operating characteristic (AUC), the optimal geomorphic flood 
index (GFI) threshold, the Youden’s Statistic (J) and the Mathews Correlation Coefficient (MCC) across major 
river basins in Europe and return periods. (two-column fitting table) 
  Return Period [years] 
  10 20 50 100 200 500 

J 
mean 0.6499 0.6514 0.6520 0.6529 0.6531 0.6533 
median 0.6615 0.6619 0.6604 0.6615 0.6628 0.6614 
standard deviation 0.1127 0.1104 0.1086 0.1074 0.1067 0.1063 

GFI Thres
75 
92 
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AUC 
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