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Abstract

Thein vitro effect of aYucca schidigera extract and tannins from chestnut wood on
composition and metabolic activity of canine andinfe faecal microbiota was
evaluated. Four treatments were carried out: cbuliei (Group CTRL), chestnut
tannins (Group CT). schidigera extract (Group YSE) and Group CT+YSE. The YSE
was added to canine and feline faecal cultureslag while CT were added at 0.3
g/l for a 24 h incubation. A total of 130 volattempounds were detected by means
of HS-SPME-GC/MS analyses. Several changes in tletabolite profiles of
fermentation fluids were found including a decreafsalcohols (- 19%) and esters (-

42%) in feline and canine inoculum, respectivelye tb the antibacterial properties of
3



75 tannins. In canine inoculum, after 6 h, Group YSE+€sulted in lower cadaverine
76 concentrations (- 37%), while ammonia (- 4%) anahgne (- 27%) were reduced
77 by Group CT. After 24 h, the presence of CT resuite a decrease of sulphur
78 compounds, such as dimethyl sulphide (- 69%) antethiyl disulphide (- 20%). In

79 feline faecal cultures, after 6 h, Group CT lowetkd amount of indole (- 48%),

80 whereas Group YSE tended to decrease trimethylalewmets (- 16%). Both in canine

81 and feline inoculum, Group CT and, to a minor ekt&roup YSE affected volatile
82 fatty acids patterns. In canine faecal culturesnitas exerted an inhibitory effect on
83 E. coli population (- 0.45 log10 numbers of DNA copies/mihile enterococci were

84 increased (+ 2.06 log10 numbers of DNA copies/milizooup YSE. The results from

85 the present study show thatschidigera extract and tannins from chestnut wood exert
86 different effects on the composition and metabolisincanine and feline faecal
87 microbiota. In particular, the supplementatiornyo$chidigera and tannins to diets for
88 dogs and cats may be beneficial due to the reduofisome potentially toxic volatile
89 metabolites.

90

91 Keywords: dogs; cats; intestinal microorganisnysicca schidigera; tannins; volatile

92 compounds.

93

94 Abbreviations: ADF, acid detergent fibre; ADL, acid detergentlig CT, tannins
95 from chestnut wood; DM, dry matter; FOS, fructogokaccharides; GC/MS, gas

96 chromatography—mass spectrometry; NDF, neutralrgete fibre; PCA, principal

97 components analysis; HS-SPME, headspace solid-ph@smextraction; VFA,
98 volatile fatty acids; VOCs, volatile organic compaolg; YSE, Yucca schidigera
99 extract.
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1. Introduction

The canine and feline gastrointestinal tract isabited by a variety of complex
microbial communities that play a fundamental ialenaintaining the nutritional and
health status of the host. Diet is recognized as anthe major factors driving the
composition and metabolism of the gut microbiotaggell et al. 2013). While many
studies have highlighted the beneficial effectsvileg from the dietary inclusion of
non-digestible carbohydrates and prebiotics in dogs cats (Pinna and Biagi 2014,
Rochus et al. 2014), little is known about feedungctional food components to these
animals.

Yucca schidigera Roezl ex Ortgies and tannin extracts are natucalburring
plant substances that have been widely investigatedine and poultry production
as potential phytochemical compounds for reducidguo and ammonia emissions
(Windisch et al. 2008; Biagi et al. 2010).

Y. schidigera is known to have antimicrobial (Wang et al. 20@0itiprotozoal
(McAllister et al. 2001), and antifungal (Miyakosbkt al. 2000) activities. The
biological effects olr. schidigera have been attributed to its high content of stizloi
saponin fraction (Patra and Saxena 2009); how&ugfy et al. (2001) reported that
the observed effects were also due to the non-gap@ation.

Tannins are natural polyphenolic compounds thatbEmchemically divided
into condensed and hydrolyzable tannins, whosetsitral diversity influences their
metabolism and bioavailability (Aura 2008). Tanniegtracted from chestnut
(Castanea sativa Miller) wood are characterized by the presencényadrolyzable
tannins, which are known to act as effective migmtzbomodulatory agents in poultry
(Jamroz et al. 2009), swine (Biagi et al. 2010y amminants (Hassanat and Benchaar
2013). While the administration & schidigera to dogs and cats resulted in lower

faecal odour (Lowe et al. 1997; Lowe and Kersha@71%iffard et al. 2001), to the
5



127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

best of our knowledge, there are no studies onntiweence of tannins on the canine
and feline intestinal ecosystems.

Considering that very little is known about theeefs ofY. schidigera and
tannin extracts in dogs and cats, the aim of tesgnt study was to evaluatevitro
the effect of these extracts on the compositionatiity of canine and feline faecal
microbiota. We hypothesized that addwgchidigera and tannin to canine and feline
faecal inocula may reduce the presence of potepéittiogenic bacteria and toxic

compounds.

2. Material and methods
The current study was carried out at the LaboratinAnimal Production of the

Department of Veterinary Medical Sciences, Uniugrsf Bologna, Italy.

2.1 Canine experiment

Five healthy adult dogs (mixed breed; average BVO k§; age 4 to 6 year) were fed
the same commercial dry diet for adult dogs (E&fétet Food S.p.A., Pieve di Porto
Morone, Italy), for 4 week before collection ofgtefaecal samples. The diet contained
the following ingredients: dried poultry meat, riemed other cereals, oils and fat, dried
eggs by-products, vitamins, and minerals. The nmadr@nt composition of the diet
(as fed) was the following: water 53 g/kg, crudetem 229 g/kg, ether extract 154
g/kg, crude ash 69 g/kg, starch 370 g/kg, crudefils g/kg, neutral detergent fibre
(NDF) 137 g/kg, acid detergent fibre (ADF) 90 g/kgd acid detergent lignin (ADL)
43 g/kg. A sample of fresh faeces was collectedhfeach dog immediately after
excretion, pooled, and suspended at 10 g/l in gumed Wilkins Chalgren anaerobe
broth. The faecal suspension was used to inoc(atml/l) a previously warmed (39

°C) and prereduced medium prepared according teddiet al. (1995). Five 30-ml
6
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bottles (each bottle containing 21 ml of faecatunal) were set up per treatment. The
same dry food that was fed to the dogs used aalfdenors, was digested in triplicate
using the 2-step procedure proposed by Biagi €2@l.6). Afterin vitro digestion, the
undigested fraction was dried at 70 °C until a tamsdry weight was obtained (19.3
g of undigested residue were obtained from 100 fpad dry matter (DM)) and its
chemical composition was the following: crude piot&€69 g/kg, ether extract 100
g/kg, starch 17 g/kg, crude ash 238 g/kg, crude fib g/kg, NDF 313 g/kg, ADF 162
g/kg, and ADL 59 g/kg.

Four treatments were carried out: 1) control d&IRL) with no addition of
substrates, 2) groupucca schidigera extract (group YSE), Syntonise (saponins
content 10.5%, Sintofarm S.p.A., Guastalla, ItaB)) group chestnut tannins (group
CT), Farmatan 75 (tannins from chestnut wood, @aaoids 75.6%, Sintofarm S.p.A.,
Guastalla, Italy), 4) group YSE+CT. The YSE wasettldt a final concentration of
0.1 g/l, while CT was added at a final concentratad 0.3 g/l. The bottles also
contained thein vitro digested commercial dry food for dogs at 20 gte3e
concentrations should reflect the amountyofchidigera and tannins extracts that
reach the hindgut when they are included in a coroiaesxtruded food for dogs (with
a digestibility of approximately 80%) at a concatibn of 1.0 and 3.0 g/kg,
respectively. In each study, five bottles were pred without any experimental
substrate and with no addition of the digested fas@ negative control. The pH of
faecal cultures was adjusted to 6.7; bottles weaéesl and incubated for 24 h at 39 °C
in an anaerobic cabinet (Anaerobic System; Fornen8fic Co., Marietta, OH; under
an 85% N, 10% CQ, and 5% H atmosphere). Samples of fermentation fluid were
collected from each bottle at 6 and 24 h for theemheination of pH, ammonia,
biogenic amines, volatile fatty acids (VFA), volaticompounds (VOCSs), and for

microbial analysis.
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2.2 Feline experiment

Four healthy European shorthair female cats (aecBal 4.0 kg; age 4 to 6 year) were
fed the same commercial dry diet for adult cats @®Qtalia, Bologna, Italy), for 4
week before collection of fresh faecal samples. @le# contained the following
ingredients: cereals, meat and meat by-productgetable by-products, fish by-
products, protein plant extract, oils and fat, maf® and vegetables. The
macronutrient composition of the diet (as fed) weesfollowing: water 63 g/kg, crude
protein 277 g/kg, ether extract 94 g/kg, crude¥hy/kg, starch 397 g/kg, crude fibre
33 g/kg, NDF 258 g/kg, ADF 50 g/kg, and ADL 16 g/Hdne same dry food that was
fed to the cats used as faecal donors was digesteglicate (Biagi et al. 2016). After
in vitro digestion of the diet fed to the cats, thligested fraction was dried at 70 °C
(23.6 g of undigested residue were obtained frothdlOf food DM) and its chemical
composition was the following: crude protein 13kgy/ether extract 23 g/kg, starch
56 g/kg, crude ash 281 g/kg, NDF 322 g/kg, ADF @8&), and ADL 53 g/kg.

The method used in this experiment reflects theaolopted for the canine experiment.

2.3 Chemical analyses

Analyses of commercial dry food and digested dve¢se performed according to
AOAC International standard methods (AOAC, 2000;thnd 950.46 for water,
method 954.01 for crude protein, method 920.3%ther extract, method 920.40 for
starch, method 942.05 for crude ash, and method096far crude fibre). Fibre
fractions were determined according to the procedi@scribed by Van Soest et al.
(1991), where NDF was assayed with a heat stabj¢aamand expressed inclusive of
residual ash, ADF was expressed inclusive of residsh, and lignin was determined
by solubilization of cellulose with sulfuric acidhmmonia was measured using a

commercial kit (Urea/BUN — Color; BioSystems S.&pain). Volatile fatty acids
8



205 were analysed by HPLC. For the determination ofyeioc amines, samples were
206 diluted 1:5 with perchloric acid (0.3 M); biogerdenines were later separated by
207 HPLC and quantified through fluorimetry.

208

209 2.4 Microbial analysis

210 A 1-ml portion of fermentation fluid was collecté@m each vessel and centrifuged
211 at 4 °C for 5 min at 18008 The supernatant was removed and immediatelyfiraze
212 — 80°C for further analysis. Bacterial genomic DMAs extracted from remaining

213 pellet using the QlAamp Fast DNA Stool Mini-Kit (@GEN GmbH, Germany).
214 Isolated DNA concentration (ngj and purity were measured using a NanoDrop 1000
215 spectrophotometer (Thermo Scientific, Wilmingtors)DTemplate DNA was diluted
216 to 50 ngil and stored at — 20 °C until further analydtscherichia coli (Malinen

217 2003) Bifidobacterium genus (Matsuki et al. 20Q2)actobacillus genus (Collier et al.

218 2003), ancEnterococcus genus (Rinttila et al. 2004) were quantified via gPCRngsi

219 specific primers.
220 The gPCR assay was performed using a CFX96 Touwerimdi cycler (Bio-
221 Rad, USA). Amplification was performed in duplicéde each bacterial group within

222 each sample. Briefly, the PCR reaction containBqi72X SensiFAST No-ROX PCR
223 Master Mix (Bioline GmbH, Germany), 4.8 uL of nuate-free water, 0.6 pl of each
224 10 pmol primer, and 1.5 pl of template DNA for @&l reaction volume of 1pl. The

225 amplification cycle was as follows: initial denadtion at 95 °C for 2 min, 95 °C for 5

226 s, primer annealing at 55—-61 °C for 10 s and 72t@ s. The cycle was repeated 40

227 times. A negative control (without the DNA templateas also run for each primer
228 pair. Standard curves were constructed from ei@hffold dilutions forEscherichia
229 coli, Bifidobacterium genus Lactobacillus genus, and Enterococcus genus. Cycle
230 threshold (Ct) values were plotted against standardes for quantification of the

9
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target bacterial DNA from faecal inoculum. Meltimyrves were checked after

amplification to ensure single product amplificatimf consistent melting temperature.

2.5 Determination of total volatile compounds (VOCs)

A 1-ml portion of fermentation fluid was collectéom each vessel, placed in a 7-ml
vial with PTFE/red rubber septa (Supelco, Bellegoi®A, USA) and capped. Volatile
compounds were extracted by headspace-solid phaseextraction (HS-SPME)
using a fused-silica fibre (10 mm length) coatedhwa 50/30 mm thickness of
divinylbenzene/carboxen/polydimethylsiloxane (DVBR/PDMS) and determined
by GC/MS (QP-2010 Plus, Shimadzu, Japan), intedfadgéh a computerized system
for data acquisition (Software GC-MS Solution V5,2Shimadzu, Japan). A RTX-
WAX column (30 m, 0.25 mm i.d., 0.2Bn film thickness, Restek, USA) coated with
a stationary phase of polyethylene glycol, was uddte SPME fibre was first
conditioned by heating it in a GC injection portZa0 °C for 60 min; then, it was
inserted into the sample vial through the septuchexposed to the headspace (10 min
at 60 °C) of the previously conditioned sample iwater bath at 60 °C for 60 min.
Thereatfter, the fibre was withdrawn into the neexdlé transferred to the injection port
of the GC/MS system. The SPME fibre was desorbednaaintained in the injection
port at 240 °C for 10 min. The sample was injeatesplit mode at a 1:30 split ratio.
Helium was used as the carrier gas at a consi@antrfite of 1 mL/min and a linear
velocity of 36.2 cm/s. The oven temperature wag kegO °C for 10 min, then raised
to 200 °C at 3 °C/min, and finally increased to 2BCat 10 °C/min; final temperature
was held for 5 min. The total run time was 74.331.nBoth injector and interface
temperatures were set at 240 °C. The ion sourcpesture was set at 200 °C. The
filament emission current was 70 eV. A mass ramge 40 to 2501z was scanned

at a rate of 0.25 scans/s. The acquisition angjiat®n modes were Full Scan (TIC)
10
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and Single lon Monitoring (SIM), respectively. Cooynds were identified by
comparing their mass spectra with those containgtda NISTO8 (National Institute
of Standards and Technology, Gaithersburg) libeanrg those reported in a previous
study (Francioso et al. 2010). In order to conamdl prevent eventual environmental

contamination, a blank injection of fibre and vialas carried out daily.

2.6 Statistical analyses

Data were analysed by 2-way ANOVA, with group YSitlgroup CT as the main
effects; the Newman-Keuls test was used as thehpodiest. Five bottles (n = 5) were
set up per treatment; each bottle represented dap@amdent replicate. Differences
were considered statistically significanpat 0.05. The principal components analysis
(PCA) was used to better understand the data vityalStatistical analyses were

performed using Statistica 10.0 software (Stat Salia, Italy).

3. Results

3.1 Chemical and microbial analyses

3.1.1 Canine experiment

pH values and concentration of ammonia and biogamimes after 6 and 24 h of
incubation with canine faecal inoculum are showable 1. The pH values at 6 h
were unaffected by treatments ¥ 0.05), while, after 24 h of incubation, pH was
significantly higher < 0.001) in vessels containing group CT. After 6oh
fermentation, ammonia was lowerga <€ 0.05) by group CT. At 6 h, in the group
CT+YSE vessels, the concentration of cadaverineredisced < 0.001). After 24 h
of incubation, group CT tended to lower the conitn of putrescinep(= 0.088)
and decreased spermidine= 0.010). Finally, after 24 h of incubation, gro¥SE

tended to reduce spermine concentratips §.066).
11
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Volatile fatty acids concentrations at 6 and 24f ieamentation with canine
faecal inoculum are shown in Table 2. Only tradesaleric acid were detected (data
not shown). Production of total VFA was decreaged (0.004) by group CT after 6
h, but not after 24 h of incubation. After 6 h n€ubation, addition of group CT to the
inocula resulted g < 0.05) in lower concentrations of acetate, progienand
isobutyrate; the latter was decreaspd:(0.009) also by group YSE. After 24 h of
incubation, group CT tended to reduge=0.083) the concentrations of propionic
acid.

The abundances of some bacterial populations imegaecal inoculum are
presented in Table 3. After 6 h, group YSE resuiibean increasep(= 0.035) of the
presence dEnterococcus spp., whereak. coli abundances were lowered by group CT
(p = 0.009). After 24 h of incubation, the abundanoéghe assessed microbial
populations were not affected by treatmepts (.05), but group YSE tended to reduce
the presence of lactobacilp € 0.053). Bifidobacteria were inconsistently deteldin

canine faecal inoculum (data not shown). (Tablesdnd 3 near here).

3.1.2 Feline experiment
The values of pH and concentration of ammonia angemic amines determined after
6 and 24 h of incubation with feline faecal inoculuare shown in Table 4.

After 6 h of incubation, the pH level was reducpd(0.021) by group YSE,
while, at 24 h, pH was highep € 0.001) in vessels containing group CT. Ammonia
concentrations at 6 and 24 h were not affecteddatrnent | > 0.05). Regarding the
concentration of biogenic amines, cadaverine wagied by group YSE at both g (
= 0.017) and 24 h (- 20%g < 0.001), while an increas@ € 0.040) in spermine

concentration was observed at 24 h in the group Y&isels.

12
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Concentrations of volatile fatty acids at 6 andh2df fermentation with feline
faecal inoculum are shown in Table 5. After 6 maantration of total VFA tended to
be lower for both group CTpE 0.092) and group YSE E 0.052) treatments, while,
at 24 h, total VFA concentration was significariguced 1§ = 0.002) by group CT.
At 6 h, the presence of group YSE resulted in lovegrcentrations of acetip € 0.010)
and valeric acidsp(= 0.006). In bottles containing group CT, a redutifp = 0.010)
of the concentration of propionic acid was obsemtegih, while a decrement of acetate
(p = 0.044), propionatep(< 0.0001) and isovaleratp € 0.039) was noted at 24 h.
Similarly, at 24 h, group CT tended to reduge 0.095) the concentration of butyrate.

Abundances of investigated microbial populationthefeline faecal inoculum
are shown in Table 6. At 6 h, the presence of entarci was reduced by group

CT+YSE @ =0.008). (Tables 4, 5 and 6 near here).

3.2 Volatile compounds (VOCs) detected by HS-SPME-GC/MS analysis

In all samples, a total of 130 different metabaliteere identified, of which 36 were
cat-related and 20 were dog-related (SupplemerstalleTl). Most of VOCs that have
been identified belong to the families of esterd aftohols; however, after 6 h of
incubation, one of the most represented metaboiiteteline and canine faecal
inoculum was indole, which accounted for 47.1% &8d7% of total VOCs area,
respectively. After 24 h of fermentation, indol@portions decreased in both dog and
cat inoculum (22.2% and 17.8% of total VOCs areaspectively). Other
representative metabolites detected in both dog-ahdessels after 6 h of incubation,
were ethanol, 1-propanol, 1-butanol, 3-methyl-labot, and 1-hexanol (belonging to
the family of alcohols), while phenol and dimettygulphide were more predominant
in dog faecal inoculum. After 24 h of fermentatigenol was the most abundant

metabolite detected in the dog faecal inoculum9®%of total VOCs area), followed
13
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by indole, dimethyl trisulphide and dimethyl dishige (22.2%, 11.2% and 6.7% of

total VOCs area, respectively).

3.2.1 Canine experiment
Absolute area of VOCs obtained from the HS-SPMENB& Analysis of dog faecal
inoculum is shown in Supplemental Table 2. Afteh 6f incubation, hydrogen
sulphide was highep(< 0.05) in group CT vessels. Regarding aldehydepoamds,
the addition of group CT resulted in higher amowifitsaproaldehydep(= 0.024) and
nonaldehyde g = 0.017) after 6 h of fermentation, and higher antsuof
isovaleraldehyde at both 6 (p < 0.001) and 24 h<(p0.001). Similarly,
isovaleraldehyde amount was increaspd (0.05) by group YSE at 24 h. On the
contrary, after 6 h of incubation, a significantdease [§ = 0.025) of caproaldehyde
was observed in YSE vessels. Quinoline was dealdagéhe presence of group CT
at both 6 and 24 Ip(< 0.05), while phenol was increased at 6 h by grélip(p =
0.007).

After 24 h of incubation, a decrease of the amadirtimethyl sulphide =
0.058) and dimethyl disulphidep (< 0.05) was observed in group CT batches;
similarly, group CT decreased the amount of acetid butyl esterg< 0.001), acetic

acid propyl esterny= 0.003) and total esterg € 0.006).

3.2.2 Feline experiment

Absolute areas of the significantly different VO@stected by HS-SPME-GC/MS
analysis of feline faecal inoculum are shown in @emental Table 3. After 6 h of
incubation, lower amounts of indolp € 0.001), 1-butanolp(= 0.008), 1-butanol, 3-
methyl < 0.01), 1-pentanop(= 0.019) and total alcoholp € 0.035), were observed

in vessels containing group CT. Conversely, grolipr€reasedg < 0.05) the amount
14
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of hydrogen sulphide after 6 h of incubation. Agtditof YSE resulted in a decreasing
trend in trimethylaminep(= 0.069) and ethangb & 0.073) amounts.

After 24 h, hydrogen sulphide amount was lowex (0.05) in batches where
the combination CT+YSE had been added, while aatemlutendencyg = 0.092) of
this metabolite was observed in group YSE veski{swise, the addition of CT+YSE
to the inocula tended to reduce total aldehyges Q.095), 2-propanong E 0.071)
and acetic acid ethyl estgr£ 0.095). After 24 h of incubation, a decregse (0.05)
of propanethioate-S-methyl and acetic acid 3-métiityl ester was observed in group
CT vessels. On the contrary, the amounp-ofesol was increased significantly £

0.002) by group CT.

3.3 Principal Component Analysis (PCA)

3.3.1 PCA of canine experiment

To evaluate the effect of CT and YSE addition onG&@ormation and to define which
compounds were the most representative of varidhealata were subjected to PCA.
When samples of dog faecal inoculum were testedfjitst two principal components
reached 77.08% of variance (Supplemental FiguréHg.factor 1 explains 65.63% of
variance; in particular, it is possible to obsetlrat sulphur compounds, as well as
acetic acid esters, alcohols, organic acids andodpme, are inversely correlated to
indole and carbon disulphide. In addition, a thaldister consisting mainly of
aldehydes (isovaleraldehyde, caproaldehyde, nonabahzaldehyde and 2-
methylbutyraldehyde) was more correlated to Fa2t{it1.45% of variance) (Figure
2). Considering the Biplot (Supplemental Figurer3ults at 6-h were well separated
from the 24-h ones; in particular, the 6-h group &%ay was completely segregated

from the other treatments, while all 24-h assaysevpdotted in the same cluster and
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were mainly characterized by the presence of sulptwnpounds, alcohols and acetic
acid esters.

In order to better understand the variance of testihe PCA of all determined
parameters from the canine experiment was caruedAs reported in Biplot (Figure
1), a total of 86.26% of variance was comprisetheéfirst two principal components,
of which PC1 explains 69.98% of total varianceadtdition, it is possible to observe
the presence of several clusters; in fact, PC2eexdels how lactobacilli, enterococci,
total organic acids and 2-propanone were inversefyelated to the main aldehydes
(e.g. caproaldehyde, benzaldehyde, etc.) and theddirol sample. On the other hand,
the 24-h samples did not separate and were maimyacterized by the VOCs
presence as reported above, which thus demonatraia-significant effect of group

CT and group YSE after 24 h. (Figure 1 near here).

3.3.2 PCA of feline experiment

A PCA analysis of feline faecal VOCs was also eatrout. Supplemental Figure 3
reports the component loading in the cat experiméme first two principal

components explained 81.78% of the total variahcgeneral, aldehydes, alcohols,
organic acids and sulphur compounds were more lateck to Factor 1, which

explained 67.26% of variance, whereas acetic asidrge phenol and indole were
correlated to Factor 2, which explained 14.52%arfance. In Supplemental Figure
4, a clear separation between 6-h and 24-h rasudtgdenced. After 6 h, group YSE
and group CT treatments were mainly characterizetthé presence of aldehydes (3-
methylbenzaldehyde and isovaleraldehyde) and alsof®methyl-1-butanol and

ethanol), while VOCs at 24 h are mainly depictecobsgtic acid esters, phenol, sulphur

compounds, butyraldehyde and benzaldehyde. Howgvaight be pointed out that,
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at 6 h, the combination YSE+CT was inversely catezl to the concentrations of
indole, acetic acid propyl- and ethyl-esters anthylgoropane thioate.
In addition, the PCA of all determined parametees warried out (Figure 2).

The 73.54% of total variance explained by the firgt principal components, of which
PC2 was more correlated Escherichia coli, ethyl acetate and ketones. As shown in
Figure 2, different clusters could be distinguishiadparticular the 6-h samples were
all gathered in the same cluster, characterizealdshydes and ethanol, and inversely
correlated to the presence of lactobacilli and wigacids. On the other hand, the 24-
h samples (except for CTRL 24h) were mainly depidtg the presence of ammonia,

short-chain alcohols and sulphur compounds. (Figurear here).

4. Discussion
The results from the preseint vitro study showed tha¥. schidigera extract and
chestnut tannins were able to exert some influemcthe metabolism of canine and

feline faecal microbiota.

4.1 pH values, SCFA production and bacterial protein catabolism

It is known that a low intestinal pH helps to impeahe health of the gut mucosa by
reducing unwanted bacteria and absorption of amaavhile higher intestinal pH is
thought to promote the growth of detrimental micgamisms (Zentek et al. 2013).
When incubated with both canine and feline faegatila, tannins increased the pH
of the fermentation fluid at 24 h, presumably as@asequence of the reduction of total
VFA production. In fact, addition of CT to caninedafeline slurries resulted in lower
concentrations of acetate and propionate. Brawal. €1.994) similarly reported that
fermentation of tannic acid (1 g/l) with a rat caleooculum led to a decrease in acetic

and propionic acid concentrations, while tannicdaai 2.5 g/l resulted in the total
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suppression of acetic acid production, suggestiagtannic acid could be a specific
inhibitor of acetate-producing bacteria. A decreaB&CFA concentrations in the
colonic lumen may lead to mucosal atrophy as aemunsnce of a lack of energy for
colonocytes (Machiels et al. 2014).

Compared with CTRL, group CT and group YSE sigaifitly reduced the
concentration of isobutyric acid in canine inocwjle group CT lowered the amount
of isovalerate in feline inocula after 6 h. Isobidyand isovaleric acid, as well as 2-
methylbutyrate, mainly derive from the degradatdvaline, isoleucine and leucine
(Hughes et al. 2000), and are used as faecal nsafteebacterial protein catabolism.
In the first experiment, ammonia concentrationywai as spermidine concentration,
were reduced by group CT, while the association Y& decreased the amount of
cadaverine. In presence of feline faecal inocutaug CT failed to decrease the
amount of biogenic amines, even though group Y$8Haged cadaverine but increased
spermine concentration. Ammonia and biogenic amaneslso products which derive
from proteolytic reactions; in particular, biogeaimines are generally formed through
the decarboxylation of specific free amino acidsiigrobial decarboxylases (Ku et
al. 2013). The inhibitory effects of tannins on rolwal proteolysis had already been
observed by Biagi et al. (2010) in piglets (bottvitro andin vivo), and by Hassanat
and Benchaar (2013) in presence of ruminal inoculueca schidigera is commonly
used as a dietary additive in livestock and congraanimals (Lowe et al. 1997; Lowe
and Kershaw 1997) for the reduction of ammoniafaedal odour in animal excreta.
Several mechanisms have been proposed to expéaeffdct ofY. schidigera extracts
on ammonia concentrations in animal faeces, amdmnghnare the ability to inhibit
the enzyme urease (Balog et al. 1994), to binctyreammonia (McCrory and Hobbs
2001) and to inhibit specific bacterial strainst(Rand Saxena, 2009). However, in

the present study, YSE failed to reduce ammonia@atnations. Similarly, ammonia
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content of caecal material did not decrease in matgiving sarsaponin (steroidal
glycosides extracted from. schidigera) with the diet (120 mg/kg of diet; Preston et

al., 1987).

4.2 Faecal microbiota

In this study, the addition of YSE to canine fadoakculum resulted in an increase of
enterococci but the same effect was not observeshwghoup YSE was incubated in
presence of the feline faecal inoculum. There is\ndence in the literature suggesting
that Y. schidigera may act as a prebiotic so that, at present, weadkmow if the
increment of enterococci was the consequence ioéet @ffect of YSE on their growth
or the result of the inhibition of enterococci ayaaists by the saponins contained in
the YSE (Killeen et al. 1998). Among the testedsttdtes, group CT resulted in a
reduction ofE. coli in the first experiment, while, in presence oirfelfaecal inoculum,
E. coli abundances tended to be lower when CT was usessactiation with YSE.
These results are not in agreement with those afiBit al. (2010), who reported a
lack of antibacterial activity of chestnut tannagainst coliforms, both vitro andin
vivo. It has been observed that yucca saponins maypieshnitibacterial effects oB.
coli (Sen et al. 1998), but other authors did not repoyt bacteriostatic effect o
schidigera on pure cultures oE. coli (Killeen et al. 1998). However, Wang et al.
(2000) showed that saponins from different sourcesdingy. schidigera, are more
effective against gram-positive than gram-negatbaeteria (e.g.E. coli). The
reduction of the presence & coli in the animals’ intestine may be considered
beneficial. However, when chestnut tannins wereeddd canine faecal inocula, minor
effects were observed only after 6 h of incubatiwhich are probably without any

physiological importance.
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4.4 Volatile organic compoundsin faecal inocula

To the best of our knowledge, our results proviuefirst characterization of VOCs
profile of canine and feline faecal inocula by HBME-GC/MS. A great variety of
VOCs was found in the fermentation fluids. The &ddiof chestnut tannins to the
canine faecal inocula led to an increase of hydrog@lphide and a decrease of
dimethyl sulphide and dimethyl disulphide, makihg tnterpretation of these results
very difficult, as both metabolites are produceshirthe catabolism of S-containing
amino acids. Hydrogen sulphide is the main prodidctulphate-reducing bacterial
catabolism of cysteine and, when present at higiceatrations, may inhibit the
oxidation of butyrate by the colonic epithelium @iager et al. 1993). In general,
hydrogen sulphide is methylated by the colonichegitim to less harmful products,
such as methanethiol and dimethyl sulphide (Weisegeal. 1980). In the feline
experiment, an increase of carbon sulphide anddglr sulphide was observed at 6
h in the vessels containing CT, while hydrogen lsialp was decreased at 24 h by
group CT+YSE. In a previous vitro study with dog faecal inoculum, the addition of
Y. schidigera (0.17 g/l) resulted in lower (- 38%) hydrogen sudighbut did not affect
total gas production (Giffard et al. 2001). In stedy by Swanson et al. (2002), feeding
dogs with a_actobacillus acidophilus supplemented diet tended to increase dimethyl
sulphide, methanethiol and hydrogen sulphide faecatentrations. The ability of
some species afactobacillus spp. to produce hydrogen sulphide has been repyte
Arici et al. (2004). In the already cited study®wyanson et al. (2002), dogs fed fructo-
oligosaccharides (FOS) at 2 g/d had the lowesafammcentrations of S-compounds
Conversely, in the study by Hesta et al. (200%,atiministration of FOS at 31 g/kg
of diet (on DM basis) failed to reduce the fae@alaentration of sulphur compounds
in cats receiving a protein-restricted diet. Altgbuin this study S-compounds

accounted only for a small part of identified cheahs (1.40% and 2.65% of total
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VOCs area after 6 h of incubation in presence tfideand canine faecal inocula,
respectively), they are in general considered nesipée for the distinctive bad odour
of faeces. In fact, as reported by Hesta et aD3205-containing components have an
important impact on faecal odour, since six out@tompounds with the lowest odour
detection threshold (degree of sensitivity of hug)aontain sulphur.

While the utilization of CT led to contradictorystdts with regard to the
concentrations of S-compounds, the experimentadtsaties used in this study were
more effective in limiting the presence of N-compds. In fact, group CT lowered
the amount of quinoline (in presence of canine da@wculum) and indole (when
incubated with feline faecal inoculum), while grodSE tended to lower the amount
of trimethylamine in presence of cat faecal inoouluQuinoline and indole are
aromatic heterocyclic organic compounds; indolevesrfrom microbial degradation
of tryptophan in the colon (Shimada et al. 2018)thie past, indole was suspected to
contribute to colon carcinogenesis, but Shimadal.ef2013) recently attributed to
indole immunomodulatory and anti-inflammatory prds on intestinal epithelial
cells. However, in a study by Nowak and Libudzi2@(6), indole showed negative
effects on then vitro viability of lactic acid bacteria. Trimethylamine a tertiary
amine derived from the bacterial catabolism of cteohnd, to a less extent, carnitine
(Russell et al. 2013); trimethylamine can be furthetabolized by gut microbiota to
trimethylamine-N-oxide, a catabolite recently calesed to be involved in human
colorectal cancer pathogenesis (Xu et al. 2015)hénpresent study, trimethylamine
levels tended to be reduced by group YSE.

The utilization of CT resulted in higher concentras of phenol ang-cresol
(4-methylphenol) in canine and feline faecal inacuéspectively. Phenol apecresol
are recognized as potentially harmful by-producesivihg from the bacterial

catabolism of aromatic amino acids and are coedlaith the development of cancer
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in the human colon (Nowak and Libudzisz 2006).ds lbeen shown that numerous
mammals host bacteria that are able to degradelyydble tannins (Kohl et al. 2015).
Hydrolyzable tannins are polyesters consisting eadbohydrate core and phenolic
acids (mainly gallic and ellagic acids), which aharacterized by a phenolic ring and
a carboxyl group. Based on our results, it may uygpesed that the phenolic acids
released from the tannins may be further metatlia@henol an@-cresol by the gut
microbiota. The slightly higher amount of phenoled¢ed in vessels containing YSE
and canine faecal inoculum may be the consequehaeianobial degradation of
polyphenolic compounds (resveratrol and yuccabbs)¢an be found i. schidigera.
However, the microbial metabolism of resveratrol tire large intestine is still
uncertain (Selma et al. 2009). Interestingly, tesoaiation CT+YSE resulted in a
strong reduction of phenol concentrations, sugggsdi synergistic effect of CT and
YSE for which we do not have an explanation.

The observed reduction of the amounts of ketondsatoohols as a result of
CT addition, seems to suggest a decreased micratti@ity induced by tannins. In
fact, ketones can derive from the microbial catsinolof fatty acids, while alcohols
can be produced during sugar fermentation or rémlucff organic acids by bacteria
(de Lacy Costello et al. 2014).

Esters, the most numerous chemical class (36 faghitompounds) in our
samples, derive from the esterification of alcolawid fatty acids by the gut microbiota
or by the esterase activity of the enterocytes ri@aet al. 2007). The lowering effect
of group CT on esters abundance in the caninetana lesser extent, feline faecal
inocula may be related, as observed by Daniel ¢1891) in rats, to the inhibition of
esterase activity by tannins.

Changes in the composition and abundances of V@Qke headspace of

vessels that were observed in this study can leettiirrelated to the gut microbiota
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metabolism and to the presence of the experimentatrates. Feeding schidigera

to dogs and cats has been demonstrated to redeca faalodour by sensory testing
(Lowe and Kershaw 1997), while a concurrent studty wlogs and cats showed
changes in the faecal concentrations of severatil®kcomponents aftéf. schidigera
extract supplementation (Lowe et al. 1997). Howgtrer authors did not find a direct
correlation between the changes in the amount€O£4/and the aroma amelioration.
In fact, faecal odour is the resultant of absoartid relative concentrations of several
compounds, the possible interactions among differle@micals and the impact of both
texture and microstructure of faeces on releaselofir compounddiesta et al. 2005;

de Lacy Costello et al. 2014).

5. Conclusions

The results from the present study show tadchidigera extract and tannins from
chestnut wood exert different effects on the contprsand metabolism of canine and
feline faecal microbiota. Although a decrease inlos@rous compounds was
observed, it is not possible to state whether artin® tested substrates lowered the
inoculum odour. However, the dietary supplementatitY. schidigera and tannins to
dogs and cats may be beneficial due to the reduofisome potentially toxic volatile

metabolites.
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Table 1. pH values and mean concentrations (n = 5) of amanjominol/l] and biogenic amines [umol/l] after 6 aé2lh of an in vitro incubation of canine faecal

inoculum with a control diet to which different sikates were added.

ANOVA p-value

Group  Group Group Group Pooled
CTRL  CT YSE CT+YSE SEM Group ~ Group Group
CT YSE CT + YSE
At 6 h
pH 6.37 6.37 6.36 6.36 0.01 0.955 0.436 0.822
NH3 385 37.1 38.7 36.8 0.48 0.015 0.979 0.641
Putrescine 928 1030 1036 854 42.3 0.634 0.684 0.104
Cadaverine 221 225 267 140 15.7 <0.001 0.219 < 0.001
Spermidine 32.2 32.2 29.6 34.6 1.66 0.151 0.953 0.151
Spermine 18.0 17.0 15.6 19.4 1.48 0.357 0.990 0.124
At 24 h
pH 6.12 6.19 6.09 6.19 0.001 <0.001 0.186 0.253
NH3 38.2 40.8 41.3 43.8 2.77 0.366 0.287 0.980
Putrescine 1336 1326 1497 1318 52.1 0.088 0.162 0.123
Cadaverine 322 335 342 312 20.5 0.684 0.950 0.310
Spermidine 40.0 33.6 40.6 30.4 2.84 0.010 0.653 0.513
Spermine 24.6 21.0 20.0 16.2 2.38 0.140 0.066 0.967
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Table 2. Mean concentrations (n = 5) of VFA [mmol/l] af@and 24 h of am vitro incubation of canine faecal inoculum with a cohtliet to which different

substrates were added.

ANOVA p-value

Group  Group Group Group Pooled
CTRL  CT YSE CT+YSE  SEM Group ~ Group  Group
CT YSE CT + YSE
At 6 h
Acetic acid 12.0 11.1 11.7 10.7 0.30 0.016 0.373 0.895
Propionic acid 9.86 8.62 9.40 8.95 0.26 0.019 0.837 0.232
Isobutyric acid 1.11 0.67 0.61 0.42 0.10 0.023 0.009 0.310
n-Butyric acid 4.88 4.41 4.70 4.47 0.18 0.138 0.795 0.612
Isovaleric acid 0.90 0.87 0.87 0.66 0.12 0.193 0.199 0.321
Total VFA 28.8 25.7 27.3 25.2 0.60 0.004 0.215 0.528
At 24 h
Acetic acid 16.3 14.9 16.7 16.1 0.86 0.276 0.389 0.651
Propionic acid 14.1 11.8 15.5 13.8 0.82 0.083 0.172 0.343
Isobutyric acid 1.07 1.02 1.30 1.22 0.13  0.587 0.109 0.927
n-Butyric acid 5.84 5.78 6.09 6.26 0.41  0.893 0.399 0.771
Isovaleric acid 1.77 1.81 1.87 1.86 0.15 0.910 0.636 0.887
Total VFA 39.3 354 40.5 394 2.24 0.286 0.262 0.553
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Table 3. Microbial populations [log 10 DNA copies/ml] deted by gPCR in canine faecal inoculum with a cdridret to which different substrates were added.

Values are the means of 5 bottles per treatment.

ANOVA p-value

Group Group Group Group Pooled
CTRL cT YSE  CT+YSE  SEM Group  Group  Group
CT YSE  CT+YSE
At6 h
Lactobacillus spp. 8.06 6.35 7.11 7.06 0.54 0.132 0.837 0.157
Enterococcus spp. 7.38 6.36 9.44 8.22 0.82 0.206 0.035 0.908
E. coli 5.19 4.74 5.95 4.68 0.28 0.009 0.246 0.175
At 24 h
Lactobacillus spp. 8.41 7.74 7.31 7.54 0.30 0.500 0.053 0.170
Enterococcus spp. 8.10 8.77 7.12 7.86 1.01 0.509 0.381 0.974
E. coli 5.33 4.93 4.84 5.37 0.33 0.857 0.942 0.193
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Table 4. pH values and mean concentrations (n = 5) of amanjoninol/l] and biogenic amines [umol/l] after 6 aéwlh of an in vitro incubation of feline faecal

inoculum with a control diet to which different sitates were added.

ANOVA p-value

Group Group Group Group Pooled
CTRL CT YSE CT+YSE  SEM Group  Group  Group
CT YSE CT +YSE
At 6 h
pH 6.28 6.28 6.24 6.26 0.01 0.377 0.021 0.372
NHs 334 34.9 34.0 33.5 0.38 0.571 0.664 0.233
Putrescine 187 200 190 179 7.74 0.860 0.188 0.074
Cadaverine 243 245 181 196 21.3 0.689 0.017 0.774
Spermidine 29.0 30.8 32.1 30.4 1.99 0.795 0.641 0.503
Spermine 5.60 5.50 5.00 4.04 0.52 0.355 0.083 0.451
At 24 h
pH 6.10 6.14 6.05 6.17 0.01 <0.0001 0.344 0.004
NH3 52.2 50.9 48.7 52.0 1.68 0.777 0.744 0.536
Putrescine 303 379 373 304 23.8 0.872 0.924 0.007
Cadaverine 265 235 211 212 9.77 0.142 <0.001 0.132
Spermidine 32.0 28.4 27.4 34.4 2.68 0.534 0.797 0.065

Spermine 6.38 7.46 0.40 8.88 0.99 0.781 0.040 0.432
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Table 5. Mean concentrations (n = 5) of VFA [mmol/l] af@and 24 h of am vitro incubation of feline faecal inoculum with a comt@et to which different

substrates were added.

ANOVA p-value

Group Group Group Group Pooled
CTRL CT YSE CT+YSE  SEM Group ~ Group  Group
CT YSE CT + YSE
At6 h
Acetic acid 14.8 13.3 12.7 12.1 0.34 0.082 0.010 0.385
Propionic acid 7.09 6.51 7.16 5.99 0.18 0.010 0.446 0.335
Isobutyric acid 0.53 0.39 0.51 0.53 0.05 0.583 0.602 0.498
n-Butyric acid 7.54 7.96 7.58 7.49 0.16 0.666 0.558 0.489
Isovaleric acid 0.63 0.65 0.62 0.68 0.04 0.646 0.894 0.788
n-Valeric acid 0.38 0.32 0.25 0.24 0.02 0.348 0.006 0.455
Total VFA 31.0 29.1 28.8 27.1 0.55 0.092 0.052 0.942
At 24 h
Acetic acid 24.2 22.4 23.6 217 0.44 0.044 0.451 0.961
Propionic acid 12.7 10.6 12.8 10.0 0.34 <0.0001 0.681 0.393
Isobutyric acid 1.21 1.21 1.11 1.10 0.05 0.974 0.383 0.987
n-Butyric acid 10.1 0.68 0.86 9.29 0.14 0.095 0.292 0.718
Isovaleric acid 2.01 1.95 2.26 1.80 0.07 0.039 0.686 0.108
n-Valeric acid 2.29 3.03 2.60 3.12 0.19 0.109 0.599 0.774
Total VFA 525 48.9 52.3 47.1 0.75 0.002 0.422 0.497
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Table 6. Microbial populations [log 10 DNA copies/ml] deted by qPCR in feline faecal inoculum with a cohtliet to which different substrates were added.

Values are the means of 5 bottles per treatment.

ANOVA p-value

Group Group Group Group Pooled
CTRL CT YSE CT+YSE  SEM Group  Group  Group
CT YSE CT + YSE
At6 h
Lactobacillus spp. 8.63 7.67 7.87 7.83 0.17 0.153 0.368 0.181
Enterococcus spp. 6.13 7.82 0.42 3.87 0.73 0.105 0.769 0.008
Bifidobacterium spp. 2.70 1.51 1.09 1.60 0.28 0.154 0.160 0.119
E. coli 8.26 7.21 7.00 7.29 0.21 0.311 0.132 0.092
At 24 h
Lactobacillus spp. 7.18 6.46 6.65 6.27 0.17 0.122 0.294 0.611
Enterococcus spp. 7.53 7.84 5.66 7.64 0.48 0.245 0.290 0.388
Bifidobacterium spp. 2.39 1.39 1.46 1.16 0.26 0.228 0.278 0.512
E. coli 6.32 5.53 5.62 5.32 0.23 0.259 0.335 0.603
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Figure 1. PCA score plot of pH, bacterial metabolites andrabial populations on canine faecal inoculum

Figure 2. PCA score plot of pH, bacterial metabolites andrabial populations on feline faecal inoculum
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