Supporting Information for "On the relationship between excited state lifetime and isomerization quantum yield in animal rhodopsins: beyond the one-dimensional Landau-Zener model"

Mohsen M. T. El-Tahawy ${ }^{\text {mas. }}$ Artur Nenoves, Oliver Weingart, Massimo Olivucci ${ }^{\text {tes }}$, Marco Garavelli ${ }^{*}$.

Contents

1 Definitions 2
2 Methodology and Benchmarking 2
2.1 Three Pigments Models 2
2.2 QM/MM Partitioning Scheme 3
2.3 Optimization and Single Point Calculations 4
2.4 Selecting the Active Space 5
2.5 MD Simulations 6
2.5.1 0K Trajectories 6
2.5.2 Trajectory Swarms 9
2.6 Time Scaling of the Excited-State Trajectory 10
3 Geometrical and Electronic Structures of the models 13
4 Absorption Band 15
5 Relationship between Vertical Excitation Energy, Steric Strain and Isomerization Speed 18
6 Rationalization of the Computed Quantum Yields 19
7 Conclusion remarks 31
8 Statistical Results 33
9 References: 41

1 Definitions

Here we report the definitions of terms mentioned in the main text.
Quantum yield (QY): is defined as the ratio between the trajectories reaching bathoRh over the total number of trajectories; Lifetime τ : defined as the time period it takes for half of the population to decay to the GS; Decay window: defined as twice the standard deviation of hopping events times; The average electronic population: defined as the sum of squared coefficients of each state; The trajectory occupation: defined as the ratio of trajectories in each state; The time of transition of the GS wavefunction from CT to covalent: defined as the time when the total charge on the N -terminus $\left(\mathrm{C}_{12}-\mathrm{N}\right.$ segment) reaches +0.9 e ; Decision events: defined as the time step at which the charge at the N -terminus has grown to +0.9 e , indicating a completed transition of the GS wavefunction from CT to covalent; the total charge on the N terminus: defined as the sum of all Mulliken charges in the $\mathrm{C}_{12} \ldots \mathrm{~N}$ segment. Bond length alternation (BLA) defined as the difference between the average single-bond and the average double-bond and it is given as:

BLA

$=\frac{C_{6} C_{7}+C_{8} C_{9}+C_{10} C_{11}+C_{12} C_{13}+C_{14} C_{15}}{5}-\frac{C_{5} C_{6}+C_{7} C_{8}+C_{9} C_{10}+C_{11} C_{12}+C_{13} C_{14}+C_{15} N}{6}$

2 Methodology and Benchmarking

2.1 Three Pigments Models

One of the prerequisites of our computational study is the construction of a computer model starting from the crystal structure of the three pigments. In contrast to both Rh and sqRh , there is no available crystallographic data for hMeOp. Therefore, Rinaldi et. al. have exploited the high sequence similarity between sqRh , whose crystal structure is available (PDB code: $2 \mathrm{Z73}$) ', and hMeOp (40%) to construct an atomistic structural model of hMeOp (Figure S1). Here we employ the same models used in the study of Rinaldi et al. for the three pigments ${ }^{2}$. Briefly, the QM/MM models of Rh and sqRh were prepared utilizing only one unit of the dimeric crystallographic structures (chain A) in which all the crystallographic water molecules were included while the membrane lipids at the protein surface were excluded (for Rh : PDB code $1 \mathrm{U} 19^{3}$, resolution $2.2 \AA$; for sqRh: PDB code $2 Z 73^{\prime}$, resolution $2.5 \AA$). On the other hand, the QM/MM model of hMeOp was constructed by homology modeling, i.e. starting from the crystallographic structure of sqRh as a template in which the retinal chromophore coordinates were kept fixed as in sqRh. This protocol of comparative modeling was validated by
reproducing the observed absorption maximum for the human rhodopsin using the crystallographic structure of bovine $\mathrm{Rh}\left(95 \%\right.$ sequence similarity) as a template ${ }^{2}$.

2.2 QM/MM Partitioning Scheme

The QM/MM approach has been extensively used for modeling RPSBs in solution and in proteins ${ }^{2+s}$. Our $\mathrm{QM} / \mathrm{MM}$ models for the three rhodopsins are based on an high-medium-low QM/MM scheme in which the QM/MM boundary was placed on the Lys $\mathrm{C} \delta-\mathrm{C} \varepsilon$ bond and the link-atom approach was used to model the frontier (Figure S2).". The whole PRSB chromophore is treated quantum mechanically (54 atoms including the link atom) keeping the protein environments fixed at their crystal structure atomic positions except the closest 9 atoms of the lysine side-chain connected to the PRSB were free to move (i.e., as M layer). The protein environments were described by a modified AMBER96 force field. Electrostatic embedding was used to describe the interaction between MM and QM systems ${ }^{6}$.

Figure S1. Comparative model (violet) of hMeOp superimposed on top of sqRh crystallographic structure used as template (green), this Figure taken from ref ${ }^{2}$.

Figure S2. Schematic representation for high and medium layers, the green dashed line shows the cut between the H and M layers. The atoms in ball and stick representations belong to the QM region while atoms represented as tubes belong to the medium layer. The low layer includes the rest of the protein not shown in the figure.

2.3 Optimization and Single Point Calculations

The ground state structures of the three pigments were optimized at the complete active space self-consistent field CASSCF/6-31G*/AMBER level with single root employing CAS $(10,10)$ and CAS $(12,12)$ active spaces (see next section). The CASSCF calculation was followed by subsequent multiconfigurational second-order perturbation theory (CASPT2) computations to estimate the dynamic correlation energy of each state in order to get a more quantitative evaluation of the excitation energies as well as generate the linear absorption spectra and to estimate the relaxed scan along the CCCC coordinate ${ }^{1}$. This combined CASPT2//CASSCF approach has been shown to return experimentally accurate energies with errors within 0.2-0.3 eV^{13+4}. An imaginary level-shift of 0.2 au was used to decrease the influence of weakly interacting intruder states in the CASPT2 calculations ${ }^{15}$. The ionization potential and electron affinity parameter was set to $0.0 \mathrm{au}^{16}$, in accordance with previous studies of retinal in gas-phase and its protein environment ${ }^{13,1219}$.

2.4 Selecting the Active Space

The complete active space $\operatorname{CAS}(12,12)$ of RPSB comprises twelve electrons in twelve π-orbitals (Figure S3), yet such a large active space may be practically used for optimization but it is impractical for frequency calculations and extensive dynamics simulations. A possible way to overcome this problem is to reduce the active space to ten electrons in ten π-orbitals CAS $(10,10)$ by rejecting one occupied and one virtual π-orbitals from the full π-system. In order to select the two orbitals that have the least pronounced effect on the results we have computed for each pigment a single adiabatic trajectory with zero initial velocity (i.e. 0 K reference trajectory) employing both the full- $\pi \operatorname{CAS}(12,12)$ and the a reduced active space CAS $(10,10)$. For this purpose, many trials have been performed, each time excluding a couple of π / π^{*}-orbitals (i.e. one occupied and one virtual). Eventually, the reduced active space that most accurately reproduced the reference $\operatorname{CAS}(12,12)$ trajectories was selected for running systematic dynamical studies.

We found that the trajectories computed with a $\operatorname{CAS}(10,10$ excluding the pair of bonding and non-bonding π-orbitals localized on the β-ionone ring (Figure S3) reproduced perfectly both the energy profiles and the structural features shown using the full- $\pi \operatorname{CAS}(12,12)$ active space along the whole photoisomerization path (see Figure S4 and Figure S5). The resulting orbital set was therefore used for dynamics computations.

Figure S3. The molecular orbitals comprising the full active space CAS(12,12). Highlighted in gray is the neglected pair of bonding and anti-bonding orbitals resulting in the reduced CAS $(10,10)$ which best reproduces the energy profiles and the structural features obtained using the full- τ active space.

2.5 MD Simulations

2.5.1 0K Trajectories

Reference trajectories (FC trajectories) were started without any initial kinetic energy for the three pigments at the CASSCF/6-31G*/AMBER96 level using two different active spaces CAS $(10,10)$ and CAS $(12,12)$ starting from the corresponding optimized FC geometries. $\mathrm{S}_{\text {t }}$
excited state trajectories were calculated at the same level of theory used for ground state optimization, but with state-averaging (weights: $0.5,0.5$) employing time steps of 0.5 employing both $(10,10)$ and $(12,12)$ active spaces. The time step was reduced to 0.25 fs in the vicinity of the crossing between S_{0} and S_{1} (i.e. $\Delta \mathrm{E}_{s t s p}<15 \mathrm{kcal} / \mathrm{mol}$); surface hopping was suppressed, i.e. the molecules were forced to stay in the excited state during the whole simulation.

While the agreement between computed and experimental absorption band and $\lambda_{\max }$ values supports the qualitative reliability of the limited ensemble generated by the sampling procedure, one could ask if the CASSCF method, which does not account for a significant part of the dynamic electron correlation, can be used to perform semi-classical trajectory calculations correctly. This question is important when the missing dynamic electron correlation has different weights in the S_{1} and S_{2} states. In other words, S_{2} and S_{1} would be well separated and thus the ES progression would be completely driven by the S, potential energy surface, after dynamic electron correlation energy correction (i.e. after re-computing the energy profiles at the SS-CASPT2 or MS-CASPT2 levels) while at the CASSCF level the S_{2} state may mix with S_{1} and seriously interfere with the S_{1} motion.

In order to provide evidence that this potential issue is not significantly affect the presented results, we have computed and analyzed three $\mathrm{QM} / \mathrm{MM}$ semi-classical trajectories (also called FC trajectories) which were calculated by starting at the corresponding FC points on the S_{1} energy surface without initial velocities and propagating until reaching the $\mathrm{S}_{\mathrm{l}} / \mathrm{S}_{\text {o }}$ intersection seam (the same trajectories were presented in ref.). In principle, such trajectories follow the minimum energy path along the ES potential energy surface and are assumed to provide information on the dynamics of the center of the excited state population (i.e. the vibrational wavepacket) projected on the ES upon excitation ${ }^{x}$. The analysis of the $\mathrm{Rh}, \mathrm{sqRh}$ and hMeOp FC trajectories shows that the $\mathrm{S}_{2} / \mathrm{S}_{1}$ mixing is noticeable only in the FC region and last just few fs. In other words, within 10 fs the electronic structure of the $S_{\text {t }}$ state acquires a pure charge transfer character in all systems consistently with previous works on Rh^{221}, Figures S4 and S5.

We conclude that the only change resulting from the SS-CASPT2 or MS-CASPT2 corrections is a decrease in the slope of the S, potential energy surface connecting the FC point to the CI. As elaborated previously such change translates in a proportionality in the resulting energy gradients and, finally, in a scaling factor to the simulation time ${ }^{2.21}$ but it should not affect
the qualitative outcome of the comparison. On this basis, we assume that the trends in ES lifetimes and QYs will not change when using the CASSCF force field.

Figure S4. Overlay of S_{1} and S_{0} and total energies in pigment trajectories computed with CAS $(10,10)$ and CAS $(12,12)$ active spaces shown in red and blue colours, respectively. The CAS space has virtually no influence on the excited state dynamics.

Figure S5. Overlays of $\mathrm{C}_{11}-\mathrm{C}_{12}$ bond length, $\mathrm{C}_{10}-\mathrm{C}_{11}-\mathrm{C}_{12}-\mathrm{C}_{12}$ and $\mathrm{H}-\mathrm{C}_{11}-\mathrm{C}_{12}-\mathrm{H}$ dihedrals in 0 K trajectories computed with $\operatorname{CAS}(10,10)$ (dashed lines) and $\operatorname{CAS}(12,12)$ (solid lines) active spaces.

2.5.2 Trajectory Swarms

On the basis of the demonstrated similarity of the results of the 0 K trajectories produced with the two active spaces, CAS $(10,10)$ was employed for the computation of the room temperature trajectory swarms. For each pigment, numerical frequencies were calculated on top of the re-optimized ground state $\operatorname{CASSCF}(10,10) / 6-31 \mathrm{G}^{*}$ geometries. A set of 60 geometries with their associated velocities were created using thermal sampling option as implemented in Gaussian $03^{2 r}$ at a temperature of 300 K . This routine considers the zero-point energy and additional temperature effects by exciting the vibrational modes according to

Boltzmann statistics. Such set of initial conditions is intended to mimic the wave packet nature of the quantum-mechanical system. The molecular dynamics simulations were started in the bright excited state $\left(\mathrm{S}_{\mathrm{I}}\right)$ employing a two root state averaged $\operatorname{CAS}(10,10) / 6-31 \mathrm{G}^{*}$ description and a time step of 0.5 fs . The time step was reduced to 0.25 fs in the vicinity of a crossing (i.e. $\left.\Delta \mathrm{E}_{s: s \mathrm{~s}}<15 \mathrm{kcal} / \mathrm{mol}\right)$. Trajectories were propagated with a velocity Verlet algorithm at constant total energy ${ }^{3 .}$. The surface hop between $S_{\text {a }}$ and S_{\circ} potential energy surfaces was activated: a Tully's fewest switches surface hopping algorithm with decoherence correction $(\mathrm{d}=0.1 \mathrm{au})^{4}$ was used for this purpose. Back hopping to the ground state was suppressed during simulation. Trajectories were computed up to the formation of clear ground state photoproducts through tracking the evolution of the $\mathrm{C}_{10}-\mathrm{C}_{11}-\mathrm{C}_{12}-\mathrm{C}_{13}$ torsion angle. The molecular orbitals calculated using MOLCAS 7^{23} were transformed to MOLPRO 2009 ${ }^{0.25}$ in order to calculate the non-adiabtic coupling vectors. All QM/MM single point, geometry optimizations, numerical frequency and molecular dynamic calculations have been performed using COBRAMM, a QM/MM program interfacing various QM and MM codes ${ }^{2,23>}$.

2.6 Time Scaling of the Excited-State Trajectory

It is well established that the missing dynamical correlation at the CASSCF level may affect significantly the energy profiles and thus the resulting non-adiabatic dynamics. This may result in erroneous state ordering, different potential energy surface topography, variations in activation barriers, topology of conical intersections, etc. In ref. ${ }^{21}$ Olivucci and co-workers showed that under the assumption of a linear relation between the CASSCF and CASPT2 energies, CASPT2 corrected time scales and energy profiles can be obtained. This assumes that that the energies are related via a proportional factor α according to the relation:

$$
\alpha E_{C A S S C F}(x)=E_{C A S P T 2}(x)(1)
$$

The factor $\boldsymbol{\alpha}$ in the energies translates into a proportionality in the resulting energy gradients. Furthermore, the authors showed that the linear relation holds for Rh by exploring the minimum energy path at CASSCF and CASPT2 levels. They demonstrated that the uncorrelated CASSCF energy profile is steeper than the correlated CASPT2 profile, resulting in α values < 1.0 , and, hence, smaller gradients. Furthermore, they argued that since the molecular dynamics explores a region of the PES that is close to the reaction path, one may assume that this relation is also valid along any computed trajectory. As the gradient enters in the Velocity-Verlet algorithm as the system's acceleration during the molecular dynamics its scaling has an immediate effect on the simulation's time:

$$
\begin{equation*}
t_{\text {scaled }}=t_{\text {unscaled }} \alpha^{\frac{1}{2}} \tag{2}
\end{equation*}
$$

where $t_{\text {unscaled }}$ is the "unphysical" time resulting from the CASSCF dynamics, and $t_{\text {scaled }}$ is the scaled "physical" time that would be obtained if the dynamics would have been run at the CASPT2 level. Assuming that the same linear relation α, holds also in the pigments investigated in this study we have calculated the CASPT2 and CASSCF excited-state energies along the reaction path from the relaxed FC region to the conical intersection with the ground state by means of a relaxed scan around $\mathrm{C}_{10}-\mathrm{C}_{11}-\mathrm{C}_{12}-\mathrm{C}_{13}$ torsional coordinate with 10° increment. The values for the parameter α were then obtained by linear fitting of the corresponding energies of $\mathrm{S}_{\mathrm{o}}, \mathrm{S}_{\mathrm{l}}$ and $\Delta \mathrm{E}$ (Figure $\mathrm{S} 6, \mathrm{~S} 7$ and Table S 1). The linear relation for all three pigments holds well in the explored region (R^{2} value of 0.99) giving an averaged scaling factor $\alpha \sim 0.81$ for all three pigments being consistent with the previously reported Rh value (0.795) based on fitting the energy of the S_{1} state 21.

Figure S6. Linear fit of relative energies (referred to the ground-state minimum) calculated at CASPT2 and CASSCF level of theory along the computed CASSCF reaction path.

Table S1. α values according the linear fitting between CASSCF and CASPT2 of $\mathrm{S}_{0}, \mathrm{~S}_{\mathrm{l}}$ and ΔE energies

	\mathbf{S}_{0}	\mathbf{S}_{1}	$\mathbf{\Delta E}$	Average
$\mathbf{h M e O p}$	0.8138	0.7955	0.8131	0.811
sqRh	0.8435	0.7998	0.8188	0.832
$\mathbf{R h}$	0.8400	0.7717	0.8164	0.798

Figure S7. SA2-CASSCF $(12,12) 6-31 G^{*} /$ AMBER and SS-CASPT2 energy profiles along the torsion angle $\mathrm{C}_{10}-\mathrm{C}_{11}-\mathrm{C}_{12}-\mathrm{C}_{13}$ obtained from constrained relaxed scan with 10° increment.

3 Geometrical and Electronic Structures of the models

The constructed $\mathrm{QM} / \mathrm{MM}$ models reproduce the results of Rinaldi et al. ${ }^{2}$ and is here briefly summarized. The S_{0} equilibrium structures show a similar BLA positive value of ca. $0.12 \AA$ corresponding to a clear alternating single-double bond pattern with limited delocalization. The cavity embedding distorts the conjugated chain out-of-plane with respect to the gas-phase equilibrium structure of rPSB11. In fact, we observe a progressive increase of the CCCC dihedral in the series $\mathrm{Rh}\left(-6^{\circ}\right) \rightarrow \operatorname{sqRh}\left(-9^{\circ}\right) \rightarrow \mathrm{hMeOp}\left(-11^{\circ}\right)$, as well as a notable $-17^{\circ}(\mathrm{Rh}),-$ $23^{\circ}(\mathrm{sqRh})$ and $-19^{\circ}(\mathrm{hMeOp})$ deviation from planarity of the $\mathrm{C}_{11}-\mathrm{C}_{12}-\mathrm{C}_{13}-\mathrm{C}_{14}$ dihedral describing the twisting about the single bond adjacent to the reactive $\mathrm{C}_{11}-\mathrm{C}_{12}$ double bond. In contrast, the β-ionone ring exhibits a less pronounced twisting with respect to the gas-phase rPSB11 equilibrium structure $\left(-66^{\circ}\right)$, with hMeOp and sqRh displaying values of ca. -60° and Rh displaying a value of ca. -55° (Table S2).

In all cases, the $S_{0} \rightarrow S_{1}$ vertical excitation corresponds to a bright state (i.e. it features a large oscillator strength) with a dominant contribution of the HOMO \rightarrow LUMO (see Figure S3) transition resulting in a S_{1} state with charge transfer character with respect to the S_{0} which is covalent. By covalent character we refer to the usual covalent bonding where the electrons forming the π-component of the $-\mathrm{C}_{11}-\mathrm{C}_{12}-$ double bond reside on C_{11} and C_{12} and are single spin coupled. This differs from the charge transfer character of $-\mathrm{C}_{11}(+)-\mathrm{C}_{12}=$ type ${ }^{28}$. In contrast, $\mathrm{S}_{0} \rightarrow \mathrm{~S}_{2}$ is dominated by the HOMO \rightarrow LUMO double excitation and HOMO- $1 \rightarrow$ LUMO single excitation and has limited oscillator strength consistent with a dominant open-shell diradical character. The computed vertical excitation energies reproduce, when converted in wavelength values, the trend of observed absorption maxima $\left(\lambda_{\max }\right)$ with Rh featuring a red-shifted λ_{max} with respect to sqRh and hMeOp which have 1 and $2 \mathrm{kcal} / \mathrm{mol}$ larger excitation energies (Table S3), respectively (notice that, all computed excitation energies are, systematically blue-shifted by ca. $2 \mathrm{kcal} / \mathrm{mol}^{2}$ with respect to the experimental quantities $\left.{ }^{23,3}\right)$.

As already established for $\mathrm{Rh}^{234}, \lambda_{\max }$ values are determined by the non-uniform electric field generated by the protein cavity. In the studied pigments the electrostatic interaction introduces a blue-shifting effect of ca. $8 \mathrm{kcal} / \mathrm{mol}$ for hMeOp and sqRh and $7 \mathrm{kcal} / \mathrm{mol}$ for Rh (SS-CASPT2 level). In hMeOp and in sqRh the effect is dominated by E215 and E172 which change the excitation energy by ca. 5 and $9 \mathrm{kcal} / \mathrm{mol}$, respectively, when set to zero. These E215 and E172 residues are homologous to the E181 secondary counterion of Rh, which has
only a small effect on excitation energy. In fact, the excitation energy in Rh is dominated (ca. $18 \mathrm{kcal} / \mathrm{mol}$ blue-shifting effect) by the interaction with the E113 primary counterion², see Ref. 2 for the effect of the other restudies.

The conformational distortion of rPSB11 induced by the different protein cavities also influences the $\lambda_{\text {max }}$. In fact, the excitation energy trend displayed by the three rhodopsins is retained in the corresponding chromophores when these are extracted from their protein cavities (or equivalently, when all protein charges are set to zero). This behavior, can be correlated to the progressive increase of the CCCC value (see above).

Table S2. The ground state geometrical parameters optimized using $\operatorname{CAS}(12,12)$ and CAS $(10,10)$ active spaces

Parameter I Moodel	CAS(12,12)				CAS(10,10)		
	Rh	sqRh	hMeOp	Vac.	Rh	sqRh	hMeOp
$\mathrm{C}_{5}-\mathrm{C}_{6}$	1.352	1.351	1.354	1.353	1.332	1.332	1.334
$\mathrm{C}_{6}-\mathrm{C}_{5}$	1.493	1.491	1.494	1.493	1.494	1.491	1.495
$\mathrm{C}_{\text {, }}-\mathrm{C}_{\text {s }}$	1.352	1.346	1.348	1.349	1.351	1.347	1.348
$\mathrm{C}_{\mathrm{s}}-\mathrm{C}$,	1.474	1.469	1.471	1.471	1.474	1.470	1.472
C, $-\mathbf{C}_{10}$	1.361	1.359	1.360	1.364	1.361	1.359	1.360
$\mathrm{C}_{10}-\mathrm{C}_{\mathrm{n}}$	1.464	1.459	1.459	1.451	1.465	1.459	1.459
$\mathrm{C}_{\mathrm{n}}-\mathrm{C}_{\mathrm{b}}$	1.360	1.358	1.357	1.363	1.360	1.358	1.357
$\mathrm{C}_{\mathrm{c}}-\mathrm{C}_{13}$	1.466	1.471	1.467	1.460	1.466	1.471	1.467
$\mathrm{C}_{5}-\mathrm{C}_{14}$	1.370	1.364	1.365	1.370	1.370	1.364	1.365
$\mathrm{C}_{14}-\mathrm{C}_{15}$	1.434	1.425	1.429	1.428	1.435	1.425	1.429
$\mathrm{C}_{15}-\mathrm{N}_{16}$	1.292	1.294	1.293	1.292	1.292	1.294	1.293
$\mathrm{C}_{5}-\mathrm{C}_{6}-\mathrm{C}_{4}-\mathrm{C}_{8}$	-54.9	-61.6	-60.7	-65.7	-55.4	-62.8	-61.9
$\mathrm{C}_{6}-\mathrm{C}_{4}-\mathrm{C}_{8}-\mathrm{C}_{5}$	179.3	-177.6-	178.7	-178.6	179.3	-177.4	178.8
$\mathrm{C}_{4}-\mathrm{C}_{8}-\mathrm{C}_{9}-\mathrm{C}_{10}$	-173.5	176.0	171.2	179.5	-172.4	176.3	171.2
$\mathbf{C}_{s}-\mathbf{C},-\mathrm{C}_{10}-\mathrm{C}_{11}$	173.9	177.9	178.0	179.9	173.8	178.0	178.0
C, $-\mathrm{C}_{10}-\mathrm{cn}^{\text {cin }}-\mathrm{C}_{12}$	163.1	165.1	164.6	176.4	163.3	165.0	164.5
$\mathrm{C}_{10}-\mathrm{C}_{11}-\mathrm{C}_{12}-\mathrm{C}_{13}$	-6.0	-8.8	-10.6	-2.7	-6.0	-8.7	-10.5
$\mathrm{C}_{11}-\mathrm{C}_{12}-\mathrm{C}_{13}-\mathrm{C}_{14}$	163.0	156.6	161.0	175.7	163.1	156.5	160.9
$\mathrm{C}_{\mathrm{r}}-\mathrm{C}_{\mathrm{B}^{2}}-\mathrm{C}_{4}-\mathrm{C}_{15}$	-178.3	179.0	172.8	-179.8	-178.3	179.1	172.8
$\mathrm{C}_{13}-\mathrm{C}_{44}-\mathrm{C}_{51}-\mathrm{N}$	168.4	168.0	169.1	179.1	168.4	167.8	169.2
$\mathrm{H}-\mathrm{C}_{11}-\mathrm{C}_{12}-\mathrm{H}$	-0.7	-5.3	-3.8	-1.1	-0.7	-5.3	-3.8
$\mathrm{C}_{8}-\mathrm{C}_{9}-\mathrm{C}_{10}-\mathrm{H}$	-1.9	0.4	0.6	0.1	-1.9	0.5	0.6
$\mathrm{C}_{44}-\mathrm{C}_{15}-\mathrm{N}-\mathrm{H}$	-1.0	-0.3	-3.7	0.0	-0.9	-0.4	-3.7
$\mathrm{C}_{7}-\mathrm{C}_{9}-\mathrm{C}_{10}-\mathrm{H}$	177.2	179.1	-179.6	179.8	177.3	179.1	-179.6
BLA	0.12	0.12	0.12	0.11	0.12	0.12	0.12

Table S3. SS-CASPT2 and MS-CASPT2//CASSCF $(12,12)$ and $(10,10) / 6-31 G^{*} /$ AMBER computed absorption maxima ($\lambda_{\text {man }}, \mathrm{nm}$) and corresponding oscillator strengths f , state-averaged over three roots (weights: $1 / 3,1 / 3,1 / 3$) and calculated on top of the corresponding S_{0} minima.

	Model	CAS (12,12)							CAS (10,10)								exp.
		SS-PT2			MS-PT2				SS-PT2				MS-PT2				
		$\lambda 1 \quad \lambda 2$	f1	f2	$\lambda 1$	$\lambda 2$	f1		$\lambda 1$	$\lambda 2$	f1	f2	$\lambda 1$	$\lambda 2$	f1		$\lambda 1$
碼	hMeOp	468326	0.64	0.3	452	313	1.2	0.1	463		0.7	0.3	449	312	1.2	0.1	467-480
	SqRh	477329	0.58	0.3	463	316	1.1	0.1	469	328	0.6	0.3	458	314	1.1	0.1	489
	Rh	486332	0.59	0.3	469	313	1.3	0.1	475	329	0.6	0.3	462	310	1.3	0.1	498
	hMeOp	538340	0.65	0.3	505	331	1.2	0.2	526	337	0.7	0.3	497	328	1.2	0.2	
	SqRh	545344	0.62	0.3	513	335	1.1	0.3	531	339	0.6	0.3	502	330	1.1	0.2	
	Rh	554349	0.67	0.3	518	340	1.2	0.3	530	339	0.7	0.3	499	330	1.3	0.2	
	Vac.	535347	0.82	0.2	495	334	1.5										
	Vac.(-55)	549350	0.8	0.2	504	337											

4 Absorption Band

Figure 8 depicts the experimental (dashed lines) and simulated (solid lines) linear absorption (LA) spectra of $\mathrm{hMeOp}, \mathrm{sqRh}$ and Rh . The theoretical spectra were computed using the 60 snapshots of the three RT ensembles. These points are the same employed for starting the semi-classical trajectories. The spectra consist of an intense broad unstructured band in the Visible (Vis) with a maximum between 475 nm and 500 nm , hMeOp showing the most blueshifted band, Rh the most red-shifted. Wavefunction analysis shows that the Vis band is associated with the $S_{0} \rightarrow S_{1}$ transition. The $S_{0} \rightarrow S_{2}$ transition is the source of a weaker band in the near-ultraviolet around 340 nm (not shown). We observe a nearly quantitative agreement between theory and experiment for Rh and a fair agreement in the case of SqRh , where the experimental spectrum shows a somewhat steeper decrease in the red. Interestingly, compared with the SS-CASPT2 level (Figure S8 bottom-panel), MS-CASPT2 better reproduces the experimental lineshapes (Figure S 8 top-panel). The simulated spectrum of hMeOp strikes as the outlier in this comparison, showing a clear undersampling in the blue and, hence, reproducing only partially the blue-shift of the absorption band with respect to SqRh . There are two possible reasons for the discrepancy: a) due to the lack of a crystal structure hMeOp simulations rely on a homology model based precisely on SqRh , hence, disagreement with the experiment could be traced back to deficiencies of the model; b) hMeOp features the closest lying (and, hence, most strongly mixing) S_{1} and S_{2} states. As a consequence, MS-CASPT2 causes the largest energy splitting, thereby pushing the S state too much to the red. Overall, the trend of the $\lambda_{\text {max }}$ values in the spectra is consistent with the trend of the vertical excitation energies computed at the FC point (the former being $2-3 \mathrm{kcal} / \mathrm{mol}$ red-shifted as expected when
the absorption energy is averaged over an ensemble of geometry realizations, see Tables S3 and S4).

While the agreement between computed and experimental $\lambda_{\max }$ values supports the qualitative reliability of the limited ensemble generated via the sampling procedure, it could be questioned if an inferior method like CASSCF, which is used to perform the molecular dynamics simulations, suffices to describe the pigment-specific characteristics of the electronic structure of the embedded RPSB.

In favor of the use of CASSCF we note that the ionic/covalent wavefunction mixing addressed above which requires a dynamically correlated treatment (MS-CASPT2 level) is particularly strong only in the FC region. Following its immediate departure (within 10 fs as elucidated below) the wavefunction of the S, state collapses to a pure CT, so that SS-CASPT2 and MS-CASPT2 give similar results. Furthermore, Figure S6 and Table S1 demonstrate that there exist a linear relation between the CASSCF and SS-CASPT2 potential energy surface profiles (at least along the minimum energy path) in all three systems, in line with previous works on $\mathrm{Rh}^{2.21}$. As elaborated previously, the proportionality in the energies translates in proportionality in the resulting energy gradients and, finally, in a scaling factor to the simulation time ${ }^{2,2 l}$ but it should not affect the qualitative outcome of the comparison. Moreover, as foreshadowed in the previous section and elaborated below, the remarkable differences in the photoreactivity of the three pigments are to be also traced back to the mechanical tension in the catalytic cavity, which CASSCF is able to reproduce.

Table S4. SS-CASPT2 and MS-CASPT2//CASSCF(12,12)/6-31G*/AMBER calculation of averaged absorption maxima $\left(\lambda_{\text {max }}, \mathrm{nm}\right)$, vertical excitation energies $\Delta \mathrm{E}(\mathrm{kcal} / \mathrm{mol})$, oscillator strengths f, state-averaged using three roots (weights: $1 / 3,1 / 3,1 / 3$) over all the 60 starting geometries of each pigment ensemble.

Model	SS-CASPT2						MS-CASPT2					
	λ_{1}	λ_{2}	$\Delta \mathrm{E}_{1}$	$\Delta \mathrm{E}_{2}$	\mathbf{f}_{1}	\mathbf{f}_{2}	λ_{1}	λ_{2}	$\Delta \mathrm{E}_{1}$	$\Delta \mathrm{E}_{2}$	f_{1}	\mathbf{f}_{2}
hMeOp	496	351	57.8	81.9	0.59	0.24	478	331	60.0	86.8	1.14	0.10
SqRh	488	354	58.9	81.7	0.49	0.31	481	328	59.8	87.6	1.04	0.13
Rh	497	355	57.9	81.6	0.48	0.34	488	321	59.0	89.5	1.17	0.12

Figure S8. Experimental (dashed lines) and simulated (solid lines) linear absorption spectra of the three rhodopsins. Simulated spectra obtained from averaging over 60 realizations per pigment and corrected using MS-CASPT2 (top-panel) and SS-CASPT2 (bottom-panel) after SA3-CASSCF $(12,12)$ calculations. Convolution based on wavelength values and $\mathrm{S}_{1} / \mathrm{S}_{2}$ oscillator strengths, Gaussian FWHM=53 nm. Exp. data taken from refs ${ }^{29},{ }^{30}$ and ${ }^{3 s}$ for hMeOp , sqRh and Rh , respectively.

5 Relationship between Vertical Excitation Energy, Steric Strain and Isomerization Speed

Figure S9. Characteristic geometrical parameters in the three pigments and their temporal evolution.

6 Rationalization of the Computed Quantum Yields

continue Figure S10

Figure S10. Evolution of $\mathrm{C}_{11} \mathrm{C}_{11} \mathrm{C}_{12} \mathrm{C}_{15}, \mathrm{H}_{11} \mathrm{C}_{n 1} \mathrm{C}_{12} \mathrm{H}_{12}$, $\operatorname{HOOP}\left(\mathrm{C}_{10} \mathrm{C}_{11} \mathrm{C}_{12} \mathrm{C}_{13}-\mathrm{H}_{11} \mathrm{C}_{11} \mathrm{C}_{12} \mathrm{H}_{12}\right)$ and charge on N -moiety $\left(\mathrm{C}_{12}---\mathrm{N}\right.$ fragment) of each trajectory of hMeOp during the simulation time, grayshaded areas denote the time span in which the WF changes from CT to covalent after a hopping event, vertical dashed and solid arrows show the hopping and decision times, respectively.

continue Figure S11

Figure S11. Evolution of $\mathrm{C}_{10} \mathrm{C}_{n 1} \mathrm{C}_{n} \mathrm{C}_{\mathrm{k}}, \mathrm{H}_{n 1} \mathrm{C}_{n 1} \mathrm{C}_{n} \mathrm{H}_{n 1}$, HOOP and charge on N-moiety of each trajectory of sqRh during the simulation time, gray-shaded areas denote the time span in which the WF changes from CT to covalent after a hopping event, vertical dashed and solid arrows show the hopping and decision times, respectively.

continue Figure S12

Figure S12. Evolution of $\mathrm{C}_{10} \mathrm{C}_{11} \mathrm{C}_{12} \mathrm{C}_{13}, \mathrm{H}_{11} \mathrm{C}_{11} \mathrm{C}_{12} \mathrm{H}_{12}$, HOOP and charge on N -moiety for each trajectory of Rh during the simulation time, gray-shaded areas denote the time span in which the WF changes from CT to covalent after a hopping event, vertical dashed and solid arrows show the hopping and decision times, respectively.

continue Figure S13

Figure S13. Evolution of BLA, $\mathrm{C}_{11} \mathrm{C}_{12}$ and charge on N -moiety for each trajectory of hMeOp during the simulation time ($\Delta \mathrm{C}_{11}-\mathrm{C}_{12}$ represents the deviation of $\mathrm{C}_{11}-\mathrm{C}_{12}$ form $1.45 \AA$), gray-shaded areas denote the time span in which the WF changes from CT to covalent after a hopping event, vertical dashed and solid arrows show the hopping and decision times, respectively.

continue Figure S14

Figure S14. Evolution of BLA, $\mathrm{C}_{11} \mathrm{C}_{12}$ and charge on N -moiety for each trajectory of sqRh during the simulation time ($\Delta \mathrm{C}_{11}-\mathrm{C}_{12}$ represents the deviation of $\mathrm{C}_{11}-\mathrm{C}_{12}$ form $1.45 \AA$), gray-shaded areas denote the time span in which the WF changes from CT to covalent after a hopping event, vertical dashed and solid arrows show the hopping and decision times, respectively.

continue Figure S15

Figure S15. Evolution of BLA, $\mathrm{C}_{11} \mathrm{C}_{12}$ and charge on N -moiety for each trajectory of Rh during the simulation time ($\Delta \mathrm{C}_{11}-\mathrm{C}_{12}$ represents the deviation of $\mathrm{C}_{n 1}-\mathrm{C}_{12}$ form $1.45 \AA$), gray-shaded areas denote the time span in which the WF changes from CT to covalent after a hopping event, vertical dashed and solid arrows show the hopping and decision times, respectively.

Figure S16. Schematic maps of the two-states / three-modes model characterizing the 11-cis->all-trans isomerization of animal rhodopsins. Color gradient represents PES topography, where red depicts the highest and blue the lowest energy regions. Left: Scheme of the reaction in the subspace of CCCC and HCCH , both running in counter-clockwise direction from 0° to -180°. The diagonals define the collective coordinates "torsion" $(0.5 * \mathrm{CCCC}+0.5 * \mathrm{HCCH}$, defined from 0° to $+180^{\circ}$) and hydrogen-out-of-plane (HOOP, $0.5 *$ CCCC- $0.5 * \mathrm{HCCH}$, defined from -90° to $+90^{\circ}$). The triangular area delimited by torsion $\left[0^{\circ}: 90^{\circ}\right]$ and $\mathrm{HOOP}\left[0^{\circ}: 90^{\circ}\right]$ shows the ES PES, the remaining area shows the GS PES. ES/GS degeneracy (i.e. CI seam) is preserved along the HOOP coordinate for a 90° torsion. The CI seam (solid black line) is shown only for positive values of the HOOP angle $\left[0^{\circ}: 90^{\circ}\right]$. Right: Scheme of the reaction in the subspace of torsion (more precisely, any collective $\mathrm{CCCC}+\mathrm{HCCH}$ motion that drives the system towards the CI seam) and bond length alternation (BLA). The area delimited by torsion [$0^{\circ}: 90^{\circ}$] shows the ES PES, the area delimited by torsion $\left[90^{\circ}: 180^{\circ}\right.$] shows the GS PES. ES and GS intersect in the center of the graph (i.e. CI). In each graph two trajectories are drawn, a reactive one that reaches all-trans (magenta full/dotted curves) and a non-reactive one which returns back to 11 -cis (white full/dotted curves). Dots highlight that the evolution proceeds in a region of the PES not visible in the graphs. The evolution depends on the relative phases of the three coordinates at "hopping event" (i.e. decay through the CI seam, "hopping " point denoted by a circle in Figure S16) and at "decision event".

Table S5. Classification the trajectories according to correlation between the BLA and the switching of the electronic structure toward covalent state.

		Rh	sqRh	hMeOp
hop occurs with covalent characters (i.e. decision is taken at hop)	the WF adopts covalent character upon hop to the GS, thus, hop and decision time coincide; BLA is not decisive in these cases number of trajectories	$\begin{aligned} & 3,5,7,8,10,11,12,19,23,24, \\ & 25,28,30,32,33,34,35,36, \\ & 37,38,40,41,42,43,44,48, \\ & 49,50,53,56,57 \end{aligned}$ 31	$\begin{aligned} & 3,4,11,15,18,20,22,24, \\ & 28,29,31,32,37,38,42, \\ & 43,47,49,50,51,54,55, \\ & 58,60 \\ & \mathbf{2 4} \end{aligned}$	$\begin{aligned} & 4,8,11,14,15,16,17, \\ & 19,22,26,27,29,30,31, \\ & 35,39,43,44,46,47,50, \\ & 53,54,55,58,59 \end{aligned}$ 26
the switching to biradical WF occurs after hopping time (i.e. at the decision time)	BLA increases while $\mathrm{C}_{11}-\mathrm{C}_{12}$ decreases when the GS WF character changes from CT to covalent number of trajectories	$\begin{aligned} & 1,4,9,14,15,18,20,21,22, \\ & 27,31,46,47,51,55,58,59, \\ & 60 \\ & \mathbf{1 8} \end{aligned}$	$\begin{aligned} & 5,9,10,12,13,14,16,17, \\ & 19,23,26,27,30,33,39 \\ & 44,48,52 \end{aligned}$ 18	$\begin{aligned} & 2,3,6,7,9,10,12,13, \\ & 18,21,24,25,32,33,41, \\ & 42,45,49,51,52,57,60 \end{aligned}$ 22
	both BLA and $\mathrm{C}_{11}-\mathrm{C}_{n}$ increases when the GS WF character changes from CT to covalent number of trajectories	$6,13,17,26,39,52$ 6	$\begin{aligned} & 1,2,6,7,21,25,34,40,41, \\ & 45,46,53,56,57,59 \end{aligned}$	$\begin{aligned} & 1,5,23,34,36,40,48, \\ & 56 \\ & \mathbf{8} \end{aligned}$
	Both BLA and $\mathrm{C}_{11}-\mathrm{C}_{12}$ decrease when the GS WF character changes from CT to covalent (outliers) number of trajectories	$2,16,29,45,54$ 5	$8,35,36$ 3	20, 28, 37, 38 4

8 Statistical Results

The distribution of S / S_{0} energy gaps at the decay points shows that a non-negligible percentage of the ensemble decays while the $\mathrm{S}_{/} / \mathrm{S}_{0}$ gap is relatively large. However, most of the trajectories decay to the ground state close to the crossing, and the number of decay events decreases with the increase of the $\mathrm{S}_{\mathrm{J}} / \mathrm{S}_{1}$ energy gap (Figure S17). Figure S18 depicts the distribution of hopping events as a function of the CCCC torsion value, exhibiting a typical Gaussian like shape centered around $80-90^{\circ}$. The average retinal coordinates over all ensemble members at the decay points are given in Table $\mathbf{S 6}$, showing similar properties for all pigments.

Figure S17. Distribution of hopping events as a function of the CASSCF energy differences $\Delta \mathrm{E}\left(\mathrm{S}_{1}-\mathrm{S}_{\mathrm{o}}\right)$ for hMeOp (top), sqRh (middle) and Rh (bottom). The height of the bar graphs corresponds to the number of trans (nofill) and cis (gray) photoproducts of individual trajectories.

Figure S18. Distribution of hopping events as a function of the $C_{10}-C_{11}-C_{12}-C_{13}$ torsion for hMeOp (top), sqRh (middle) and Rh (bottom). The height of the bar graphs corresponds to the number of trans (nofill) and cis (gray) photoproducts of individual trajectories.

Table S6. Averaged retinal geometry parameters in the three pigments at the hopping point.

Parameter	hMeOp	sqRh	Rh
$\mathrm{C}_{5}-\mathrm{C}_{6}$	1.339	1.333	1.345
$\mathrm{C}_{6}-\mathrm{C}_{5}$	1.482	1.478	1.489
$\mathrm{C}_{4}-\mathrm{C}_{8}$	1.380	1.375	1.373
C_{s} - $\mathrm{C}_{\text {, }}$	1.445	1.436	1.427
C, $-\mathrm{C}_{10}$	1.421	1.438	1.450
$\mathrm{C}_{10}-\mathrm{C}_{\mathrm{n}}$	1.388	1.382	1.381
$\mathrm{C}_{11}-\mathrm{C}_{12}$	1.492	1.481	1.482
$\mathrm{C}_{12}-\mathrm{C}_{13}$	1.373	1.378	1.370
$\mathrm{C}_{13}-\mathrm{C}_{14}$	1.453	1.468	1.466
$\mathrm{C}_{4}-\mathrm{C}_{55}$	1.369	1.369	1.366
$\mathrm{C}_{15}-\mathrm{N}$	1.375	1.384	1.365
$\mathrm{C}_{8}-\mathrm{C}_{\text {, }}-\mathrm{C}_{10}-\mathrm{C}_{11}$	143.3	143.3	149.1
$\mathrm{C}_{10}-\mathrm{C}_{11}-\mathrm{C}_{12}-\mathrm{C}_{13}$	84.0	83.4	88.1
$\mathrm{C}_{12}-\mathrm{C}_{\mathrm{B}_{3}}-\mathrm{C}_{4}-\mathrm{C}_{15}$	167.7	165.4	166.3
$\mathrm{C}_{8}-\mathrm{C},-\mathrm{C}_{10}-\mathrm{H}$	23.7	25.2	24.3
$\mathrm{H}-\mathrm{C}_{11}-\mathrm{C}_{12}-\mathrm{C}_{13}$	90.1	89.7	87.6
$\mathrm{C}_{10}-\mathrm{C}_{11}-\mathrm{C}_{12}-\mathrm{H}$	97.6	96.6	99.6
$\mathrm{C}_{12}-\mathrm{C}_{13}-\mathrm{C}_{6}-\mathrm{H}$	15.4	15.7	14.7
$\mathrm{H}-\mathrm{C}_{15}-\mathrm{N}-\mathrm{H}$	165.5	165.4	167.1
$\mathrm{H}-\mathrm{C}_{11}-\mathrm{C}_{12}-\mathrm{H}$	88.3	90.2	84.8

Table S7*. Statistical analysis of the individual trajectories of the hMeOp ensemble showing the hopping /decision times, the direction of the $\mathrm{HC}_{11} \mathrm{C}_{12} \mathrm{H}$, HOOP, $\mathrm{CC}_{n 1} \mathrm{C}_{n} \mathrm{C}$ and the leading modes, and the computed and expected photoproduct distributions at both hopping/decision times.

Traj	hopping time (fs)	Product formation follows ...			leading mode	decision time (fs)	Product formation follows ...			leading mode	Computed Product		Expected Product at hopping time		Expected Product at decision time	
		$\mathrm{HC}_{11}-\mathrm{C}_{12} \mathrm{H}$ at hopping time	HOOP at hopping time	$\begin{gathered} \mathrm{CC}_{11} \mathrm{C}_{12} \mathrm{C} \\ \text { at hopping } \\ \text { time } \end{gathered}$			$\mathbf{H C}_{11} \mathbf{C}_{12} \mathbf{H}$ at decision time	HOOP at decision time	$\mathrm{CC}_{11} \mathrm{C}_{12} \mathrm{C}$ at decision time							
											Trans	Cis	Trans	Cis	Trans	Cis
01	58.75	T	T	F	HCCH	75.00	T	F	T	CCCC		$\sqrt{ }$		$\sqrt{ }$		$\sqrt{ }$
02	67.25	T	T	F	HCCH	80.75	T	T	T	HCCH		$\sqrt{ }$		\checkmark		$\sqrt{ }$
03	84.50	T	T	T	HCCH	94.50	T	T	T	HCCH	$\sqrt{ }$		\checkmark		\checkmark	
04	81.00	T	T	T	N/A	81.00	T	T	F	N/A		\checkmark		\checkmark		\checkmark
05	41.75	T	F	T	CCCC	54.25	T	T	T	HCCH	$\sqrt{ }$		$\sqrt{ }$		$\sqrt{ }$	
06	56.50	T	T	T	HCCH	72.25	N/A	F	T	CCCC	\checkmark		$\sqrt{ }$			
07	47.75	F	F	N/A	HCCH	65.00	F	T	N/A	N/A		\checkmark	\checkmark		\checkmark	
08	68.75	F	F	T	N/A	68.75	F	F	T	N/A	$\sqrt{ }$			$\sqrt{ }$		$\sqrt{ }$
09	55.25	T	N/A	T	CCCC	68.50	T	N/A	T	HCCH	$\sqrt{ }$		$\sqrt{ }$		$\sqrt{ }$	
10	67.00	T	N/A	T	CCCC	73.25	F	F	T	CCCC	\checkmark		\checkmark			\checkmark
11	41.75	T	T	T	$\mathrm{HCCH} / \mathrm{CCCC}$	41.75	T	T	T	HCCH	\checkmark		$\sqrt{ }$		\checkmark	
12	57.00	F	F	N/A	N/A	66.25	T	F	T	CCCC		$\sqrt{ }$	$\sqrt{ }$			$\sqrt{ }$
13	83.50	T	N/A	T	HCCH	101.25	T	T	F	HCCH	\checkmark		\checkmark		\checkmark	
14	70.50	F	F	T	CCCC	70.50	N/A	F	T	CCCC		$\sqrt{ }$	$\sqrt{ }$			
15	48.50	T	T	T	HCCH	48.50	T	T	T	HCCH	$\sqrt{ }$		$\sqrt{ }$		$\sqrt{ }$	
16	67.00	F	F	T	CCCC	67.00	F	F	T	CCCC	\checkmark			$\sqrt{ }$		$\sqrt{ }$
17	56.75	T	T	F	HCCH	56.75	T	T	F	HCCH		$\sqrt{ }$		$\sqrt{ }$		$\sqrt{ }$
18	67.00	T	T	F	CCCC	83.00	F	F	T	CCCC		$\sqrt{ }$		$\sqrt{ }$	$\sqrt{ }$	
19	72.00	T	F	T	CCCC	72.00	T	F	T	CCCC	\checkmark		$\sqrt{ }$		\checkmark	
20	63.75	F	N/A	F	CCCC	74.00	T	T	F	HCCH		$\sqrt{ }$	$\sqrt{ }$			$\sqrt{ }$
21	42.75	T	T	F	HCCH	55.25	T	T	T	HCCH		$\sqrt{ }$		\checkmark		\checkmark
22	30.75	T	T	T	HCCH	30.75	T	T	T	HCCH	\checkmark		$\sqrt{ }$		$\sqrt{ }$	
23	47.50	T	T	T	HCCH	62.50	T	T	T	HCCH		$\sqrt{ }$		$\sqrt{ }$		$\sqrt{ }$
24	45.25	T	F	T	CCCC	57.25	T	T	T	HCCH	$\sqrt{ }$		$\sqrt{ }$		$\sqrt{ }$	
25	54.50	T	T	T	HCCH	69.25	T	N/A	T	HCCH/CCCC		$\sqrt{ }$		$\sqrt{ }$		$\sqrt{ }$
26	48.25	T	T	T	HCCH	48.25	T	T	T	HCCH	$\sqrt{ }$		$\sqrt{ }$		$\sqrt{ }$	
27	50.50	T	T	T	HCCH	50.50	T	T	T	HCCH	$\sqrt{ }$		$\sqrt{ }$		$\sqrt{ }$	
28	53.25	T	T	F	HCCH	65.25	T	T	N/A	HCCH		$\sqrt{ }$		$\sqrt{ }$		$\sqrt{ }$
29	67.00	T	T	F	HCCH	67.00	T	T	F	HCCH		$\sqrt{ }$		$\sqrt{ }$		\checkmark
30	62.25	T	T	T	HCCH	62.25	T	T	T	HCCH	$\sqrt{ }$		$\sqrt{ }$		$\sqrt{ }$	
31	55.50	T	T	N/A	HCCH	55.50	T	T	N/A	HCCH	\checkmark		\checkmark		$\sqrt{ }$	
32	62.00	T	T	F	CCCC	75.00	F	F	T	N/A		$\sqrt{ }$		$\sqrt{ }$	$\sqrt{ }$	
33	50.00	F	F	F	N/A	68.75	T	T	T	HCCH		$\sqrt{ }$	$\sqrt{ }$			$\sqrt{ }$
34	60.50	T	T	T	HCCH	67.50	T	T	T	HCCH		\checkmark		\checkmark		$\sqrt{ }$
35	39.75	T	N/A	T	HCCH/CCCC	39.75	T	N/A	T	HCCH/CCCC	$\sqrt{ }$		$\sqrt{ }$		\checkmark	
36	89.75	T	F	N/A	HCCH	99.50	T	T	T	HCCH		$\sqrt{ }$		$\sqrt{ }$		$\sqrt{ }$

Continue Table S7

Traj	hopping time (fs)	Product formation follows ...			leading mode	decision time (fs)	Product formation follows ...			leading mode	Computed Product		Expected Product at hopping time		Expected Product at decision time	
		$\mathrm{HC}_{11}-\mathrm{C}_{12} \mathrm{H} \text { at }$ hopping time	HOOP at hopping time	$\begin{gathered} \mathrm{CC}_{11} \mathrm{C}_{12} \mathrm{C} \\ \text { at hopping } \\ \text { time } \end{gathered}$			$\begin{gathered} \mathrm{HC}_{11} \mathrm{C}_{12} \mathrm{H} \\ \text { at decision } \\ \quad \text { time } \end{gathered}$	HOOP at decision time	$\begin{gathered} \mathrm{CC}_{11} \mathrm{C}_{12} \mathrm{C} \\ \text { at decision } \\ \text { time } \end{gathered}$							
											Trans	Cis	Trans	Cis	Trans	Cis
37	74.75	F	T	F	N/A	77.75	T	T	F	N/A		\checkmark	\checkmark			\checkmark
38	48.50	T	F	T	N/A	64.75	F	F	T	N/A		\checkmark		\checkmark	\checkmark	
39	43.00	T	N/A	T	HCCH	43.00	T	T	T	N/A	\checkmark		\checkmark		\checkmark	
40	40.25	T	T	T	HCCH	52.75	T	T	T	HCCH	\checkmark		\checkmark		\checkmark	
41	54.75	T	T	T	HCCH	67.00	T	T	T	HCCH	\checkmark		\checkmark		\checkmark	
42	54.25	T	T	T	CCCC	68.75	T	T	T	HCCH	\checkmark		\checkmark		\checkmark	
43	55.50	T	T	N/A	HCCH	55.50	T	T	N/A	HCCH	\checkmark		\checkmark		\checkmark	
44	53.25	F	T	F	HCCH	53.25	F	T	F	HCCH		\checkmark	\checkmark			
45	71.75	T	T	T	HCCH	88.00	T	T	T	HCCH	\checkmark		\checkmark		\checkmark	
46	52.00	T	T	T	HCCH	52.00	T	T	T	HCCH	\checkmark		\checkmark		\checkmark	
47	75.25	T	T	F	HCCH	75.25	T	T	F	HCCH		\checkmark		\checkmark		\checkmark
48	32.00	T	T	F	HCCH	34.75	T	T	F	HCCH		\checkmark		\checkmark		\checkmark
49	35.00	T	T	F	HCCH	37.25	T	T	F	HCCH		\checkmark		\checkmark		\checkmark
50	47.50	T	T	N/A	HCCH	47.50	T	T	N/A	HCCH	\checkmark		\checkmark		\checkmark	
51	43.50	T	T	T	HCCH	53.25	T	T	T	HCCH	\checkmark		\checkmark		\checkmark	
52	50.00	T	T	T	HCCH	62.00	T	T	T	HCCH	\checkmark		\checkmark		\checkmark	
53	49.50	T	T	N/A	HCCH	49.50	T	T	N/A	HCCH	\checkmark		\checkmark		\checkmark	
54	59.75	T	T	F	HCCH	59.75	T	T	F	HCCH		\checkmark		\checkmark		\checkmark
55	52.50	T	T	F	HCCH	52.50	T	T	F	HCCH	\checkmark		\checkmark		\checkmark	
56	47.50	N/A	T	F	CCCC	49.50	T	T	F	HCCH		\checkmark				\checkmark
57	52.25	T	F	T	HCCH	70.00	F	T	T	CCCC	\checkmark		\checkmark			\checkmark
58	63.25	T	T	N/A	HCCH	63.25	T	T	N/A	HCCH		\checkmark		\checkmark		\checkmark
59	22.75	T	T	F	HCCH	22.75	T	T	F	HCCH		\checkmark		\checkmark		\checkmark
60	62.50	T	T	N/A	N/A	67.50	F	F	T	N/A		\checkmark		\checkmark	\checkmark	
Average	56.9					63.7				Sum	31	29	36	23	31	26
Time shift from hopping to decision time $=6.8 \mathrm{fs}$										\%	52	48	61	39	54	46
		leading mode	HCCH (HOOP works)		39-41		leading mode	HCCH		41-43						
			CCCC		12-14			CCCC		9-11						
			N/A		7			N/A		8						
					18			HOOP brea	ks (or N/A)	12-15						
			HCCH breaks (or N/A)		10			HCCH brea	ks (or N/A)	10-12						

*where T refers to the trajectory in which the direction of the mode is in line with the computed photoproduct, F is opposite to T while N / A refers to the cases at which the direction is not clear or at turning point. The decision time is the time at which the WF is changed to a biradical one. The leading mode is the one which exhibits the largest deformation at the hopping/decision times, the average hopping time and τ (defined as the time period it takes for half of the population to decay to the GS) are roughly identical. The assignment in each trajectory is carried out using the specific figure for $\mathrm{HC}_{11} \mathrm{C}_{12} \mathrm{H}, \mathrm{HOOP}$, $\mathrm{CC}_{11} \mathrm{C}_{12} \mathrm{C}$ and charges on N -moiety given in Figure S10.

Table S8*. Statistical analysis of the individual trajectories of the sqRh ensemble showing the hopping/decision times, the direction of the $\mathrm{HC} \mathrm{C}_{11} \mathrm{C}_{12} \mathrm{H}$, HOOP^{2}, $\mathrm{CC}_{11} \mathrm{C}_{12} \mathrm{C}$ and the leading modes, and the computed and expected photoproduct distributions at both hopping/decision times.

Traj	hopping time (fs)	Product formation follows ...			leading mode	decision time (fs)	Product formation follows ...			leading mode	Computed Product		Expected Product at hopping time		Expected Product at decision time	
		$\mathrm{HC}_{11}-\mathrm{C}_{12} \mathrm{H}$ at hopping time	HOOP at hopping time	$\begin{gathered} \mathrm{CC}_{11} \mathrm{C}_{12} \mathrm{C} \\ \text { at hopping } \\ \text { time } \end{gathered}$			$\mathrm{HC}_{11} \mathrm{C}_{\mathbf{1 2}} \mathrm{H}$ at decision time	HOOP at decision time	$\begin{gathered} \mathrm{CC}_{11} \mathrm{C}_{12} \mathrm{C} \\ \text { at decision } \\ \text { time } \end{gathered}$							
											Trans	Cis	Trans	Cis	Trans	Cis
01	53.00	T	T	F	HCCH	64.50	T	T	F	HCCH		\checkmark		$\sqrt{ }$		\checkmark
02	50.00	T	N/A	T	CCCC	61.25	T	T	T	HCCH/CCCC	$\sqrt{ }$		$\sqrt{ }$		$\sqrt{ }$	
03	58.50	T	F	T	CCCC	58.50	T	F	T	CCCC	\checkmark		\checkmark		\checkmark	
04	54.00	T	T	T	HCCH	54.00	T	T	T	HCCH	\checkmark		\checkmark		\checkmark	
05	59.00	T	T	F	HCCH	74.00	T	T	N/A	HCCH		\checkmark		\checkmark		\checkmark
06	36.00	F	F	T	N/A	49.00	T	T	N/A	HCCH	$\sqrt{ }$			\checkmark	$\sqrt{ }$	
07	40.00	T	T	T	HCCH	58.25	T	T	N/A	HCCH	\checkmark		\checkmark		\checkmark	
08	52.50	T	T	T	HCCH	64.00	T	T	T	HCCH	\checkmark		\checkmark		\checkmark	
09	63.50	T	T	N/A	HCCH	78.00	T	F	T	CCCC		\checkmark		\checkmark		\checkmark
10	50.75	T	T	T	HCCH	62.00	T	T	T	HCCH	$\sqrt{ }$		$\sqrt{ }$		$\sqrt{ }$	
11	63.75	F	F	T	N/A	63.75	F	F	T	N/A	\checkmark			$\sqrt{ }$		\checkmark
12	81.75	T	T	F	HCCH	97.75	T	N/A	T	CCCC		\checkmark		\checkmark		\checkmark
13	44.75	F	F	N/A	N/A	58.00	T	T	N/A	HCCH		\checkmark	$\sqrt{ }$			\checkmark
14	44.00	T	T	N/A	HCCH	56.25	T	T	N/A	HCCH	\checkmark		\checkmark		\checkmark	
15	62.50	F	F	T	N/A	62.50	F	F	T	N/A	\checkmark			\checkmark		$\sqrt{ }$
16	63.50	T	T	N/A	HCCH	77.25	T	F	T	CCCC		$\sqrt{ }$		\checkmark		\checkmark
17	103.00	T	T	F	HCCH	113.50	N/A	F	T	CCCC	\checkmark		\checkmark			
18	32.25	F	T	F	N/A	32.25	F	T	F	HCCH/CCCC		\checkmark	\checkmark		$\sqrt{ }$	
19	56.75	N/A	F	T	CCCC	68.25	T	N/A	T	HCCH	$\sqrt{ }$				\checkmark	
20	66.25	F	F	T	N/A	66.25	F	F	T	N/A	\checkmark			\checkmark		\checkmark
21	39.75	T	T	F	HCCH	54.25	T	T	T	HCCH		\checkmark		\checkmark		\checkmark
22	83.50	T	T	N/A	HCCH	83.50	T	T	N/A	HCCH	\checkmark		\checkmark		\checkmark	
23	72.25	T	N/A	T	CCCC	92.50	T	T	T	HCCH		\checkmark		$\sqrt{ }$		\checkmark
24	60.75	T	T	T	HCCH	60.75	T	T	T	HCCH	$\sqrt{ }$		\checkmark		$\sqrt{ }$	
25	38.75	T	F	T	CCCC	90.00	F	T	T	CCCC	\checkmark		$\sqrt{ }$		\checkmark	
26	51.25	T	T	T	HCCH	56.00	T	T	T	HCCH	\checkmark		$\sqrt{ }$		$\sqrt{ }$	
27	55.25	F	F	T	CCCC	66.00	T	T	T	HCCH	\checkmark			\checkmark	\checkmark	
28	48.00	T	T	T	HCCH	48.00	T	T	T	HCCH	\checkmark		\checkmark		\checkmark	
29	49.00	F	F	N/A	N/A	49.00	F	F	N/A	N/A	\checkmark			\checkmark		\checkmark
30	48.75	T	T	T	HCCH	63.00	T	T	T	HCCH	\checkmark		\checkmark		\checkmark	
31	57.00	T	T	N/A	HCCH	57.00	T	T	N/A	HCCH		$\sqrt{ }$		\checkmark		\checkmark
32	43.75	T	T	N/A	HCCH	43.75	T	T	N/A	HCCH	\checkmark		$\sqrt{ }$		$\sqrt{ }$	
33	75.25	F	F	N/A	N/A	115.00	T	T	T	HCCH	\checkmark			\checkmark	\checkmark	
34	56.75	F	T	F	HCCH	68.50	T	T	N/A	HCCH		\checkmark	$\sqrt{ }$			\checkmark
35	26.50	F	F	T	CCCC	49.50	T	T	T	HCCH	$\sqrt{ }$			\checkmark	\checkmark	
36	72.50	T	T	T	HCCH	84.50	T	T	T	HCCH	\checkmark		\checkmark		\checkmark	

Continue Table S8

Traj	hopping time (fs)	Product formation follows ...			leading mode	decision time (fs)	Product formation follows ...			leading mode	Computed Product		Expected Product at hopping time		Expected Product at decision time	
		$\mathrm{HC}_{11}-\mathrm{C}_{12} \mathrm{H}$ at hopping time	HOOP at hopping time	$\begin{gathered} \mathrm{CC}_{11} \mathrm{C}_{12} \mathrm{C} \\ \text { at hopping } \\ \text { time } \end{gathered}$			$\mathrm{HC}_{11} \mathrm{C}_{12} \mathrm{H}$ at decision time	HOOP at decision time	$\begin{gathered} \mathrm{CC}_{11} \mathrm{C}_{12} \mathrm{C} \\ \text { at decision } \\ \text { time } \end{gathered}$							
											Trans	Cis	Trans	Cis	Trans	Cis
37	62.50	T	T	F	HCCH	62.50	T	T	F	HCCH		\checkmark		\checkmark		\checkmark
38	56.25	F	F	T	N/A	56.25	F	F	T	N/A	$\sqrt{ }$			\checkmark		\checkmark
39	74.25	T	F	T	CCCC	102.25	T	T	T	HCCH	$\sqrt{ }$		$\sqrt{ }$		\checkmark	
40	58.25	T	T	F	N/A	82.75	F	F	T	N/A		$\sqrt{ }$	\checkmark		\checkmark	
41	107.25	T	T	F	HCCH	134.50	T	T	T	HCCH/CCCC		\checkmark		\checkmark		\checkmark
42	60.75	T	F	T	CCCC	60.75	T	F	T	CCCC	\checkmark		$\sqrt{ }$		\checkmark	
43	51.00	T	T	T	HCCH	51.00	T	T	T	HCCH	$\sqrt{ }$		$\sqrt{ }$		\checkmark	
44	37.50	T	T	T	HCCH	48.75	T	T	T	HCCH	$\sqrt{ }$		$\sqrt{ }$		\checkmark	
45	49.75	N/A	F	T	HCCH	49.75	T	T	T	HCCH	$\sqrt{ }$		-		\checkmark	
46	73.50	T	T	N/A	HCCH	80.50	T	T	N/A	HCCH	\checkmark		\checkmark		\checkmark	
47	94.50	T	T	F	HCCH	94.50	T	T	F	HCCH		\checkmark	\checkmark	\checkmark		\checkmark
48	60.50	N/A	T	T	HCCH	74.50	T	T	T	HCCH	\checkmark		-		\checkmark	
49	58.00	T	T	F	HCCH	58.00	T	T	F	HCCH		\checkmark		$\sqrt{ }$		\checkmark
50	62.50	T	T	T	HCCH	62.50	T	T	T	HCCH		\checkmark	$\sqrt{ }$		$\sqrt{ }$	
51	65.75	T	T	N/A	HCCH	65.75	T	T	N/A	HCCH	$\sqrt{ }$		\checkmark		\checkmark	
52	81.75	T	T	T	HCCH	96.50	T	T	T	HCCH	$\sqrt{ }$		$\sqrt{ }$		\checkmark	
53	56.00	T	T	T	HCCH	67.25	T	T	T	HCCH	\checkmark		$\sqrt{ }$		\checkmark	
54	69.25	F	F	T	N/A	69.25	F	F	T	N/A		\checkmark	$\sqrt{ }$		$\sqrt{ }$	
55	85.75	T	T	T	HCCH	85.75	T	T	T	HCCH	$\sqrt{ }$		\checkmark		\checkmark	
56	45.75	T	T	T	HCCH	54.75	T	T	T	HCCH	\checkmark		$\sqrt{ }$		\checkmark	
57	57.00	T	T	T	HCCH	72.00	T	T	T	CCCC	\checkmark		$\sqrt{ }$		\checkmark	
58	45.25	T	T	T	HCCH	45.25	T	T	T	HCCH	\checkmark		\checkmark		\checkmark	
59	57.00	F	F	N/A	N/A	76.50	T	T	T	HCCH		$\sqrt{ }$	$\sqrt{ }$			$\sqrt{ }$
60	50.00	T	T	T	HCCH	50.00	T	T	T	HCCH	$\sqrt{ }$		$\sqrt{ }$		$\sqrt{ }$	
Average	58.9					68.4				Sum	41	19	37	21	39	20
Time shift from hopping to decision time $=9.5 \mathrm{fs}$										\%	68	32	64	36	66	34
		leading mode	HCCH (HOOP works)		39		leading mode	HCCH (HOOP works)		42-45						
			CCCC		9			CCCC		8-11						
			N/A		12			N/A		7						
			HOOP breaks (or N/A)		20			HOOP brea	ss (or N/A)	14						
			HCCH breaks (or N/A)		17			HCCH brea	ks (or N/A)	10						

*where T refers to the trajectory in which the direction of the mode is in line with the computed photoproduct, F is opposite to T while N / A refers to the cases at which the direction is not clear or at turning point. The decision time is the time at which the WF is changed to a biradical one. The leading mode is the one which exhibits the largest deformation at the hopping/decision times, the average hopping time and τ (defined as the time period it takes for half of the population to decay to the GS) are roughly identical. The assignment in each trajectory is carried out using the specific figure for $\mathrm{HC}_{n 1} \mathrm{C}_{\mathrm{n}} \mathrm{H}, \mathrm{HOOP}$, $\mathrm{CC}_{11} \mathrm{C}_{12} \mathrm{C}$ and charges on N -moiety given in Figure $\mathbf{S 1 1}$.

Table S9*. Statistical analysis of the individual trajectories of the Rh ensemble showing the hopping /decision times, the direction of the $\mathrm{HC}_{n} \mathrm{C}_{n} \mathrm{H}, \mathrm{HOOP}$, $\mathrm{CC}_{11} \mathrm{C}_{n} \mathrm{C}$ and the leading modes, and the computed and expected photoproduct distributions at both hopping/decision times.

Traj	hopping time (fs)	Product formation follows ...			leading mode	decision time (fs)	Product formation follows ...			leading mode	Computed Product		Expected Product at hopping time		Expected Product at decision time	
		$\mathrm{HC}_{11}-\mathrm{C}_{12} \mathrm{H}$ at hopping time	HOOP at hopping time	$\mathrm{CC}_{11} \mathrm{C}_{12} \mathrm{C}$ at hopping time			$\mathbf{H C}_{11} \mathbf{C}_{12} \mathrm{H}$ at decision time	HOOP at decision time	$\begin{gathered} \mathrm{CC}_{11} \mathrm{C}_{12} \mathrm{C} \\ \text { at decision } \\ \text { time } \end{gathered}$							
											Trans	Cis	Trans	Cis	Trans	Cis
01	88.50	F	F	F	N/A	90.00	T	T	F	HCCH		$\sqrt{ }$	$\sqrt{ }$			\checkmark
02	49.50	F	F	N/A	N/A	66.50	T	T	N/A	HCCH		$\sqrt{ }$	$\sqrt{ }$			\checkmark
03	62.50	T	T	N/A	HCCH	62.50	T	T	N/A	HCCH	\checkmark		$\sqrt{ }$		$\sqrt{ }$	
04	83.50	T	T	N/A	HCCH	86.25	T	T	N/A	HCCH		$\sqrt{ }$		\checkmark		\checkmark
05	108.75	T	T	N/A	HCCH	108.75	T	T	N/A	HCCH	\checkmark		$\sqrt{ }$		$\sqrt{ }$	
06	77.25	T	F	T	CCCC	94.50	T	T	N/A	HCCH	\checkmark		\checkmark		\checkmark	
07	68.00	T	F	T	CCCC	68.00	T	F	T	CCCC	\checkmark		$\sqrt{ }$		\checkmark	
08	91.75	T	T	T	HCCH	91.75	T	T	T	HCCH	\checkmark		\checkmark		\checkmark	
09	107.75	T	T	F	HCCH	114.75	T	T	T	HCCH	\checkmark		\checkmark		\checkmark	
10	76.50	T	T	N/A	HCCH	76.50	T	T	N/A	HCCH	\checkmark		\checkmark		\checkmark	
11	126.00	T	T	T	HCCH	126.00	T	T	T	HCCH	\checkmark		\checkmark		$\sqrt{ }$	
12	97.75	T	T	T	HCCH	97.75	T	T	T	HCCH		$\sqrt{ }$		\checkmark		\checkmark
13	89.00	T	N/A	T	CCCC	108.50	T	T	T	HCCH	\checkmark		\checkmark		$\sqrt{ }$	
14	75.25	F	F	T	CCCC	86.75	T	T	N/A	HCCH	$\sqrt{ }$			$\sqrt{ }$	$\sqrt{ }$	
15	172.25	T	T	T	HCCH	189.75	T	N/A	T	HCCH		\checkmark		\checkmark		\checkmark
16	49.25	T	T	F	HCCH	66.00	T	N/A	T	HCCH	\checkmark		$\sqrt{ }$		$\sqrt{ }$	
17	112.25	N/A	N/A	T	CCCC	120.25	N/A	F	T	CCCC		$\sqrt{ }$				
18	50.25	T	T	T	HCCH	59.75	T	T	T	HCCH	$\sqrt{ }$		$\sqrt{ }$		$\sqrt{ }$	
19	85.50	T	T	T	HCCH	85.50	T	T	T	HCCH	\checkmark		\checkmark		\checkmark	
20	56.50	T	T	F	HCCH	67.25	T	T	F	HCCH		\checkmark		\checkmark		\checkmark
21	81.50	N/A	F	T	CCCC	93.00	T	T	T	HCCH	$\sqrt{ }$				\checkmark	
22	59.75	F	F	N/A	N/A	72.50	T	T	T	HCCH		\checkmark	$\sqrt{ }$			$\sqrt{ }$
23	97.50	T	T	T	HCCH	97.50	T	T	T	HCCH	$\sqrt{ }$		$\sqrt{ }$		$\sqrt{ }$	
24	82.25	T	T	N/A	HCCH	82.25	T	T	N/A	HCCH	$\sqrt{ }$		$\sqrt{ }$		$\sqrt{ }$	
25	77.50	T	T	T	HCCH	77.50	T	T	T	HCCH	$\sqrt{ }$		$\sqrt{ }$		$\sqrt{ }$	
26	82.75	T	T	F	HCCH	91.50	T	T	T	HCCH		\checkmark		\checkmark		\checkmark
27	44.75	F	F	F	N/A	54.25	T	T	F	HCCH		$\sqrt{ }$	$\sqrt{ }$			$\sqrt{ }$
28	61.50	T	T	T	HCCH	61.50	T	T	T	HCCH	$\sqrt{ }$		$\sqrt{ }$		$\sqrt{ }$	
29	58.25	T	T	F	HCCH	67.50	T	T	F	HCCH		$\sqrt{ }$		\checkmark		\checkmark
30	69.75	T	T	T	HCCH	69.75	T	T	T	HCCH	\checkmark		\checkmark		$\sqrt{ }$	
31	75.75	T	T	N/A	HCCH	93.25	T	T	N/A	HCCH	$\sqrt{ }$		$\sqrt{ }$		\checkmark	
32	63.00	T	T	F	HCCH	63.00	T	T	F	HCCH		$\sqrt{ }$		$\sqrt{ }$		\checkmark
33	86.25	T	T	F	HCCH	86.25	T	T	F	HCCH		\checkmark		$\sqrt{ }$		\checkmark
34	44.00	T	T	T	HCCH	44.00	T	T	T	HCCH	$\sqrt{ }$		$\sqrt{ }$		$\sqrt{ }$	
35	80.00	T	T	T	HCCH	80.00	T	T	T	HCCH	\checkmark		\checkmark		\checkmark	
36	48.75	T	T	T	HCCH	48.75	T	T	T	HCCH	\checkmark		\checkmark		\checkmark	

Continue Table S9

Traj	hopping time (fs)	Product formation follows ...			leading mode	decision time (fs)	Product formation follows ...			leading mode	Computed Product		Expected Product at hopping time		Expected Product at decision time	
		$\mathrm{HC}_{11}-\mathrm{C}_{12} \mathrm{H}$ at hopping time	HOOP at hopping time	$\begin{gathered} \mathrm{CC}_{11} \mathrm{C}_{12} \mathrm{C} \\ \text { at hopping } \\ \text { time } \end{gathered}$			$\mathrm{HC}_{11} \mathrm{C}_{12} \mathrm{H}$ at decision time	HOOP at decision time	$\begin{gathered} \mathrm{CC}_{11} \mathrm{C}_{12} \mathrm{C} \\ \text { at decision } \\ \text { time } \end{gathered}$							
											Trans	Cis	Trans	Cis	Trans	Cis
37	90.50	T	T	N/A	HCCH	90.50	T	T	N/A	HCCH	$\sqrt{ }$		$\sqrt{ }$		$\sqrt{ }$	
38	83.25	T	T	T	HCCH	83.25	T	T	T	HCCH	$\sqrt{ }$		$\sqrt{ }$		$\sqrt{ }$	
39	44.50	T	T	T	N/A	56.00	T	T	T	HCCH	$\sqrt{ }$		\checkmark		\checkmark	
40	100.75	T	T	T	HCCH	100.75	T	T	T	HCCH	$\sqrt{ }$		$\sqrt{ }$		$\sqrt{ }$	
41	85.25	T	T	T	HCCH	85.25	T	T	T	HCCH	$\sqrt{ }$		$\sqrt{ }$		$\sqrt{ }$	
42	85.50	T	T	F	HCCH	85.50	T	T	F	HCCH	$\sqrt{ }$		$\sqrt{ }$		\checkmark	
43	73.75	T	T	N/A	HCCH	73.75	T	T	N/A	HCCH	$\sqrt{ }$		$\sqrt{ }$		$\sqrt{ }$	
44	76.25	T	T	T	HCCH	76.25	T	T	T	HCCH	$\sqrt{ }$		\checkmark		$\sqrt{ }$	
45	77.50	T	T	T	HCCH	87.25	T	T	T	HCCH	$\sqrt{ }$		$\sqrt{ }$		$\sqrt{ }$	
46	74.00	T	T	T	HCCH	83.00	T	T	T	HCCH	$\sqrt{ }$		$\sqrt{ }$		$\sqrt{ }$	
47	100.75	T	T	T	HCCH	111.75	T	T	T	HCCH	$\sqrt{ }$		\checkmark		$\sqrt{ }$	
48	85.75	T	N/A	T	HCCH/CCCC	85.75	T	N/A	T	HCCH/CCCC	$\sqrt{ }$		\checkmark		$\sqrt{ }$	
49	69.50	T	T	F	HCCH	69.50	T	T	F	HCCH		$\sqrt{ }$		$\sqrt{ }$		$\sqrt{ }$
50	65.75	T	T	T	HCCH	65.75	T	T	T	HCCH	$\sqrt{ }$		$\sqrt{ }$		$\sqrt{ }$	
51	96.00	T	T	N/A	HCCH	115.00	F	F	T	CCCC	\checkmark		\checkmark			$\sqrt{ }$
52	69.00	T	F	F	N/A	76.75	T	T	F	HCCH		\checkmark		$\sqrt{ }$		\checkmark
53	65.75	T	T	T	HCCH	65.75	T	T	T	HCCH	$\sqrt{ }$		$\sqrt{ }$		$\sqrt{ }$	
54	57.00	T	T	T	HCCH	65.00	T	T	T	HCCH/CCCC	$\sqrt{ }$		$\sqrt{ }$		$\sqrt{ }$	
55	88.50	T	T	F	HCCH	103.00	T	T	T	HCCH	$\sqrt{ }$		$\sqrt{ }$		\checkmark	
56	135.00	T	T	N/A	HCCH/N/A	135.00	T	T	N/A	HCCH/N/A		$\sqrt{ }$		$\sqrt{ }$		$\sqrt{ }$
57	90.25	T	T	T	HCCH	90.25	T	T	T	HCCH	$\sqrt{ }$		$\sqrt{ }$		$\sqrt{ }$	
58	56.50	T	T	F	HCCH	69.25	T	F	T	CCCC		$\sqrt{ }$		$\sqrt{ }$		$\sqrt{ }$
59	46.75	F	F	N/A	N/A	63.00	T	T	T	HCCH		$\sqrt{ }$	$\sqrt{ }$			$\sqrt{ }$
60	79.25	T	T	T	HCCH	92.25	T	T	T	HCCH	$\sqrt{ }$		$\sqrt{ }$		$\sqrt{ }$	
Average	79.0					84.7				Sum	42	18	45	13	41	18
Time shift from hopping to decision time $=5.7 \mathrm{fs}$										\%	70	30	78	22	69	31
		leading mode	HCCH (HOOP works)		45-47		leading mode	HCCH		53-56						
			CCCC		7-7			CCCC		4-6						
			HOOP breaks (or N/A)		7-8			N/A		0-1						
					13			HOOP brea	ks (or N/A)	7						
			HCCH breaks (or N/A)		8			HCCH brea	ks (or N/A)	2						

*where T refers to the trajectory in which the direction of the mode is in line with the computed photoproduct, F is opposite to T while N/A refers to the cases at which the direction is not clear or at turning point. The decision time is the time at which the WF is changed to a biradical one. The leading mode is the one which exhibits the largest deformation at the hopping/decision times, the average hopping time and τ (defined as the time period it takes for half of the population to decay to the GS) are roughly identical. The assignment in each trajectory is carried out using the specific figure for $\mathrm{HC}_{n} \mathrm{C}_{n} \mathrm{H}, \mathrm{HOOP}$, $\mathrm{CC}_{11} \mathrm{C}_{n 2} \mathrm{C}$ and charges on N -moiety given in the Figure S12.

9 References:

1.

Murakami, M.; Kouyama, T., Crystal structure of squid rhodopsin. Nature 2008, 453 (7193), 363-
367.
2. Rinaldi, S.; Melaccio, F.; Gozem, S.; Fanelli, F.; Olivucci, M., Comparison of the isomerization mechanisms of human melanopsin and invertebrate and vertebrate rhodopsins. Proceedings of the National Academy of Sciences 2014, 111 (5), 1714-1719.
3. Okada, T.; Sugihara, M.; Bondar, A.-N.; Elstner, M.; Entel, P.; Buss, V., The Retinal Conformation and its Environment in Rhodopsin in Light of a New 2.2 Å Crystal Structure ${ }^{\dagger}$. J. Mol. Biol. 2004, 342 (2), 571-583.
4. Punwong, C.; Owens, J.; Martínez, T. J., Direct QM/MM Excited-State Dynamics of Retinal Protonated Schiff Base in Isolation and Methanol Solution. The journal of physical chemistry. B 2015, 119 (3), 704-714.
5. Sekharan, S.; Altun, A.; Morokuma, K., QM/MM Study of Dehydro and Dihydro β-Ionone Retinal Analogues in Squid and Bovine Rhodopsins: Implications for Vision in Salamander Rhodopsin. Journal of the American Chemical Society 2010, 132 (45), 15856-15859.
6. Senn, H. M.; Thiel, W., QM/MM methods for biomolecular systems. Angewandte Chemie (International ed. in English) 2009, 48 (7), 1198-229.
7. Lin, H.; Truhlar, D. G., QM/MM: what have we learned, where are we, and where do we go from here? Theoretical Chemistry Accounts 2007, 117 (2), 185.
8. Altoè, P.; Stenta, M.; Bottoni, A.; Garavelli, M., A tunable QM/MM approach to chemical reactivity, structure and physico-chemical properties prediction. Theor. Chem. Acc. 2007, 118 (1), 219240.
9. Roos, B.; Taylor, P. R.; Siegbahn, P. E. M., A complete active space SCF method (CASSCF) using a density matrix formulated super-Cl approach. Chem. Phys. 1980, 48 (2), 157-173.
10. Ferré, N.; Olivucci, M., Probing the Rhodopsin Cavity with Reduced Retinal Models at the CASPT2//CASSCF/AMBER Level of Theory. J. Am. Chem. Soc. 2003, 125 (23), 6868-6869.
11. Ferré, N.; Cembran, A.; Garavelli, M.; Olivucci, M., Complete-active-space self-consistentfield/Amber parameterization of the Lys296-retinal-Glu113 rhodopsin chromophore-counterion system. Theor. Chem. Acc. 2004, 112 (4), 335-341.
12. Andersson, K.; Malmqvist, P. A.; Roos, B. O.; Sadlej, A. J.; Wolinski, K., Second-order perturbation theory with a CASSCF reference function. J. Phys. Chem. 1990, 94 (14), 5483-5488.
13. Bonvicini, A.; Demoulin, B.; Altavilla, S. F.; Nenov, A.; El-Tahawy, M. M. T.; Segarra-Martí, J.; Giussani, A.; Batista, V. S.; Garavelli, M.; Rivalta, I., Ultraviolet vision: photophysical properties of the unprotonated retinyl Schiff base in the Siberian hamster cone pigment. Theor. Chem. Acc. 2016, 135 (4), 1-10.
14. El-Tahawy, M. M. T.; Nenov, A.; Garavelli, M., Photoelectrochromism in the Retinal Protonated Schiff Base Chromophore: Photoisomerization Speed and Selectivity under a Homogeneous Electric Field at Different Operational Regimes. J. Chem. Theory Comput. 2016, 12 (9), 4460-4475.
15. Forsberg, N.; Malmqvist, P.-Å., Multiconfiguration perturbation theory with imaginary level shift. Chem. Phys. Lett. 1997, 274 (1-3), 196-204.
16. Ghigo, G.; Roos, B. O.; Malmqvist, P.-Å., A modified definition of the zeroth-order Hamiltonian in multiconfigurational perturbation theory (CASPT2). Chem. Phys. Lett. 2004, 396 (1-3), 142-149.
17. Demoulin, B.; El-Tahawy, M. M. T.; Nenov, A.; Garavelli, M.; Le Bahers, T., Intramolecular photoinduced charge transfer in visual retinal chromophore mimics: electron density-based indices at the TDDFT and post-HF levels. Theor. Chem. Acc. 2016, 135 (4), 1-10.
18. Cembran, A.; Gonzalez-Luque, R.; Altoe, P.; Merchan, M.; Bernardi, F.; Olivucci, M.; Garavelli, M., Structure, spectroscopy, and spectral tuning of the gas-phase retinal chromophore: the beta-ionone "handle" and alkyl group effect. J. Phys. Chem. A 2005, 109 (29), 6597-605.
19. Rivalta, I.; Nenov, A.; Weingart, O.; Cerullo, G.; Garavelli, M.; Mukamel, S., Modelling TimeResolved Two-Dimensional Electronic Spectroscopy of the Primary Photoisomerization Event in Rhodopsin. J. Phys. Chem. B 2014, 118 (28), 8396-8405.
20. Polli, D.; Altoe, P.; Weingart, O.; Spillane, K. M.; Manzoni, C.; Brida, D.; Tomasello, G.; Orlandi, G.; Kukura, P.; Mathies, R. A.; Garavelli, M.; Cerullo, G., Conical intersection dynamics of the primary photoisomerization event in vision. Nature 2010, 467 (7314), 440-443.
21. Frutos, L. M.; Andruniow, T.; Santoro, F.; Ferre, N.; Olivucci, M., Tracking the excited-state time evolution of the visual pigment with multiconfigurational quantum chemistry. Proc. Natl. Acad. Sci. U. S. A. 2007, 104 (19), 7764-9.
22. Sloane, C. S.; Hase, W. L., On the dynamics of state selected unimolecular reactions: Chloroacetylene dissociation and predissociation. The Journal of Chemical Physics 1977, 66 (4), 15231533.
23. Swope, W.C.; Andersen, H. C.; Berens, P. H.; Wilson, K. R., A computer simulation method for the calculation of equilibrium constants for the formation of physical clusters of molecules: Application to small water clusters. J. Chem. Phys. 1982, 76 (1), 637-649.
24. Granucci, G.; Persico, M., Critical appraisal of the fewest switches algorithm for surface hopping. J. Chem. Phys. 2007, 126 (13), 134114.
25. Werner, H.-J.; Knowles, P.; Lindh, R.; Manby, F. R.; Schütz, M.; Celani, P.; Korona, T.; Rauhut, G.; Amos, R.; Bernhardsson, A., MOLPRO, version 2010.1, a package of ab initio programs. See http://www. molpro. net 2010.
26. Aquilante, F.; De Vico, L.; Ferré, N.; Ghigo, G.; Malmqvist, P.-å.; Neogrády, P.; Pedersen, T. B.; Pitoňák, M.; Reiher, M.; Roos, B. O.; Serrano-Andrés, L.; Urban, M.; Veryazov, V.; Lindh, R., MOLCAS 7: The Next Generation. J. Comput. Chem. 2009, 31 (1), 224-247.
27. Aquilante, F.; Autschbach, J.; Carlson, R. K.; Chibotaru, L. F.; Delcey, M. G.; De Vico, L.; Fdez. Galván, I.; Ferré, N.; Frutos, L. M.; Gagliardi, L.; Garavelli, M.; Giussani, A.; Hoyer, C. E.; Li Manni, G.; Lischka, H.; Ma, D.; Malmqvist, P. Å.; Müller, T.; Nenov, A.; Olivucci, M.; Pedersen, T. B.; Peng, D.; Plasser, F.; Pritchard, B.; Reiher, M.; Rivalta, I.; Schapiro, I.; Segarra-Martí, J.; Stenrup, M.; Truhlar, D. G.; Ungur, L.; Valentini, A.; Vancoillie, S.; Veryazov, V.; Vysotskiy, V. P.; Weingart, O.; Zapata, F.; Lindh, R., Molcas 8: New capabilities for multiconfigurational quantum chemical calculations across the periodic table. J. Comput. Chem. 2016, 37 (5), 506-541.
28. Garavelli, M.; Celani, P.; Bernardi, F.; Robb, M. A.; Olivucci, M., The C5H6NH2+ Protonated Shiff Base: An ab Initio Minimal Model for Retinal Photoisomerization. Journal of the American Chemical Society 1997, 119 (29), 6891-6901.
29. Matsuyama, T.; Yamashita, T.; Imamoto, Y.; Shichida, Y., Photochemical properties of mammalian melanopsin. Biochemistry 2012, 51 (27), 5454-62.
30. Suzuki, T.; Uji, K.; Kito, Y., Studies on cephalopod rhodopsin: photoisomerization of the chromophore. Biochimica et biophysica acta 1976, 428 (2), 321-38.
31. Hurley, J. B.; Ebrey, T. G.; Honig, B.; Ottolenghi, M., Temperature and wavelength effects on the photochemistry of rhodopsin, isorhodopsin, bacteriorhodopsin and their photoproducts. Nature 1977, 270, 540.
32. Tomasello, G.; Olaso-González, G.; Altoè, P.; Stenta, M.; Serrano-Andrés, L.; Merchán, M.; Orlandi, G.; Bottoni, A.; Garavelli, M., Electrostatic Control of the Photoisomerization Efficiency and Optical Properties in Visual Pigments: On the Role of Counterion Quenching. Journal of the American Chemical Society 2009, 131 (14), 5172-5186.
33. Cembran, A.; Bernardi, F.; Olivucci, M.; Garavelli, M., The retinal chromophore/chloride ion pair: Structure of the photoisomerization path and interplay of charge transfer and covalent states. Proceedings of the National Academy of Sciences of the United States of America 2005, 102 (18), 62556260.
34. Gozem, S.; Luk, H. L.; Schapiro, I.; Olivucci, M., Theory and Simulation of the Ultrafast DoubleBond Isomerization of Biological Chromophores. Chemical Reviews 2017.
35. Hurley, J. B.; Ebrey, T. G.; Honig, B.; Ottolenghi, M., Temperature and wavelength effects on the photochemistry of rhodopsin, isorhodopsin, bacteriorhodopsin and their photoproducts. Nature 1977, 270 (5637), 540-542.

