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A reduced Bloch operator finite element method for fast

calculation of elastic complex band structures

Antonio Palermoa,, Alessandro Marzania,

aUniversity of Bologna, Department of Civil, Chemical, Environmental and Materials
Engineering - DICAM, Bologna, 40136, Italy

Abstract

This article presents an efficient reduced formulation of the Bloch Opera-

tor Finite Element method to calculate complex band structures of periodic

waveguides. The use of a Bloch operator formulation allows building and

solving a Bloch eigenvalue problem along a generic wave direction, thus be-

ing not limited to the unit cell Irreducible Brillouin Zone (IBZ) edges, so

that band gap directionality and material absorption in elastic and damped

waveguides can be fully disclosed. The proposed Reduced-Order Modelling

(ROM) exploits a small set of Bloch modes, extracted at relevant frequency

locations along one or more wave directions and post-processed with a Sin-

gular Value Decomposition, to reduce the dimensions of the eigenvalue prob-

lem. The performances of the proposed numerical technique are evaluated

in terms of accuracy and computational saving by analyzing a linear elastic

and a damped bi-periodic stubbed plate. Results demonstrate that the re-

duced formulation yields accurate predictions of propagative, evanescent and

complex wave solutions with a reduction in computational time of more than
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one order of magnitude with respect to the full model calculations. Complex

band structures can thus be efficiently computed over the whole IBZ.

Keywords: Phononic Crystals, Elastic Metamaterials, Floquet-Bloch

Theorem, Complex Band Structure, Reduced Order Models

1. Introduction1

Natural and engineered media are often characterized by a spatial period-2

icity, either in their geometry or in the material composition. Such periodicity3

plays a major role in the the mechanism of propagation of elastic waves, lead-4

ing to dispersive effects and to the appearance of band gaps, i.e., frequency5

ranges where mechanical waves are hindered. The presence of these disper-6

sive effects can be predicted by evaluating the material elastic band structure,7

namely, the relationship between wave vectors and angular frequencies of the8

mechanical waves supported by the medium. By exploiting the Bloch theo-9

rem (Bloch, 1929), the band structure of an infinite periodic system can be10

evaluated by calculating the vibration modes of a single unit cell. Unit cell11

vibration modes are extracted by solving an elastodynamic eigenvalue prob-12

lem (EVP), which is a function of the angular frequency ω and wave vector13

k of the waves. Solutions of such ω-k eigenvalue problem can be obtained for14

a given k and an unknown ω, or for a given ω and an unknown k. The ω(k)15

EVP is generally solved for real wavenumber selected within the unit cell Ir-16

reducible Brillouin Zone (IBZ) and provides the propagative modes, e.g. the17

real band structure, of the periodic waveguide. Conversely, the k(ω) formu-18

lation calculates the complex wavenumbers k = kr + iki for given frequency19

ω, and thus identifies propagative (kr 6= 0, ki = 0), evanescent (kr = 0,20
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ki 6= 0), and complex (kr 6= 0, ki 6= 0) wave solutions. The identification21

of evanescent and complex wave solutions is fundamental to capture near-22

field displacements at the boundaries of a periodic medium (Laude et al.,23

2011; Kulpe et al., 2014), as well as to predict wave attenuation in band24

gaps (Laude et al., 2009). Several numerical techniques are currently avail-25

able to build and solve a Bloch EVP, as the Plane Wave Expansion Method26

(Sigalas and Economou, 1993; Kushwaha et al., 1993), the Multiple Scatter-27

ing Method (Sigalas et al., 2005), and the Finite Element Method (Phani28

et al., 2006; Duhamel et al., 2006; Mace and Manconi, 2008; Hussein, 2009;29

Collet et al., 2011). In this work, we restrict our attention to Finite Element30

(FE) based methods, which are popular in solid mechanics thanks to their31

easiness in implementation, accuracy, convergence and ability in handling32

complex geometrical domains.33

In a FE framework, band structures can be calculated following two different34

approaches (Hussein et al., 2014). The first one, known as Bloch Operator35

Finite Element Method (here labelled as BOFEM), assumes a Bloch displace-36

ment solution of the elastodynamic problem, builds its weak form utilizing37

Bloch test functions and discretizes the weak form equation over the unit38

cell domain using finite elements (Hussein, 2009; Collet et al., 2011). In the39

second approach, known as Wave Finite Element method (WFEM) (Mace40

and Manconi, 2008), the unit cell domain is discretized using a standard FE41

approach and the Bloch theorem is imposed via periodic boundary condi-42

tions applied on the unit cell. The use of a BOFEM approach to extract43

the complex band structure presents some advantages with respect to the44

WFEM approach. First of all, it allows defining the wave direction where45
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solutions are sought, preserving the collinearity between imaginary and real46

part of the wave vector (Collet et al., 2011), a condition that is violated by47

the WFEM (Mace and Manconi, 2008). Furthermore, it yields a quadratic48

eigenvalue problem for any considered wave direction of propagation, which49

can be easily solved by linearization, in contrast to the WFEM that generally50

yields large non-linear EVPs (see details in the Discussion section) (Mace and51

Manconi, 2008).52

In recent years, several approaches have been developed to reduce the compu-53

tational effort and accelerate band structures calculation, including among54

others, multiscale techniques (Hussein and Hulbert, 2006; Casadei et al.,55

2013, 2016) and the construction of Reduced-Order-Models (ROMs) (Droz56

et al., 2014; Krattiger and Hussein, 2014; Zhou et al., 2015; Droz et al.,57

2016; Palermo and Marzani, 2016; Krattiger and Hussein, 2018; Boukadia58

et al., 2018). The latter approach consists in identifying a basis of coor-59

dinates (physical or modal) to reduce the dynamics of a complex system.60

Two distinct ROM techniques have been so far proposed for band struc-61

tures calculation within the FE framework. The first technique reduces the62

dimensions of the unit cell model before imposing the Bloch periodicity by ex-63

ploiting, for example, the Component Mode Synthesis (CMS) method (Craig64

and Bampton, 1968). The CMS technique employs a small number of fixed65

interface modes to replace the internal degree of freedoms (DOFs) of the unit66

cell, leaving the boundary DOFs untouched and available to impose periodic67

boundary conditions. Starting from its original implementation restricted to68

the calculation of real band structures (Krattiger and Hussein, 2014; Zhou69

et al., 2015), the method has been later extended to calculate complex band70
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structures (Palermo and Marzani, 2016) and to further reduce its computa-71

tional cost by means of additional reduction steps (Droz et al., 2016; Krattiger72

and Hussein, 2018). Unfortunately, the CMS technique cannot be employed73

to reduce EVPs derived from the BOFEM, since the BOFEM assumes the74

Bloch periodicity ab initio in the formulation of the operators (Krattiger and75

Hussein, 2018).76

The second ROM technique employs a reduced modal-basis to project the77

matrix operators of the Bloch EVP. An example of this approach is given78

in Ref. (Droz et al., 2014), where a small set of shape functions associated79

to propagating waves is exploited to reduce the WFEM EVP and calculate80

the real band structure of 1D waveguides. The procedure utilizes a basis of81

positive-going waves extracted at multiple cut-on frequencies of the analyzed82

waveguide. The correlation between the selected wave shapes is evaluated83

by using a Modal Assurance Criterion (MAC), which allows to discriminate84

least correlated modes by assessing their degree of correspondence (further85

details on the method can be found in Ref. (Allemang, 2003).86

More recently, the approach has been updated to span the full complex band87

structure by introducing a further wavenumber sampling procedure and im-88

plementing a Singular Value Decomposition step (Boukadia et al., 2018), for89

a more robust selection of uncorrelated modes. Given the ability of this90

method to reduce the computational burden of the WFEM formulation, it91

is desirable to borrow some of its numerical techniques and adapt its appli-92

cation to the BOFEM, so to exploit its advantages with respect to WFEM93

formulations and calculate complex band structures along generic wave di-94

rections. Indeed, current reduction techniques for the BOFEM are limited95
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to the Reduced Bloch Mode Expansion (RBME) method (Hussein, 2009),96

which exploits a reduced basis of propagative Bloch eigenfunctions, selected97

at the high-symmetry points of the unit cell IBZ, to obtain an accurate ap-98

proximation of the waveguide real band structures.99

Hence, in this work we propose a reduced formulation for BOFEM to cal-100

culate complex band structures in periodic media. The method builds a re-101

duced dimension Bloch EVP along a single or along multiple wave directions102

selected within the IBZ. In particular, two reduction strategies are presented103

and discussed in details. The first, named as single-direction (SD) reduction,104

exploits a basis of wave shapes extracted along the same direction where the105

Bloch EVP is set and solved. The second, named as multi-direction (MD)106

reduction, builds a set of basis along predefined wave directions later used to107

project the EVP within the full IBZ.108

The paper is organized as follow. In section 2, the BOFEM is reviewed and109

its formulation is discussed in details for both the ω(k) and the k(ω) ap-110

proaches. In section 3, we present the proposed reduction strategies, provid-111

ing a detailed implementation of the single and multi-direction reductions for112

a bi-periodic 3D waveguide. Then, the accuracy and computational saving113

of the procedures are discussed by computing the complex band structures of114

a stubbed plate (section 4). First, the performance of the reduced models is115

evaluated for the case of a linear elastic stubbed plate. Then, reduced models116

are developed for the case of a damped stubbed plate. In both cases, accu-117

racy and computational cost of the methods are discussed for complex band118

structures calculated along a specific wave direction and within the whole119

IBZ. Finally, a discussion on the performance of the proposed reduction with120
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respect to available ROM techniques is given in section 5. Concluding re-121

marks are drawn is section 6.122

2. Overview of the Bloch operator FE method123

In this section, we review the BOFEM as originally proposed by Collet124

et al. in Ref. (Collet et al., 2011).125

2.1. Strong formulation of the elastic Bloch eigenvalue problem126

Let us consider a generic infinite periodic elastic medium as the one shown127

in Fig. 1a, whose dynamic equilibrium equations read:128

ρ(x)ω2u(x) +∇ ·C(x) : ∇Su(x) = 0, x ∈ R3 (1)

where ρ(x) is the mass density, ω the angular frequency, C(x) the elastic129

Hook tensor, u(x) the displacement vector and ε(x)=∇Su(x) = 1/2(∇u(x)+130

(∇u(x))T ) the strain tensor. We restrict our analysis to the unit cell of the131

periodic medium, identified by the domain ΩR (see Fig. 1b). By invoking the132

Bloch theorem (Bloch, 1929), eigensolutions of the elastodynamic problem133

in Eq. (1) defined over the unit cell domain ΩR, are sought in the form:134

u(x) = un(x,k)e−ikx (2)

where k = [kx, ky, kz]
T is the wave vector and un(x,k) are periodic functions135

in ΩR, x ∈ ΩR (see Fig. 1c). Substituting Eq. (2) in Eq. (1) leads to a136

generalized eigenvalue problem:137

ρ(x)ω2
n(k) un(x) +∇ ·C(x) : ∇Sun − iC(x) : ∇Sun · k

−i∇ ·C(x) :
1

2
(un(x)⊗ k + k⊗ un(x))

+C(x) :
1

2
(un(x)⊗ k + k⊗ un(x)) · k = 0, x ∈ ΩR

(3)
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with symmetrical boundary conditions defined on the unit cell boundary138

faces ΓR:139

un(x−R · n)− un(x) = 0, x ∈ ΓR, (4)

where R = [rx, ry, rz] is the matrix of the lattice vectors and n is the unit140

outpointing normal vector defined on the considered boundary.141

Eq. (3) is the strong form of a generalized EVP in the variables ω and k.142

The wave vector k can be rearranged as the product of its amplitude |k| and143

the vector of cosine direction Φ (see Fig. 1c):144

k = |k|Φ = |k|


cos θ cosφ

cos θ sinφ

sin θ

 (5)

As a result, the EVP in Eq. (3) depends on three variables, namely the145

angular frequency ω, the wave vector amplitude |k|, and the wave direction146

Φ.147

2.2. Weak form and FE discretization148

By projecting Eq. (3) onto a Bloch periodic test function ũn(x) defined149

over the unit cell domain Ωr, and by integrating this projection over the same150

domain, a weak form of the EVP is obtained (all the details can be found in151

Ref. (Collet et al., 2011)). A numerical implementation of the weak form is152

then obtained by using a standard FE discretization, which yields the set of153

equations:154

[K + λL(Φ)− λ2H(Φ)− ω2
n(λ,Φ)M]un(Φ) = 0. (6)

In Eq. (6) the reader can find the standard mass and stiffness matrix, M and155

K respectively, a skew-symmetric matrix L and a symmetric semi-definite156
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positive matrix H:157

158

K =

∫
Ωr

εn(x)C(x)ε̃n(x)∂Ω,

M =

∫
Ωr

ρ(x)un(x)ũn(x)∂Ω,

L =

∫
Ωr

(−κ̃n(x)C(x)εn(x) + ε̃n(x)C(x)κn(x))∂Ω,

H =

∫
Ωr

κ̃n(x)C(x)κn(x)∂Ω.

(7)

where λ = ik = i(kr + iki), εn(x) is the strain tensor and κn = 1/2(un⊗Φ+159

(un⊗Φ)T ) is the symmetric dyadic product of the displacement un(x) and the160

direction vector Φ. By solving Eq. (6) with given real wavenumbers λ = ikr161

along the direction Φ, a linear eigenvalue problem with ω2
n as unknown is162

obtained, namely a ω(kr) EVP, whose solutions are sought within the unit163

cell IBZ. In addition, Eq.(6) can be formulated as:164

[(K− ω2M) + λn(ω,Φ)L(Φ)− λ2
n(ω,Φ)H(Φ)]un(Φ) = 0 (8)

where λn and the associated eigenvectors un are computed for given real fre-165

quency ω. Such an approach, namely a k(ω) EVP, allows the calculation of166

complex band structures (kr,n(ω) and ki,n(ω)) along the generic wave direc-167

tion. We remind that the quadratic EVP is solved via linearization, yielding168

a solving system of dimensions (2n× 2n).169

As discussed in the introduction, ROM techniques for BOFEM are currently170

limited to the calculation of the real band structures (Hussein, 2009), mak-171

ing the methodology less appealing for large computational problems and for172

parametric design of phononic materials and metamaterials. Hence, in the173

next section we introduce and discuss a model reduction methodology for174
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complex band structures calculation via BOFEM.175

3. Proposed reduction strategy176

The fundamental steps of the proposed ROM procedure are presented in177

Fig. 2 and summarized below:178

1. identification of unit cell IBZ and definition of a set of wave directions;179

2. calculation of cut-on and termination frequencies at each wave direction180

using Eq. (6);181

3. extraction of eigenvalues λn at the cut-on and termination frequen-182

cies using Eq. (8) and selection of propagative and (least) evanescent183

solutions for the wave basis;184

4. construction of a projection matrix from single-direction and multiple185

directions wave basis using the Singular Value Decomposition;186

5. solution of the reduced k(ω) EVP for complex band structures ex-187

traction and directivity analysis of linear elastic and damped periodic188

media.189

In what follows, we describe in details all the steps of the proposed reduc-190

tion. The procedure is presented for a bi-periodic material but can be easily191

translated to the 3D periodic case.192

3.1. Identification of unit cell IBZ and definition of a set of wave directions193

Let us consider a bi-periodic unit cell, with a rectangular Bravais lattice194

of dimensions ax × ay (Fig. 3). We start by identifying the unit cell FBZ,195

i.e, the domain Ωg = [−π/ax : π/ax,−π/ay : π/ay] defined in the recip-196

rocal lattice space. Solutions with real wavenumbers outside the FBZ are197
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discarded both in the wave-basis extraction procedure (step 3) and in the198

reduced band structure calculation (step 5). Similarly, the range of possible199

wave directions required to investigate the dynamics and directivity of the200

medium are bounded by dimensions of the IBZ. In this regard, care should be201

taken when unit cells with low order symmetries are studied (Maurin et al.,202

2018), since their IBZ can significantly change with respect to that of high203

symmetric unit cells (see Fig. 3b for a comparison between a high and a low204

symmetry unit cell IBZ). Once the IBZ is identified, a set of wave directions:205

Φj =


cos θj

sin θj

0

 , θj = θ1, ..., θd (9)

is selected to construct the wave basis (further details are given in Sect. 3.4).206

3.2. Calculation of cut-on and termination frequencies207

Cut-on frequencies, i.e. angular frequencies ωc,n calculated for kr = 0, are208

interesting points in the dynamics of a waveguide, since they mark the pro-209

gressive appearance of higher modes supported by the medium (Droz et al.,210

2014). Similar arguments apply to the termination frequencies, namely angu-211

lar frequencies ωt,n at kr = kr,max along Φj, since they can identify the cut-off212

of wave modes and the edges of frequency band gaps in the band structures213

of phononic crystals and metamaterials. Hence, a sampling strategy of the214

wave basis at these locations allows to capture all the relevant changes in the215

wave shapes and in the frequency spectrum of the waveguide.216

Cut-on frequencies are independent from the wave propagation direction,217

and are calculated once during the model reduction procedure. For the cal-218
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culation of cut-on frequencies ωc,n(λ = 0), the EVP in Eq. (6) simplifies219

as:220

[K− ω2
c,nM]un = 0 (10)

Conversely, termination frequencies are calculated from Eq. (6) and consid-221

ering a value of the real wavenumber lying the edge of the IBZ along the222

wave direction Φj (λmax
j

= ikmaxr,j ):223

[K + λmaxj L(Φj)− (λmaxj )2H(Φj)− ω2
t,n(λmax

j
,Φj)M]un(Φj) = 0. (11)

As a result, for each direction Φj, a set of sampling frequencies Ωs,j =224

[ω1,j, ..., ωs,j], collecting cut-on and termination frequencies up to the max-225

imum frequency of interest, is assembled. We remind that when dissipa-226

tion is accounted in the material, complex frequencies ω∗ = ωr + iωi are227

found. Nonetheless, minor changes in the frequency spectrum are intro-228

duced by moderate values of material damping (Moiseyenko and Laude, 2011;229

Krushynska et al., 2016). Hence, in the proposed procedure, only the real230

parts of the sampled frequencies ωr are stored and later used as input for the231

definition of the reduced basis.232

233
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3.3. Extraction of Floquet-Bloch eigenvectors at the sampling frequency set234

Once the frequency subset Ωs,j is defined, the wave basis Ψ = [ψn,1, ...,ψn,s]235

for the direction Φj is constructed by solving s EVPs :236 

[(K− ω2
1,jM) + λn,1(ω1,j,Φj)L(Φj)− λ2

n,1(ω1,j,Φj)H(Φj)]ψn,1(Φj) = 0

[(K− ω2
2,jM) + λn,2(ω2,j,Φj)L(Φj)− λ2

n,2(ω2,j,Φj)H(Φj)]ψn,2(Φj) = 0

...

[(K− ω2
s,jM) + λn,s(ωs,j,Φj)L(Φj)− λ2

n,s(ωs,j,Φj)H(Φj)]ψn,s(Φj) = 0

(12)

As suggested in Ref. (Droz et al., 2014), from the full set of eigensolutions237

λn,s and related eigenmodes ψn,s, we select only l positive-going waves (i.e.,238

l << n× s), with a desired amplitude attenuation:239

ψn,s(Φj) ∈ Ψ(Φj) if

0 ≤ <(kn,s) ≤ kmaxr,j

|=(kn,s)| < αkmaxr,j

(13)

Large values of the parameter α yield a large number of complex and evanes-240

cent modes retained in the wave-basis, for an accurate calculation of the241

amplitude decay in the band gap. In our study, we adopt a parameter α = 1242

to select evanescent and complex modes with an amplitude decay per unit243

cell length Lj along the direction Φj equal to Ad,j = ek
max
r,j Lj .244

Following the suggestions in Ref. (Droz et al., 2014), the numerical stability245

of the reduction procedure is improved by forming a doubled size (i.e., 2× l)246

wave basis composed by the real and imaginary components of the selected247

complex eigenmodes as:248

Ψ(Φj)
∗ = [<(Ψ(Φj)) =(Ψ(Φj))]. (14)

13



Finally, r rigid modes ψr,0, extracted from the EVP (ω = 0):249

[K + λn,0L(Φj)− λ2
n,0H(Φj)]ψn,0(Φj) = 0 (15)

are added to the basis to correctly capture the quasi-static and low frequency250

behavior of the waveguide. As a result a collection of (m = 2× l+ r) vectors251

is retained to form the wave basis Φj.252

3.4. Construction of a projection matrix from single-direction and multiple-253

direction wave basis254

3.4.1. Single-direction EVP reduction255

Following the approach in Ref. (Boukadia et al., 2018), we perform a256

Singular Value Decomposition of the (n×m) wave-basis Ψ(Φj)
∗. The SVD is257

performed to further reduce the possibility of numerical instabilities induced258

by the presence of redundant vectors in Ψ(Φj)
∗. The SVD leads to the259

identification of three matrices:260

Ψ(Φj)
∗ = UTΣV (16)

In Eq. (16), U is an (n × n) complex unitary matrix, Σ is an (m × n)261

rectangular diagonal matrix with non-negative real numbers on the diagonal,262

and V is an (m×m) complex unitary matrix. The diagonal entries σi of Σ263

are the singular values of Ψ(Φj)
∗. The columns of the matrices U and V264

are the left-singular vectors and right-singular vectors of the matrix Ψ(Φj)
∗,265

respectively.266

The projection matrix P(Φj) is thus formed by collecting p left-singular267

vectors, (e.g, p columns of the matrix U) corresponding to the p largest268
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non-null diagonal entries of the matrix Σ, i.e., the largest singular values of269

P(Φj). The truncation criterion on the largest singular values is given as:270 ∑p
i=1 σi∑m
j=1 σj

= 1− β (17)

where β can be chosen according to the accuracy and computational cost271

reduction desired. As a result, an (n × p) projection matrix P(Φj) is built.272

A reduced EVP defined along the direction Φj, for the frequency ω, and273

projected on a basis of left-singular vectors P(Φj) is obtained as:274

[(K̂− ω2M̂) + λn(ω,Φj)L̂(Φj)− λ2
n(ω,Φj)Ĥ(Φj)]ψ̂n(Φj) = 0 (18)

where:275

K̂ = PT(Φj)KP(Φj)

M̂ = PT(Φj)MP(Φj)

L̂ = PT(Φj)LP(Φj)

Ĥ = PT(Φj)HP(Φj)

(19)

are reduced (p × p) matrices. In what follows, we refer to the projection276

matrix P(Φj) as a single-direction (SD) projection matrix, since it is built277

utilizing a wave-basis collinear with the direction of the EVP.278

3.4.2. Multi-direction EVP reduction279

As discussed in Sect. 2, the BOFEM allows evaluating the band struc-280

ture of a periodic medium along any wave direction without increasing the281

complexity of the EVP formulation. For this reason, the method is partic-282

ularly suitable to analyse the directivity of a periodic medium, to identify283

directional band gaps within the IBZ and to quantify material absorption284

along specific directions when damping is taken into account.285
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When the full IBZ is investigated along j wave directions, the SD reduction286

requires the construction of j wave-basis and projection matrices. A fur-287

ther improvement on the reduction procedure computational savings can be288

achieved by projecting the EVP along a reduced set of non-collinear wave-289

basis. In more details, for a bi-periodic waveguide whose IBZ spans the290

wave direction range Θ = [θ0− θend], we build the projection matrices P(Φd)291

along a reduced set of directions Θd = [θ0, ..., θd, ..., θend], following for each292

direction θd the procedure described in Sect. 3.4.1. Then, each EVP along293

a generic direction θj ∈ [θd, θd+1] is reduced by employing a unique multi-294

direction (MD) projection matrix:295

P(Φd,d+1) = [P(Φd) P(Φd+1)] (20)

where P(Φd,d+1) concatenates pd+pd+1 left-singular vectors, selected respec-296

tively along the directions θd and θd+1.297

As a result, when the band structures are evaluated along j wave directions298

within the IBZ, only d << j projection matrices are constructed. Accu-299

racy and computational savings of the presented single-direction and multi-300

direction reduction strategies are discussed in the following section.301

4. Case study302

The performance of the proposed reduction schemes is evaluated by calcu-303

lating the complex band structures of the bi-periodic waveguide shown in Fig.304

4a. This stubbed plate, originally proposed by Wu et al. (Wu et al., 2009,305

2008), has been later employed to discuss the BOFEM (Collet et al., 2011)306

and the EBMS reduction for the WFEM approach (Palermo and Marzani,307
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2016). The waveguide consists of an aluminum plate of thickness t=1 mm308

decorated with cylindrical stubs of height hs=5 mm and radius rs=3.5 mm,309

placed over the plate surface to form a square array of lattice constant a= 10310

mm. The material is assumed to be isotropic with density ρ=2700 kg/m3,311

Young’s modulus E=69 GPa and Poisson’s ratio ν=0.33. The unit cell FBZ312

is shown in Fig. 4b, with the related IBZ highlighted in blue. The BOFEM313

is implemented in Comsol Multiphysics, while the reduction procedure is314

developed via Matlab routines.315

4.1. Undamped Plate316

The complex band structures of an undamped linear elastic stubbed plate317

are here presented to discuss the accuracy of the proposed SD and MD re-318

ductions. As in Ref. (Collet et al., 2011), computations are carried for 201319

frequencies between 0 and 200 kHz (i.e., a frequency point for each kHz). The320

plate unit cell is discretized using Lagrange tetrahedral quadratic elements321

for a mesh of 13581 degrees of freedom (see Fig. 4c), adequate to accurately322

capture the dynamics of the unit cell within the frequency range of interest.323

Before analyzing the accuracy of the reduction procedure, we quickly review324

the dynamics of the periodic plate, according to the results provided by the325

BOFEM (Collet et al., 2011) (black circles in Fig. 5 a,b). First, we evalu-326

ate the complex band structure along the generic wave direction θj = π/10.327

The band structure presents three band gaps BGi, i=1,2,3, highlighted in328

light blue in Fig. 5. The band gap BG1 spans the frequency range be-329

tween 40 − 50 kHz, the BG2 the frequencies between 110 − 116 kHz, the330

BG3 between 150 − 182 kHz. All the BGs arise from the coupling between331

the plate dynamics and the stubs resonances. As regards to the adopted332
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computational model, the propagative modes extracted with the k(ω) EVP333

in Eq.(8) fully agree with the real band structure (continuous gray lines in334

Fig. 5a) calculated by means of the ω(k) approach of Eq.(6). Together with335

propagative solutions, the k(ω) EVP provides also evanescent and complex336

modes, which are displayed in Fig. 5b, for a maximum value of the imagi-337

nary wavenumber ki = kr,max = 330.32 rad/m. The evanescent and complex338

modes define the dynamics of the periodic medium within the BGs as well339

as the near field solutions which arise at the interfaces or boundaries of a340

finite size periodic media. Given the multitude of evanescent and complex341

solutions found within the range ki = kr,max, a compact representation of342

the wave amplitude decay of a periodic medium can be given by utilizing the343

minimal evanescent index Eind(ω) (Collet et al., 2011):344

Eind(ω) = min
n

ki,n

ki,n
2 + kr,n

2 (21)

which measures the minimal amplitude attenuation across the frequency345

spectrum of interest. As expected, for an undamped plate, non-null val-346

ues of Eind(ω) are found only within the BGs (see Fig. 5c).347

Let us now discuss the accuracy and the computational time reduction of348

the proposed SD and MD ROM techniques. For the SD reduction, a sub-349

set of cut-on and termination frequencies is selected along the direction of350

computation θ = π/10 up to the maximum frequency of interest fmax = 200351

kHz. Then, Bloch eigenmodes are extracted according to Eq. (12). Follow-352

ing the procedure in section 3.3, we select propagative and least decaying353

modes (α = 1 in Eq.(13)) at cut-on and termination frequencies < fmax. We354

then post-process these Bloch modes with the SVD, and select the related355

left-singular vectors according the truncation criterion in Eq. (17), setting a356
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β = 10−6. The procedure results in a SD projection matrix composed by 89357

left-singular vectors.358

For the MD reduction, the same procedure is performed twice (utilizing the359

same β = 10−6 ), along the direction θ1 = 0, θ2 = π/8, respectively, leading360

to a MD projection matrix of 158 left-singular vectors (note that the direc-361

tions where the projection matrices are built do not include the direction362

of computation θ = π/10). The matrices are then used to reduce the EVP363

and replicate the complex band structure of the full model. As for the full364

model, the band structure is presented separately for propagative (Fig. 5a)365

and for evanescent and complex solutions (Fig. 5b). Fig. 5a presents very366

good visual agreement between the full and reduced SD (blue “x” mark-367

ers) and MD (red “+” markers) real band structures. A similar qualitative368

agreement is observed in the prediction of complex and evanescent solutions369

(Fig. 5b) and in the related Eind(ω) (Fig. 5c). We perform a quantitative370

analysis on the accuracy of the model reduction across the frequency range371

of interest by calculating the maximum discrepancy in the prediction of the372

real wavenumber components:373

ekr(ω) = max
n

∣∣∣∣∣kFullr,n (ω)− kRedr,n (ω)

kFullr,n (ω)

∣∣∣∣∣ (22)

where kFullr,n (ω) and kRedr,n (ω) are the real part of the n wavenumbers calculated374

using the full and reduced (either SD or MD) models, respectively. Similarly,375

we evaluate the maximum discrepancy in the minimal evanescence index376

calculation:377

eEInd
(ω) =

∣∣∣∣∣Efull
Ind (ω)− ERed

Ind (ω)

Efull
Ind (ω)

∣∣∣∣∣ (23)
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The two error indices, Eqs. (22)-(23), are shown in Fig. 6a and 6b, respec-378

tively. Inspection of Fig. 6a highlights that the maximum discrepancy ekr379

in the frequency ranges far from the BGs edges is generally below 10−4 for380

the SD reduction and below 10−2 for the MD reduction, respectively. Peak381

of discrepancies are found at the edges of the BGs where flat branches exist.382

This occurs because the ROM techniques lead to “stiffer” numerical mod-383

els which over-predict the vibration frequencies of the unit cell. Such small384

shift in the frequency prediction determines a large shift in the wavenum-385

ber calculation when flat branches are predicted. Indeed, the same peak386

discrepancies are observed in WFEM-based ROM techniques (Palermo and387

Marzani, 2016; Krattiger and Hussein, 2018). As expected, the SD reduction388

presents a higher accuracy with respect to the MD thanks to the use of a389

collinear wave-basis. Nonetheless, the accuracy of the MD reduction can be390

still considered adequate for analysis and design purposes. In this regards,391

the reader can refer to the average values of the discrepancy calculated within392

the whole frequency range of interest and collected in Table 1. Similar trends393

are found for Eind, provided only within the BGs, where the index assumes394

non-null values.395

As regards to the computational cost of the reduction procedures, Table 1396

compares the total time required for the band structures calculation with the397

full and reduced models, as well as the computational times of each step of398

the reductions. The calculations are performed on a machine equipped with399

a Intel i76600U CPU @ 2.6 GHz with a RAM of 16 GB. The computational400

time of the full model solution tfull ≈ 40 min, needed to solve the 201 full401

EVPs, drops to tSD ≈ 4 min and tMD ≈ 7 min for the SD and MD reduc-402
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tion, namely, the 10.1% and 16.7% of the full model computational time.403

The largest part of the ROM computational effort is spent for the wave-basis404

extraction, which accounts approximately for 67% of total time for both the405

reductions. As a result, the SD reduction shows better performances than406

the MD one.407

Conversely, when the user is interested in calculating the band structures408

along several directions of the IBZ, the MD reduction becomes a power-409

ful tool to further enhance the computational savings. As a proof, we410

compare accuracy and computational time gains of SD and MD reductions411

through the whole IBZ by calculating the band structure along 11 directions412

θj = [0 : π/40 : π/4]. As required by the methods, 11 collinear wave-basis413

are built for the SD reduction, while only 3 wave-basis at θd = [0 : π/8 : π/4]414

are constructed for the MD reduction.415

Values of the minimal evanescence index EInd calculated using the SD and416

MD reductions are provided in the polar plots of Fig.7a and Fig.7b. We417

remark that evanescence index polar plots allow for an intuitive visualization418

of the directional wave attenuation properties of a periodic material. For419

example, one can quickly evaluate how the frequency width of the BGs de-420

pends on the chosen wave direction. In our case study, the second gap is a421

directional gap which disappears along specific directions within the IBZ.422

Although useful, the construction of a polar plot within the whole IBZ can423

require a prohibitive computational time, especially when large models are424

analyzed or topology optimization are performed. For example, the polar425

plot calculated by means of the full (BOFEM) model would require > 7.0426

hours (estimated from the single-direction calculation). This computational427
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time is drastically reduced, up to 10% of the full computational time, when428

the MD reduction is employed. In this example, the MD procedure allows a429

further computational time reduction of 67% with respect to the SD compu-430

tational time (see data in Table 2). Together with the computational time431

gains, we also evaluate the relative errors between the SD and MD reductions432

by calculating the indices:433

ekr,rel(ω) = max
n

∣∣∣∣∣kSDr,n (ω)− kMD
r,n (ω)

kSDr,n (ω)

∣∣∣∣∣ (24)

eEInd,rel
(ω) =

∣∣∣∣ESD
Ind(ω)− EMD

Ind (ω)

ESD
Ind(ω)

∣∣∣∣ (25)

The values of the relative error ekr,rel(ω) as calculated within the whole IBZ434

considering the 11 directions θ = [0 : π/40 : π/4] and along the single generic435

direction θj = π/10, are reported in Fig. 8a and b, respectively. The relative436

error ekr,rel(ω) is generally well below 10−2 within the whole IBZ. As expected,437

its value significantly drops (≈ 10−5) along the direction θd = d×π/8, where438

the MD projection matrices are built. In this regard, one can refer to the439

average values of ekr,rel(ω) calculated within the IBZ and along two specific440

directions θj = π/10, θj = π/4, collected in Table 2. Similar trends are found441

for eEInd,rel
(ω) (see Table 2). Indeed, visual comparison between the evanes-442

cence index plots of Figs. 7a,b confirms that no significant discrepancy can443

be appreciated between the predictions provided by the two reductions.444

445

4.2. Damped Plate446

We evaluate the complex band structures of a damped aluminum stubbed447

plated to further discuss the accuracy and computational time saving of the448
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proposed ROM techniques. To this aim, a frequency independent (hysteretic)449

viscoelastic material model is assumed by means of a complex Young’s modu-450

lus E∗ = E(1+iη) and a complex Poisson ratio ν∗ = ν(1+iη), with η = 0.05.451

The complex band structures are calculated again for 201 frequencies within452

the range 0-200 kHz along the direction θj = π/10, employing the same453

mesh discretization of the previous example. First, some characteristics of a454

damped complex band structures are reviewed by discussing the results pro-455

vided by the full model (black circles in Fig. 9). For a damped waveguide the456

distinction between purely propagative waves and evanescent/complex solu-457

tions vanishes since material dissipation yields a non-null attenuation across458

the whole frequency range (Figs. 9b,c). Hence, for the sake of clarity, Fig.459

9a displays only the least decaying wave solutions with an evanescence index460

EInd < 0.2. As observed in literature for other damped waveguides (Moi-461

seyenko and Laude, 2011), the introduction of material dissipation has major462

effects only on flat branches which disappear from the kr vs. ω dispersion463

relation due to their high values of attenuation. The other branches of the464

band structure resemble the linear elastic ones (grey lines) across the whole465

frequency range of interest. Features typical of damped periodic waveguides466

are observed within the BG region where propagative branches are connected467

by “S-shaped” complex solutions.468

Let us now discuss the accuracy and computational time saving achieved by469

the proposed ROM techniques. As for the linear elastic case, the SD and470

MD projection matrices are built following the procedure detailed in sect.471

3. As a result, a projection matrix P(Φj) of 103 left-singular vectors along472

the direction θj = π/10 and a projection matrix P(Φ0,1) of 208 left-singular473
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vectors along the directions θ0 = 0 and θ1 = π/8 are built, assuming a value474

of β = 10−6 in the truncation criterion of Eq. (17). Again, excellent vi-475

sual agreement between the prediction of the full and reduced models for476

both real and imaginary wavenumber components is found (see Figs. 9a,b).477

The same agreement characterizes the minimal evanescence index, plotted478

in Fig. 9c. An in depth quantitative analysis on the accuracy of the model479

reductions is performed employing the errors in Eqs.(22) and (23). Results480

for the error index in the real wavenumber prediction are displayed in Fig.481

10a. Interestingly, slightly higher accuracy is found for the damped waveg-482

uide which shows values of ekr generally below 10−6 and below 10−3 for the483

SD and MD reduction, respectively. We remark that the error index ekr is484

calculated for a selection of least-decaying solutions with EInd < 0.2. As a485

result, flat branches characterized by large values of attenuation and prone486

to higher values of discrepancy are neglected, explaining the observed higher487

accuracy.488

As observed for the linear elastic case, the SD reduction outperforms the489

MD reduction in terms of accuracy, nonetheless the MD predictions are still490

adequately accurate for analysis and design purposes. This observation is491

confirmed by the values of eEInd
calculated along the direction θ = π/10,492

which is now provided for the full range of frequencies 0-200 kHz (Fig. 10b).493

As regards to the computational time saving along θ = π/10, the SD reduc-494

tion requires 6% of the full computational time, while the MD reduction the495

16.7%.496

Finally, polar plots of the evanescence index as calculated using the SD497

and MD reduction are shown in Fig. 11a,b respectively, to summarize the498
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complex band structures calculation along the 11 directions θ = [0 : π/40 :499

π/4] within the IBZ. The polar plots highlight the effect of damping on the500

BG directionality, which is blurred by the intrinsic material dissipation. Fo-501

cusing on the reduction accuracy, no visual disagreement is noticed between502

SD and MD predictions. This is quantitatively confirmed by the values of the503

relative error eEInd,rel
calculated along the same directions θ = [0 : π/40 : π/4]504

and reported in Fig. 12a. The values of eEInd,rel
are bounded below 10−2

505

within the whole IBZ with an average value ≈ 10−4 (see Table 3). As506

expected, the accuracy of the MD reduction increases along the direction507

θd = d× π/8, where the vectors are extracted. In this regards, one can com-508

pare the average values of eEInd,rel
and eEkr,rel

calculated along the directions509

θj = 0 and θj = π/4 and collected in Table 3. The lower accuracy of the510

MD reduction is fully justified by its superior computational time savings (≈511

58% with respect to the SD reduction) when the full IBZ is investigated (see512

Table 3).513

5. Discussion514

As remarked in Sect. 3, the proposed ROM technique exploits some515

numerical procedures, like sampling the cut-on and termination frequencies516

(Droz et al., 2014) and post-processing the Bloch modes via SVD (Boukadia517

et al., 2018), recently employed to reduce the computational effort of the518

WFEM. Indeed, WFEM-based ROM techniques can provide equally accurate519

complex band structures with time computational gains even larger than520

those observed in the proposed reduced BOFEM (Krattiger and Hussein,521

2018; Boukadia et al., 2018).522
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However, the intrinsic performance of the WFEM approach largely depends523

on the direction where the complex band structure are sought. This occurs524

because the form of the EVP obtained by means of the WFEM changes in525

relation to the direction of wave propagation.526

For sake of clarity, we here recall the general form of a WFEM EVP built527

along the direction θ = tan−1 ky
kx

for a generic 2D periodic material, as the528

one in Fig. 3a. According to the WFEM approach, once the two propagation529

constants µx = kxax and µy = kyay are identified, the form of the WFEM530

EVP depends on the ratio r = µy
µx

.531

When r is a rational number, we can set µx = bm1, and µy = bm2 (being532

b a constant), with m1 and m2 being integers with no common divisors. The533

EVP along the direction θ can thus be written as a polynomial of order534

M = 2(m1 +m2) (Mace and Manconi, 2008):535 [
j=M∑
j=0

Ajγ
j

]
U = 0 (26)

where Aj are dynamic matrices of dimensions (n× n), U is a vector (n× 1)536

of free displacements and γ = eib. Solutions γ = eib of the EVP in Eq. (26)537

are found by linearization, leading to the system of equations:538 


A0

I

. . .

I

− γ

−A1 . . . −AM−1 −AM

I

. . .

I 0






U

γU
...

γM−1U

 = 0

(27)

The linearized EVP in Eq. (27) has dimensions 2nM × 2nM , i.e., M times539

larger than the linearized version of the BOFEM EVP in Eq. (8).540
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Conversely, when r is irrational, a nonlinear transcendental EVP is found.541

Such nonlinear EVP can be solved via root finding algorithms (e.g., the542

Newtons eigenvalue iteration method (Singh and Ram, 2002)). Nonetheless,543

iterative methods for large matrices are not only very time consuming, but544

require also a good initial guess to ensure convergence (Krattiger and Hus-545

sein, 2018).546

Considering the numerical example in Sect. 4, Eq. (27) yields a (2n × 2n)547

system along the direction θ = 0, a (4n × 4n) system, i.e., m1 + m2 = 2,548

along the direction θ = π/4 and a (22n × 22n) system, along the direction549

θ = tan−1(1/10), where the rational r = m2

m1
= 1

10
is chosen to approx-550

imate the direction θ = π/40 investigated with the BOFEM. Finally, we551

remind that computational algorithm utilized to solve EVPs can have differ-552

ent leading-order complexity, e.g, O(N), O(N2), O(N3), with N ×N being553

the dimensions the system, depending both on the type of solver (iterative or554

direct) and on the type of matrices (sparse or full) which characterized the555

system. Hence, a change in the system dimensions can significantly impact556

the computational effort required to solve the EVP.557

These arguments suggest that the WFEM, and the related reduced versions,558

are the most suitable approaches when complex band structures along the559

IBZ boundaries are of interest. Conversely, the BOFEM approach, and the560

proposed ROM technique, may be preferred when one or multiple generic561

directions within the IBZ are investigated.562

In this regards, we remark that although it is common practice to evalu-563

ate the band structures of complex materials simply along the boundaries of564

the IBZ, it is well demonstrated that this approach often do not suffice to565
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correctly locate band structure extrema (Harrison et al., 2007; Farzbod and566

Leamy, 2011). This is particularly true when low symmetry unit cells are567

investigated (Maurin et al., 2018). Such geometries, can easily result from568

topology optimization schemes designed to enlarge the BG width. Within569

this latter context, the presented reduction techniques can be fully exploited570

to reduce the burden of the computational cost preserving all the information571

coming from the full IBZ investigation.572

573

6. Conclusions574

In this work, a ROM technique able to accelerate the calculation of com-575

plex band structures along a generic direction within the unit cell IBZ has576

been presented and validated. The reduction employs a projection matrix577

which gathers a reduced set of left-singular vectors. These vectors are ob-578

tained from the SVD of a collection of propagative and evanescent Bloch579

modes. The Bloch modes are sampled at multiple cut-on and termination580

frequencies selected along purposely defined wave directions. In particular,581

when the basis direction coincides with that of the EVP formulation, a single-582

direction (SD) reduced model is obtained. Conversely, when two (or more)583

directions are chosen to collect the Bloch modes and form the wave-basis, a584

multi-direction (MD) reduced model is built.585

The implementation of the method (in both its SD and MD versions) has586

been detailed for a generic 3D bi-periodic cell and validated via numeri-587

cal examples discussing the dynamics of a periodic stubbed plate. Results588

demonstrate that the SD reduction provides accurate complex band struc-589
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tures with a computational time gain of one order of magnitude with respect590

to the standard BOFEM approach. Additionally, when MD reduced mod-591

els are built, the computational time required to investigate the full IBZ is592

further reduced (up to < 5% of the full model computational time), still593

ensuring adequate accuracy for design and analysis purposes. Overall, the594

methodology appears suitable to reduce the computational effort required to595

assess the directional dispersive properties of complex periodic media.596
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Table 1: Computational time and accuracy of SD and MD reductions for complex band

structures calculation along θ = π/10 - Linear elastic stubbed plate. The SD reduction is

performed utilizing a wave basis constructed along the direction θd = π/10, while the MD

reduction combines two wave basis extracted along θd = [0, π/8]. The computational times

required for each step of the reductions and for the EVP solution are provided together

with the average values of the error indices ekr
, eEInd

.
Computational Time Error

N. dofs ωc and ωt Freq. Extr. Basis Construction EVP solution Total Ave. ekr Ave. eEInd

Full model 13581 - - 12.1x201= 2432 s ≈ 40 min - -

2432 s

SD Red. 89 24 s 164 s 0.29x201= 246 s ≈ 4 min 0.00075 % 0.0045 %

θd = [π/10] 58 s

MD Red. 158 42 s 273 s 0.46x201= 407 s ≈ 7 min 0.016 % 0.044 %

θd = [0, π/8] 92 s

600
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Table 2: Relative computational time saving and accuracy of SD and MD reductions for

complex band structures calculation within the IBZ at θj = [0 : π/40 : π/4] - Linear

elastic stubbed plate. For the SD reduction 11 wave basis are constructed, one per each

direction θj . For the MD reduction only 3 wave basis are extracted to form two projection

matrices, one along θd = [0, π/8] for all 0 ≤ θj < π/8, and one along θd = [π/8, π/4] for

all π/8 ≤ θj ≤ π/4. The computational times required for the EVP solution along the

directions θj are provided together with the average values of the relative error indices

ekr,rel, eEInd,rel
.

Computational Time Reduction Relative Error

Ave. ekr,Rel Ave. eEInd,Rel

MD vs. SD Red. 67% tSDRed. (10% tfull) 0.088 % within the whole IBZ 0.197 % within the whole IBZ

0.351 % for θ = π/10 0.349 % for θ = π/10

0.0037 % for θ = π/4 0.001 % for θ = π/4

Table 3: Relative computational time saving and accuracy of SD and MD reductions for

complex band structures calculation within the IBZ at θj = [0 : π/40 : π/4] - Damped

elastic stubbed plate. For the SD reduction 11 wave basis are constructed, one per each

direction θj . For the MD reduction only 3 wave basis are extracted to form two projection

matrices, one along θd = [0, π/8] for all 0 ≤ θj < π/8, and one along θd = [π/8, π/4] for

all π/8 ≤ θj ≤ π/4. The computational times required for the EVP solution along the

directions θj are provided together with the average values of the relative error indices

ekr,rel, eEInd,rel
.

Computational Time Reduction Relative Error

Ave. ekr,Rel Ave. eEInd,Rel

MD vs. SD Red. 58% tSDRed. (3.5% tfull) 0.006 % within the whole IBZ 0.032 % within the whole IBZ

0.004 % for θ = π/10 0.055 % for θ = π/10

0.00029 % for θ = π/4 0.00013 % for θ = π/4
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Figure 1: (a) Generic 3D periodic medium. (b) Unit Cell geometry. (c) Reciprocal lattice

space.
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Figure 2: Schematic of the proposed ROM technique.

Figure 3: (a) High order (group symmetry p4mm (Cracknell, 1974)) and low order (group

symmetry p1m1 (Cracknell, 1974)) bi-periodic unit cells and related First Brillouin Zones.

Irreducible Brillouin Zones are highlighted in grey. Red arrows denote possible wave

directions within the IBZ.
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Figure 4: (a) Stubbed plate unit cell geometry. (b) Stubbed plate FBZ and IBZ. (b)

Stubbed plate unit cell mesh.
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Figure 5: Linear elastic stubbed plate - Complex band structure along the direction θ =

π/10: (a) Propagative modes (kr vs. freq.) and (b) Evanescent modes (ki vs. freq.). (c)

Minimal Evanescence Index (EInd vs. freq.).
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(a) (b)

Figure 6: Linear elastic stubbed plate - Error analysis along the direction θ = π/10: (a)

Error ekr vs. freq. (b) Error eEInd
vs. freq.
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(a)

(b)

Figure 7: Linear elastic stubbed plate - Polar plot of the minimal evanescence index EInd

calculated within the IBZ along the directions θ = [0 : π/40 : π/4]. (a) SD reduction. (b)

MD reduction.
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Figure 8: Linear elastic stubbed plate - Relative error analysis between SD and MD

reductions. (a) Polar plot of the relative error ekr,rel vs. freq. (calculated within the IBZ

along the directions θ = [0 : π/40 : π/4]). (b) Details of the relative error ekr,rel vs. freq.

along the direction θ = π/10.
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Figure 9: Damped elastic stubbed plate - Complex band structure along the direction

θ = π/10: (a) Least decaying modes (kr vs. freq.). (b) Evanescent modes (ki vs. freq.).

(c) Minimal Evanescence Index (EInd vs. freq.).
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(a) (b)

Figure 10: Damped elastic stubbed plate - Error analysis along the direction θ = π/10:

(a) Error ekr
vs. freq. (b) Error eEInd

vs. freq.
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(a)

(b)

Figure 11: Damped elastic stubbed plate - Polar plot of the minimal evanescence index

EInd calculated within the IBZ along the directions θ = [0 : π/40 : π/4]. (a) SD reduction.

(b) MD reduction.

45



(a)
10o

(b)

base-10 log scale

Figure 12: Damped elastic stubbed plate - Relative error analysis between SD and MD

reductions. (a) Polar plot of the relative error eInd,rel vs. freq. (calculated within the IBZ

along the directions θ = [0 : π/40 : π/4]). (b) Details of the relative error eInd,rel vs. freq.

along the direction θ = π/10.
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