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Abstract: We present new results in interval analysis (IA) and in the calculus for interval-valued
functions of a single real variable. Starting with a recently proposed comparison index, we develop
a new general setting for partial order in the (semi linear) space of compact real intervals and
we apply corresponding concepts for the analysis and calculus of interval-valued functions.
We adopt extensively the midpoint-radius representation of intervals in the real half-plane
and show its usefulness in calculus. Concepts related to convergence and limits, continuity,
gH-differentiability and monotonicity of interval-valued functions are introduced and analyzed
in detail. Graphical examples and pictures accompany the presentation. A companion Part II of the
paper will present additional properties (max and min points, convexity and periodicity).

Keywords: interval-valued functions; monotonic interval functions; comparison index; partial orders;
lattice of real intervals; interval calculus

1. Introduction

The motivations for this paper are two-fold: on one side we intend to offer an updated state of art
about the concepts, problems and the techniques in interval analysis (IA), with a specific focus on its
mathematical aspects recently addressed by research; secondly, we aim to contribute directly to the
theoretical aspects of calculus in the setting of interval-valued functions of a single real variable.

We will not explicitly address the problems in interval arithmetic, in relation to the algebraic
aspects of how arithmetical operations can be defined for intervals and how to solve problems such
as algebraic, differential, integral equations or others when intervals are involved. An account on
these topics can be found in the very extended literature on Interval Arithmetic and related fields; see,
e.g., [1–7] (in [4] the midpoint representation is used) and the references therein.

Recently, the interest for this topic increased significantly, in particular after the new IEEE
1788–2015 Standard for Interval Arithmetic and the implementation of specific tools and classes
in the C++, Julia (among others) programming languages, or in computational systems such as
MATLAB, Mathematica, or in specific packages such as CORA 2016 (see [8]). The research activity
in the calculus for interval-valued or set-valued functions (of one or more variables) is now very
extended, particularly in connection with the more general calculus for fuzzy-valued functions (started
in [9–11]), with applications to almost all fields of applied mathematics. One of the first contributions
in the interval-valued calculus is [12] (1979); this paper remained essentially un-cited for more than
30 years and was “rediscovered” after the publication of [13–15]. Important contributions in this
area (considering jointly the interval and fuzzy cases) are [16–29]. Other contributions are found in
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papers on gH-differentiability (see, e.g., [30–36]; see also [37–39]) and papers on interval and fuzzy
optimization and decision making (e.g., [32,40–56]). A recent generalization to the multidimensional
convex case is proposed in [57].

This work on the calculus for interval-valued functions is subdivided into two companion parts.
Part I presents a discussion of partial orders in the space KC of real intervals, with properties

on limits, continuity, gH-differentiability and monotonicity for functions F : [a, b] −→ KC. The basic
properties of the space of real intervals are described in Section 2. Section 3 introduces several partial
orders for intervals and discusses their properties in terms of the midpoint representation and in
Section 4 we show the fundamental role of gH-difference in characterizing the partial orders. Section 5
introduces the concept of gH-derivative for interval valued functions and its connection with the
comparison index, which is used extensively to discuss the monotonicity of interval functions in
Section 6. Part I concludes with Section 7.

In Part II, using the results of part I, we present a discussion on extremal points and convexity
with the use of gH-derivative for its complete analysis. A section on periodicity is also included.

2. the SpaceKC of Real Intervals

We denote by KC the family of all bounded closed intervals in R, i.e.,

KC =
{[

a−, a+
]
| a−, a+ ∈ R and a− ≤ a+

}
.

To describe and represent basic concepts and operations for real intervals, the well-known
midpoint-radius representation is very useful: for a given interval A = [a−, a+], define the midpoint â
and radius ã, respectively, by

â =
a+ + a−

2
and ã =

a+ − a−

2
,

so that a− = â− ã and a+ = â + ã. We denote an interval by A = [a−, a+] or, in midpoint notation,
by A = (â; ã); so

KC = {(â; ã) | â, ã ∈ R and ã ≥ 0} .

Notation: The symbols and notation a−, a+, â, ã, with ã ≥ 0, a− ≤ a+ (and similarly
a−i , a+i , âi, ãi,..., z−, z+, ẑ, z̃, ..., z−l , z+l , ẑl , z̃l), using low-case characters, will refer to real intervals denoted
A, ...Z, Ai, ..., Zj ∈ KC in upper-case characters; when we refer to an interval C ∈ KC, its elements
are denoted as c−, c+, ĉ, c̃, with c̃ ≥ 0 , c− ≤ c+ and the interval by C = [c−, c+] in extreme-point
representation or, equivalently, by C = (ĉ; c̃), in midpoint notation.

Given A = [a−, a+], B = [b−, b+] ∈ KC and τ ∈ R, we have the following classical
(Minkowski-type) addition, scalar multiplication and difference:

• A⊕M B = [a− + b−, a+ + b+],

• τA = {τa : a ∈ A} =
{

[τa−, τa+], if τ ≥ 0,
[τa+, τa−], if τ ≤ 0

,

• −A = (−1)A = [−a+,−a−],
• A	M B = A⊕M (−1)B = [a− − b+, a+ − b−].

Using midpoint notation, the previous operations, for A = (â; ã), B = (b̂; b̃) and τ ∈ R are:

• A⊕M B = (â + b̂; ã + b̃),
• τA = (τâ; |τ|ã),
• −A = (−â; ã),
• A	M B = (â− b̂; ã + b̃).

We refer to [5–7] for further details on interval arithmetic.
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Generally, the subscript (·)M in the notation of Minkowski-type operations will be removed, and
classical addition and subtraction will be denoted by ⊕ and 	, respectively, but we will insert the
subscript in cases where these operations are used in combination with other operations.

We denote the generalized Hukuhara difference (gH-difference in short) of two intervals A and
B as:

A	gH B = C ⇐⇒

 (i) A = B⊕M C,
or
(ii) B = A	M C.

(1)

It is easy to show that (i) and (ii) are both valid if and only if C is a singleton. The gH-difference
of two intervals always exists and is equal to

A	gH B = [min{a− − b−, a+ − b+}, max{a− − b−, a+ − b+}]

= (â− b̂; |ã− b̃|) ⊆ A	M B;

the gH-addition for intervals is defined by

A⊕gH B = A	gH (−B)

= [min{a− + b+, a+ + b−}, max{a− + b+, a+ + b−}]

= (â + b̂; |ã− b̃|) ⊆ A⊕M B.

The Minkowski addition ⊕ is associative and commutative and with neutral element {0};
hereafter 0 will also denote the singleton {0}. In general, A 	 A 6= 0, i.e., the opposite of A is
not the inverse of A in Minkowski addition (unless A = {a} is a singleton). A first implication of this
fact is that in general, additive simplification is not valid, i.e., (A⊕ B)	 B 6= A. Instead, we always
have A	gH A = 0 and (A⊕M B)	gH B = A, ∀A, B ∈ KC (and other properties that will be given in
the following, when needed).

If A ∈ KC, we will denote by len(A) = a+ − a− = 2â the length of interval A. Remark that
αA 	M βA = (α + β)A only if αβ ≥ 0 (except for trivial cases) and that A 	gH B = A 	M B or
A⊕gH B = A⊕M B only if A or B are singletons.

Remark 1. The introduction of two additions ⊕M, ⊕gH and two differences 	M, 	gH for intervals is not
motivated here as an attempt to define a “true" arithmetic inKC; for example,⊕M and⊕gH are both commutative
with neutral element 0, but only ⊕M is associative. As we will see extensively, the four operations are each-other
strongly related and their properties motivate the (appropriate) use of them in the context of interval analysis
and calculus.

For two intervals A, B ∈ KC the Pompeiu–Hausdorff distance dH : KC × KC → R+ ∪ {0} is
defined by

dH(A, B) = max
{

max
a∈A

d(a, B), max
b∈B

d(b, A)

}
with d(a, B) = minb∈B |a− b|. The following properties are well known:

dH(τA, τB) = |τ|dH(A, B), ∀τ ∈ R,

dH(A⊕ C, B⊕ C) = dH(A, B),

dH(A⊕ B, C⊕ D) ≤ dH(A, C) + dH(B, D).
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It is known ([14,36]) that dH(A, B) =
∥∥A	gH B

∥∥ where for C ∈ KC, the quantity
‖C‖ = max{|c| ; c ∈ C} = dH(C, {0}) is called the magnitude of C and an immediate property of the
gH-difference for A, B ∈ KC is

dH(A, B) = 0 ⇐⇒ A	gH B = 0 ⇐⇒ A = B. (2)

It is also well known that (KC, dH) is a complete metric space. The concepts of a convergent
sequence of intervals (An)n∈N, An ∈ KC is considered in the metric space KC, endowed with the
dH distance:

Definition 1. We say that limn→∞ An = A if and only if for any real ε > 0 there exists an nε ∈ N such that
dH(An, A) < ε for all n > nε.

The following equivalence is always true, as it is a trivial application of (2):

lim
n→∞

An = A if and only if lim
n→∞

(
An 	gH A

)
= 0. (3)

3. Orders for Intervals

The following partial order for intervals is well known and extensively used (LU stands for
Lower-Upper):

Definition 2. Given A = [a−, a+] ∈ KC, B = [a−, a+] ∈ KC, we say that

(i) A wLU B if and only if a− ≤ b− and a+ ≤ b+,
(ii) A �LU B if and only if A wLU B and (a− < b− or a+ < b+),
(iii) A ≺LU B if and only if a− < b− and a+ < b+.

The corresponding reverse orders are, respectively, A vLU B ⇐⇒ B wLU A, A �LU B ⇐⇒
B �LU A and A �LU B ⇐⇒ B ≺LU A.

Using midpoint notation A = (â; ã), B = (b̂; b̃), the partial orders (i) and (iii) above can be
expressed as

(i)


â ≤ b̂

b̃ ≤ ã + (b̂− â)
b̃ ≥ ã− (b̂− â)

and (iii)


â < b̂

b̃ < ã + (b̂− â)
b̃ > ã− (b̂− â)

;

the partial order (ii) can be expressed in terms of (i) with the additional requirement that at least one
of the inequalities is strict.

Proposition 1. Let A, B ∈ KC with A = (â; ã), B = (b̂; b̃). We have

(i.a) A wLU B if and only if b̂− â ≥
∣∣∣b̃− ã

∣∣∣;
(ii,a) A �LU B if and only if â < b̂ and b̂− â ≥

∣∣∣b̃− ã
∣∣∣;

(iii,a) A ≺LU B if and only if b̂− â >
∣∣∣b̃− ã

∣∣∣;
(i,b) A vLU B if and only if â− b̂ ≥

∣∣∣b̃− ã
∣∣∣;

(ii,b) A �LU B if and only if â > b̂ and â− b̂ ≥
∣∣∣b̃− ã

∣∣∣;
(iii,b) A �LU B if and only if â− b̂ >

∣∣∣b̃− ã
∣∣∣.
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Proof. If C = A	gH B, then C = [â− b̂−
∣∣∣b̃− ã

∣∣∣ , â− b̂ +
∣∣∣b̃− ã

∣∣∣] so that c+ = â− b̂ +
∣∣∣b̃− ã

∣∣∣ ≤ 0

is equivalent to b̂ − â ≥
∣∣∣b̃− ã

∣∣∣. Analogously, c− = â − b̂ −
∣∣∣b̃− ã

∣∣∣ ≥ 0 is equivalent to â − b̂ ≥∣∣∣b̃− ã
∣∣∣.

Proposition 2. Let A, B ∈ KC with A = (â; ã), B = (b̂; b̃). We have

(i.a) A wLU B if and only if A	gH B wLU 0;
(ii.a) A �LU B if and only if A	gH B �LU 0;
(iii.a) A ≺LU B if and only if A	gH B ≺LU 0;
(i.b) A vLU B if and only if A	gH B vLU 0;
(ii.b) A �LU B if and only if A	gH B �LU 0;
(iii.b) A �LU B if and only if A	gH B �LU 0.

Proof. For case (i.a) we have that (A	gH B)+ ≤ 0 implies (A	gH B)− ≤ 0 and so A	gH B wLU 0;
the other cases are analogous.

Definition 3. Given A, B ∈ KC, we clearly have that

A ≺LU B =⇒ A �LU B =⇒ A wLU B

A �LU B =⇒ A �LU B =⇒ A vLU B.

We say that A and B are LU-incomparable if neither A wLU B nor A vLU B.

Proposition 3. Let A, B ∈ KC with A = (â; ã), B = (b̂; b̃). The following are equivalent:

(i) A and B are LU-incomparable;
(ii) A	gH B is not a singleton and 0 ∈ int(A	gH B);

(iii)
∣∣∣â− b̂

∣∣∣ < ∣∣∣b̃− ã
∣∣∣;

(iv) A ⊂ int(B) or B ⊂ int(A).

Proof. (i) ⇐⇒ (ii): LU-incomparability means that neither A wLU B nor A vLU B, i.e., that
neither A 	gH B wLU 0 nor A 	gH B vLU 0 and this is equivalent with both

(
A	gH B

)−
< 0

and
(

A	gH B
)+

> 0, i.e., 0 ∈ int(A	gH B).
(ii) ⇐⇒ (iii): validity of (ii) means

(
A	gH B

)−
< 0 <

(
A	gH B

)+ and this is equivalent to

â− b̂−
∣∣∣ã− b̃

∣∣∣ < 0 < â− b̂ +
∣∣∣ã− b̃

∣∣∣ or
∣∣∣â− b̂

∣∣∣ < ∣∣∣ã− b̃
∣∣∣; so, (ii) and (iii) are equivalent.

(ii) ⇐⇒ (iv): observe that A	gH B = [min{a− − b−, a+ − b+}, max{a− − b−, a+ − b+}]; then(
A	gH B

)−
< 0 <

(
A	gH B

)+ is equivalent to a− − b− < 0 < a+ − b+ or a+ − b+ < 0 < a− − b−.
But a− − b− < 0 < a+ − b+ is equivalent to a− < b− and a+ > b+, i.e., B ⊂ int(A); and a+ − b+ <

0 < a− − b− is equivalent to a+ < b+ and a− > b−, i.e., A ⊂ int(B).

Proposition 4. If A, B, C ∈ KC, then

(i) A wLU B if and only if A⊕ C wLU B⊕ C;
(ii) If A⊕ B wLU C then A wLU C	gH B;
(iii) If A⊕ B vLU C then A vLU C	gH B

Proof. It is easy to check that A	gH B = (A⊕ C)	gH (B⊕ C) and (i) follows.
For (ii), if A⊕ B wLU C then

(
(A⊕ B)	gH c

)+
= max{a− + b− − c−, a+ + b+ − c+} ≤ 0 and

we get a− + b− ≤ c− and a+ + b+ ≤ c+. Then, a− ≤ c− − b−, a+ ≤ c+ − b+ and from a− ≤ a+



Axioms 2019, 8, 113 6 of 30

we have a− ≤ min{c− − b−, c+ − b+}. On the other hand, a+ ≤ c+ − b+ ≤ max{c− − b−, c+ − b+}
and we conclude that A wLU C	gH B.

For (iii), if A ⊕ B vLU C then
(
(A⊕ B)	gH C

)−
= min{a− + b− − c−, a+ + b+ − c+} ≥ 0

and we get a− + b− ≥ c− and a+ + b+ ≥ c+. Then, a− ≥ c− − b−, a+ ≥ c+ − b+ and from
a+ ≥ a− we have a+ ≥ max{c− − b−, c+ − b+} = (C	gH B)+; on the other hand, a− ≥ c− − b− ≥
min{c− − b−, c+ − b+} and we conclude that A vLU C	gH B.

The problem of ordering intervals has been a topic of intense research in several areas. We consider
the ordering induced by the gH-difference and the natural order on the real numbers.

Given an interval C = [c−, c+] = (ĉ; c̃), we define the 2-norm of C by ‖C‖2 =
√

ĉ2 + c̃2 =√
2

2

√
(c−)2 + (c+)2 such that ‖C‖2 ≥ 0, ‖C‖2 = 0 ⇐⇒ C = 0, ‖C + D‖2 ≤ ‖C‖2 + ‖D‖2.
The gH-difference in midpoint notation is

A	gH B =

(
̂(

A	gH B
)
; ˜(

A	gH B
))

where ̂(
A	gH B

)
= â− b̂ is its midpoint and ˜(

A	gH B
)
= |ã− b̃| is its radius.

The following comparison index, based on the gH-difference and the 2-norm, has been introduced
in [58,59]. We recall here the definition and the basic properties.

Definition 4. Given two distinct intervals A 6= B, the gH-comparison index is defined as

CIgH(A, B) =
̂A	gH B∥∥A	gH B

∥∥
2

; (4)

it has the following properties:

◦ CIgH(A, B) ∈ [−1, 1], CIgH(A, B) = 0⇐⇒ â = b̂, CIgH(A, B) ≥ 0⇐⇒ â ≥ b̂,

◦ CIgH(A, B) = −CIgH(B, A),
∣∣CIgH(A, B)

∣∣ = 1⇐⇒(ã = b̃ and â 6= b̂),

◦ CIgH(kA, kB) =

{
CIgH(A, B) if k > 0
CIgH(B, A) if k < 0,

, CIgH(A⊕ C, B⊕ C) = CIgH(A, B).

We can write

CIgH(A, B) =
â− b̂√

(â− b̂)2 + (ã− b̃)2

and, assuming the condition â 6= b̂, we define the following gH-comparison ratio

γA,B =
ã− b̃
â− b̂

= γB,A. (5)

The comparison ratio γA,B is very useful in the characterization of different order relations for
intervals; let us consider two distinct intervals A 6= B and search for (partial) order relations to decide
if A is less than B, or if A is greater than B, or if A and B are incomparable.

If ã = b̃ the comparison is easy as indeed, being A 6= B, either â < b̂ or â > b̂ and the decision can
be based simply on the comparison of the midpoint values.

If ã 6= b̃ and â = b̂, then A and B are incomparable with respect to any order relation; indeed,
in that case, the intervals are equally centered and one of them is strictly included in the other (we can
eventually have a preference for the bigger or the smaller one, but there is no simple way to quantify
how much one is better or worse than the other).

The interesting and more complex case to analyze is when â 6= b̂. Consider first the comparison
“A is less than B”, formally “decide if A ≺ B or not”. If â < b̂ and A and B do not overlap with internal
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points, i.e., when a+ ≤ b−, it is reasonable to accept A ≺ B, as no element in A is greater than any
elements in B; instead, some indecision is justified if the two intervals overlap internally.

We can analyze this situation using the comparison ratio γA,B; we distinguish two cases, (I) â < b̂,
ã > b̃ and (II) â < b̂, ã < b̃.

Case (I): (â < b̂ and ã > b̃ so that γA,B < 0); it is immediate to see that a− − b− = (b̂− â)(γA,B − 1).
If a− ≤ b−, i.e., if γA,B ≤ 1, then no element in B is smaller than all elements in A. But if a− > b−,
i.e., if γA,B > 1, then elements of B exist on the left of A and the ratio a−−b−

b̂−â
= γA,B − 1 > 0

measures how much elements of B are better than all elements of A, with respect to how much
the central value of A is better that the central value of B. In some sense, γA,B − 1 gives a
relative measure of a possible “loss” a− − b− > 0 if we chose A against B based on central values
(expecting a mid-value “gain” b̂− â).

Case (II): (â < b̂ and ã < b̃ so that γA,B > 0); it is immediate to see that a+ − b+ = (b̂− â)(−γA,B − 1).
If a+ ≤ b+, i.e., if γA,B ≥ −1, then no element in A is greater than all elements in B. But if a+ > b+,
i.e., if γA,B < −1, then elements of A exist on the right of B and the ratio a+−b+

b̂−â
= −γA,B − 1 > 0

measures how many elements of A are worse than all elements of B, with respect to how much
the central value of A is better than the central value of B. In some sense, −γA,B − 1 gives a
relative measure of a possible “loss” a+ − b+ > 0 if we chose A against B based on the central
values (expecting a mid-value “gain” b̂− â).

Summarizing, we can say that in accepting A ≺ B on the basis of the comparison â < b̂ of the
midpoint values, a possibly positive (worst-case) loss appears when γA,B > 1 or when γA,B < −1; we
then have the following interpretation of the comparison ratio γA,B:

• If â < b̂ and −1 ≤ γA,B ≤ 1, no possible worst-case loss appears in accepting A ≺ B.
• If â < b̂ and γA,B > 1, a possible worst-case loss in accepting A ≺ B appears because some values

of B (on the left side) are less than all values of A; the quantity γA,B − 1 > 0 gives a relative
measure of the possible loss with respect to the possible midpoint gain.

• If â > b̂ and γA,B < −1, a possible worst-case loss in accepting A ≺ B appears because some
values of A (on the right side) are greater than all values of B; the quantity −1− γA,B > 0 gives a
relative measure of the possible loss with respect to the midpoint gain.

The gH-comparison index γA,B will be used extensively in the rest of this paper. In a similar way
we can define a comparison index based on M-difference and 2-norm.

Definition 5. Given two intervals A, B, the M-comparison index is defined as

CIM(A, B) =
Â	M B
‖A	M B‖2

=
â− b̂√

(â− b̂)2 + (ã + b̃)2
(6)

where A	M B is the M-difference. Given two distinct intervals A 6= B, it has the following properties:

◦ CIM(A, B) ∈ [−1, 1], CIM(A, B) = 0⇐⇒ â = b̂, CIM(A, B) ≥ 0⇐⇒ â ≥ b̂,
◦ CIM(A, B) = −CM(B, A), |CIM(A, B)| = 1⇐⇒(ã = b̃ = 0 and â 6= b̂),

◦ CIM(kA, kB) =

{
CIM(A, B) if k > 0
CIM(B, A) if k < 0,

, CIM(A⊕ C, B⊕ C) = CIM(A, B).

Assuming â 6= b̂, we can define the M-comparison ratio

ηA,B =
ã + b̃
â− b̂

. (7)
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The reciprocal of the ratio ηA,B, called acceptability index

Acc(A ≤ B) =
b̂− â
b̃ + ã

has been introduced in [60,61]: it always exists when ã + b̃ > 0 (i.e., when at least one of A and B is a
proper interval). Given two distinct intervals A = [a−, a+] = (â; ã) and B = [b−, b+] = (b̂; b̃) it has the
following basic properties:

(1) if Acc(A ≤ B) ≥ 1, we obtain a+ ≤ b− (i.e., all values of A are less than or equal to all values
of B)

(2) if Acc(A ≤ B) ≤ −1, we have a− ≥ b+ (i.e., all values of A are greater than or equal to all values
of B)

As discussed extensively in [60], if the index Acc(A ≤ B) is positive, then it gives a measure of
acceptability of the inequality A ≤ B: if Acc(A ≤ B) = α ∈]0, 1[ then A ≤ B is accepted with degree α.

The two ratios γA,B and ηA,B are not related each-other in a simple way; e.g., let’s compare
Acc(A ≤ B) = −1

ηA,B
with γA,B for the following intersecting intervals and in particular if A ⊂ B

1a. A = [3, 9] = (6; 3), B = [4, 12] = (8; 4): Acc(A ≤ B) = + 2
7 , γA,B = 1

2 ,
2a. A = [5, 7] = (6; 1), B = [2, 14] = (8; 6): Acc(A ≤ B) = + 2

7 , γA,B = 5
2 ,

Or if B ⊂ A

1b. A = [1, 13] = (7; 6), B = [8, 10] = (9; 1): Acc(A ≤ B) = + 2
7 , γA,B = − 5

2 ,
2b. A = [2, 10] = (6; 4), B = [5, 11] = (8; 3): Acc(A ≤ B) = + 2

7 , γA,B = − 1
2 .

In the four cases, the acceptability index has the same value while the gH-comparison ratio has
significantly different values; it is then clear that the two indices will not produce comparable results.

The three order relations wLU , �LUand ≺LU in Definition 2 can be generalized in terms of the
gH-comparison index as follows:

Definition 6. Given two intervals A = [a−, a+] = (â; a) and B = [b−, b+] = (b̂; b̃) and γ− ≤ 0, γ+ ≥ 0
(eventually γ− = −∞ and/or γ+ = +∞ ) we define the following order relation, denoted wγ− ,γ+ ,

A wγ− ,γ+ B⇐⇒


â ≤ b̂

ã ≥ b̃ + γ+
(

â− b̂
)

ã ≤ b̃ + γ−
(

â− b̂
) (8)

It is immediate to see that the relation wγ− ,γ+ with γ− ≤ 0, γ+ ≥ 0 is reflexive (i.e., A wγ− ,γ+ A),
antisymmetric (i.e., if A wγ− ,γ+ B and B wγ− ,γ+ A then A = B) and transitive (i.e., if A wγ− ,γ+ B
and B wγ− ,γ+ C then A wγ− ,γ+ C). It follows that wγ− ,γ+ is a partial order and (KC,wγ− ,γ+) is a
lattice [59].

Definition 7. Given two intervals A = [a−, a+] = (â; a) and B = [b−, b+] = (b̂; b̃) and γ− ≤ 0, γ+ ≥ 0
(eventually γ− = −∞ and/or γ+ = +∞) we define the following (strict) order relation, denoted �γ− ,γ+ ,

A �γ− ,γ+ B⇐⇒


â < b̂

ã ≥ b̃ + γ+
(

â− b̂
)

ã ≤ b̃ + γ−
(

â− b̂
) (9)

The relation �γ− ,γ+ with γ− ≤ 0, γ+ ≥ 0 is asymmetric (i.e., only one of A �γ− ,γ+ B or
B �γ− ,γ+ A can be valid) and transitive.
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Definition 8. Given two intervals A = [a−, a+] = (â; a) and B = [b−, b+] = (b̂; b̃) and γ− ≤ 0, γ+ ≥ 0
(eventually γ− = −∞ and/or γ+ = +∞) we define the following (strong) order relation, denoted ≺γ− ,γ+ ,

A ≺γ− ,γ+ B⇐⇒


â < b̂

ã > b̃ + γ+
(

â− b̂
)

ã < b̃ + γ−
(

â− b̂
) (10)

The relation ≺γ− ,γ+ with γ− ≤ 0, γ+ ≥ 0 is asymmetric and transitive.
There are specific values of γ− and γ+ which make the order relation �γ− ,γ+ equivalent to

LU-order and other orders suggested in the literature (see [59] for details).

Proposition 5. Let A and B be two intervals; then it holds that

(1) A �LU B⇐⇒


â < b̂

b̃ ≤ ã + (b̂− â)
b̃ ≥ ã− (b̂− â)

⇐⇒ A �−1,1 B, i.e., (9) with γ− = −1 and γ+ = 1,

(2) A �CWM B⇐⇒ â < b̂, ã ≥ b̃⇐⇒ A �−∞,0 B, i.e., (9) with γ− = −∞ and γ+ = 0,
(3) A �CWm B⇐⇒ â < b̂, ã ≤ b̃⇐⇒ A �0,+∞ B, i.e., (9) with γ− = 0 and γ+ = +∞,
(4) A �LC B⇐⇒ â < b̂, a− ≤ b− ⇐⇒ â < b̂, b̃ ≤ ã + (b̂− â)⇐⇒ A �−∞,1 B, i.e., (9) with γ− = −∞

and γ+ = 1,
(5) A �UC B ⇐⇒ â < b̂, a+ ≤ b+ ⇐⇒ â < b̂, b̃ ≥ ã − (b̂ − â) ⇐⇒ A �−1,+∞ B, i.e., (9) with

γ− = −1 and γ+ = +∞.

By varying the two parameters −∞ ≤ γ− ≤ 0, 0 ≤ γ+ ≤ +∞, we obtain a continuum of partial
order relations for intervals and we have the following equivalences [59]:

Proposition 6. If A and B are two intervals then it holds that

(1) A wLU B⇐⇒ A w−1,1 B,
(2) A wCWM B⇐⇒ A w−∞,0 B,
(3) A wCWm B⇐⇒ A w0,+∞ B,
(4) A wLC B⇐⇒ A w−∞,1 B,
(5) A wUC B⇐⇒ A w−1,+∞ B.

Remark 2. To have A wγ−γ+ B we need â ≤ b̂ and b̃ + γ+
(

â− b̂
)
≤ ã ≤ b̃ + γ−

(
â− b̂

)
. It follows that

for the order relation wγ− ,γ+ with γ− ≤ 0, γ+ ≥ 0 in KC, we have the equivalence

A wγ− ,γ+ B ⇐⇒ (A �γ− ,γ+ B or A = B). (11)

Definition 9. For a given interval A = (â; ã), we define the following sets of intervals X which are

(a) (wγ− ,γ+)-dominated by A:

D<(A; γ−, γ+) = {X ∈ KC|A wγ− ,γ+ X}, (12)

(b) (wγ− ,γ+)-dominating A:

D>(A; γ−, γ+) = {X ∈ KC|X wγ− ,γ+ A}, (13)

(c) (wγ− ,γ+)-incomparable with A:

I(A; γ−, γ+) = {X ∈ KC|X /∈ D<(A; γ−, γ+), X /∈ D>(A; γ−, γ+)}. (14)
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Proposition 7. For any −∞ < γ− < 0, 0 < γ+ < +∞ and any intervals A, B ∈ KC, we have

a. A wγ− ,γ+ B if and only if D<(B; γ−, γ+) ⊆ D<(A; γ−, γ+);
b. A = B if and only if D<(A; γ−, γ+) = D<(B; γ−, γ+);
c. ∅ = D<(A; γ−, γ+)

⋂
I(A; γ−, γ+) = D>(A; γ−, γ+)

⋂
I(A; γ−, γ+);

d. {A} = D<(A; γ−, γ+)
⋂
D>(A; γ−, γ+);

e. KC = I(A; γ−, γ+)
⋃
D<(A; γ−, γ+)

⋃
D>(A; γ−, γ+).

Proof. The proof of all the properties can be easily obtained by direct manipulation of involved
definitions; we omit the details.

Consider the following example: the four figures show, for the given interval A = (0; 5) = [−5, 5],
the corresponding set of dominated, dominating and incomparable intervals, respectively the
sets D<(A; γ−, γ+) (red colored pictures), D>(A; γ−, γ+) (blue-colored regions) and I(A; γ−, γ+)

(in green color), for partial orders (wγ− ,γ+ ) with four different pairs (γ−, γ+). In particular
it is shown: (−1, 1)-dominance (i.e., LU-dominance) in Figure 1, (−0.5, 0.5)-dominance in Figure 2,
(−1, 2)-dominance in Figure 3 and (−1, 0.5)-dominance in Figure 4. All the figures consider intervals
X = (x̂; x̃) in the range x̂ ∈ [−15, 15] and x̃ ∈ [0, 20].

Figure 1. (−1, 1)-dominance (i.e., LU-dominance) for interval A in the midpoint-radius plane (x̂; x̃):
representation of the set of dominated (red), dominating (blue) and incomparable (green) intervals.

By inspecting the four figures, we see that with respect to the LU-order (Figure 1, with
γ+ = −γ− = 1) or an order with γ− + γ+ = 0 (Figure 2, with γ+ = −γ− = 0.5), the set of
incomparable intervals is symmetric with respect to the vertical line x̂ = â; when γ− + γ+ > 0
(Figure 3) the right part of the incomparable region, determined by an increase of γ+ > 1, tends to
become more vertical and reduces in favor of the dominated region (red colored) and the dominating
region (blue-colored). The opposite effect appears if γ+ < 1 decreases (Figure 4).

Figure 2. (−0.5, 0.5)-dominance for interval A in the midpoint-radius plane (x̂; x̃): representation of
the set of dominated, dominating and incomparable intervals.
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Figure 3. (−1, 2)-dominance for interval A in the midpoint-radius plane (x̂; x̃): representation of the
set of dominated, dominating and incomparable intervals.

Figure 4. (−1, 0.5)-dominance for interval A in the midpoint-radius plane (x̂; x̃): representation of the
set of dominated, dominating and incomparable intervals.

The lattice structure of KC, endowed with the partial order wγ− ,γ+ , can be further analyzed by
considering the basic concepts of least upper bound (lub or sup) and greatest lower bound (glb or inf ).
For two intervals A, B ∈ KC, a (common) upper bound is an interval Z ∈ KC such that A wγ− ,γ+ Z and
B wγ− ,γ+ Z. A (common) lower bound is an interval Z ∈ KC such that Z wγ− ,γ+ A and Z wγ− ,γ+ B.

The least upper bound for A, B, denoted lub(A, B) or sup(A, B), is a common upper bound Z
such that every other upper bound Z′ is such that Z wγ− ,γ+ Z′; analogously, the greatest lower bound
for A, B, denoted glb(A, B) or inf(A, B), is a common lower bound Z such that every other lower
bound Z′ is such that Z′ wγ− ,γ+ Z. It is immediate to see that inf(A, B) and sup(A, B) always exist
(and are unique) for any A, B ∈ KC (see [59] for details).

If S ⊂ KC is any subset of intervals, we say that S is bounded from below (lower bounded) with
respect to wγ− ,γ+ if and only if there exists L ∈ KC such that L wγ− ,γ+ X for all X ∈ S and we say that
S is bounded from above (upper bounded) with respect to wγ− ,γ+ if and only if there exists U ∈ KC such
that X wγ− ,γ+ U for all X ∈ S. If S ⊂ KC is both lower and upper bounded, we say it is bounded.

Every bounded subset of KC admits inf and sup.

Proposition 8. Consider a partial order wγ− ,γ+ on KC and let S ⊂ KC be any nonempty bounded subset of
intervals. Then, there exist both infγ− ,γ+(S), supγ− ,γ+(S) ∈ KC such that for all X ∈ S

inf(S) wγ− ,γ+ X wγ− ,γ+ sup(S). (15)

We also have, for all A ∈ KC,

A = inf(D<(A; γ−, γ+)) and A = sup(D>(A; γ−, γ+)). (16)
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Proof. We will prove only Equation (15) by a constructive procedure; the proof of equations in (16) is
immediate. Let L = (l̂; l̃) ∈ KC be any lower bound and U = (û; ũ) ∈ KC any upper bound for S and
consider the four lines, in the half-plane (x̂; x̃), with equations

x̃ = l̃ + γ+
(

x̂− l̂
)

and x̃ = l̃ + γ−
(

x̂− l̂
)

( through point L),

x̃ = ũ + γ+ (x̂− û) and x̃ = ũ + γ− (x̂− û) ( through point U).

They intersect the vertical axis (x̂ = 0) with intercepts, respectively, q+L = l̃ − γ+ l̂, q−L = l̃ − γ− l̂
and q+U = ũ − γ+û, q−U = ũ − γ−û. Considering an arbitrary element S = (ŝ; s̃) ∈ S, the two
lines trough S with angular coefficients γ+ and γ−, with equations x̃ = s̃ + γ+ (x̂− ŝ) and
x̃ = s̃ + γ− (x̂− ŝ), respectively, have intercepts q+S = s̃ − γ+ ŝ, q−S = s̃ − γ− ŝ and their sets
Q+ =

{
q+S |S ∈ S

}
and Q− =

{
q−S |S ∈ S

}
are both bounded with q+U ≤ q+S ≤ q+L and q−L ≤ q−S ≤ q−U

for all S ∈ S. Consequently, there exist the four real numbers q+in f = inf Q+, q+sup = sup Q+,

q−in f = inf Q−, q−sup = sup Q− with q+in f ≤ q+sup and q−in f ≤ q−sup. Finally, the intersection point of

the two lines x̃ = q+sup + γ+ x̂ and x̃ = q−in f + γ− x̂ corresponds to the interval infS ∈ KC; analogously,

the intersection point of the two lines x̃ = q+in f + γ+ x̂ and x̃ = q−sup + γ− x̂ corresponds to the interval
supS ∈ KC. More precisely, we have

infS =

(
q+sup − q−in f

γ− − γ+
;

γ−q+sup − γ+q−in f

γ− − γ+

)
and

supS =

(
q+in f − q−sup

γ− − γ+
;

γ−q+in f − γ+q−sup

γ− − γ+

)
This completes the proof.

If, for a nonempty bounded subset S ⊂ KC we have that inf(S) or sup(S) are elements of S,
then there exist the intervals min(S) or, respectively, max(S).

Interesting bounded subsets in KC are the "segment" with extremes A, B ∈ KC and the “interval”
with extremes A, B ∈ KC, defined, respectively, by

λ(A, B) = {Xλ|Xλ = (1− λ)A + λB, λ ∈ [0, 1]} , (17)

and, assuming A wγ− ,γ+ B (here, the dominance is essential),

[A, B] =
{

X ∈ KC|A wγ− ,γ+ X wγ− ,γ+ B
}

. (18)

If S is a bounded subset of KC, we clearly have S ⊆ [inf(S), sup(S)], with equality if and only if
S = [A, B] with A = inf(S), B = sup(S).

We conclude this section with an interesting property.

Proposition 9. For a given partial order wγ− ,γ+ with γ− ≤ 0, γ+ ≥ 0, consider the partial order w−γ+ ,−γ− ;
then, for all A, B,

A wγ− ,γ+ B⇔ (−B) w−γ+ ,−γ− (−A), (19)

where −A and −B are the opposite intervals of A and B.
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Proof. Starting with inequalities (8) that define A wγ− ,γ+ B and recalling that −A = (−â; ã) the
conclusion follows after a few simple algebraic manipulations.

In particular, if γ− + γ+ = 0, i.e., γ+ = −γ− = γ ≥ 0 so that (wγ− ,γ+) ≡ (w−γ+ ,−γ−) ≡ (wγ),
we have that for any bounded subset S ⊂ KC,

inf(S) = − sup(−S) (20)

where the (bounded) subset −S ⊂ KC is defined by

− S = {−X|X ∈ S} . (21)

4. Orders inKC and Gh-Difference

In this section, we express a partial order wγ− ,γ+ in terms of the gH-difference A 	gH B =

(â− b̂; |ã− b̃|).
Recall that from

A wγ− ,γ+ B ⇐⇒ (A �γ− ,γ+ B or A = B),

we can write

A wγ− ,γ+ B⇐⇒


â ≤ b̂

ã ≥ b̃ + γ+
(

â− b̂
)

ã ≤ b̃ + γ−
(

â− b̂
) (22)

and, for the reverse order,

A vγ− ,γ+ B⇐⇒


â ≥ b̂

ã ≤ b̃ + γ+
(

â− b̂
)

ã ≥ b̃ + γ−
(

â− b̂
)

.

(23)

Remark 3. One may think that condition â ≤ b̂ is redundant in (22); indeed, if γ− < 0 or γ+ > 0, it is implied
by the second and third conditions. But if ã = b̃ = 0 and γ− = γ+ = 0, the order reduces to the standard order
for real numbers while the second and the third conditions reduce to inequalities 0 ≥ 0 and 0 ≤ 0. For this
reason we will always include condition â ≤ b̂ in (22). If γ− < 0 or γ+ > 0 and the second and third conditions
are both satisfied with equality, then A = B and vice versa.

We have the following results.

Lemma 1. Let A, B ∈ KC and consider the lattice (KC,wγ− ,γ+) with γ− < 0 and γ+ > 0; then
(1a) A wγ− ,γ+ B =⇒ A	gH B wγ− ,γ+ 0 (in the right part of implication, γ+ is not involved);
(1b) A wγ− ,γ+ B =⇒ 0 wγ− ,γ+ B	gH A (in the right part of implication, γ− is not involved);
(2) A wγ− ,γ+ B⇐⇒

(
A	gH B wγ− ,γ+ 0 and B	gH A v−γ+ ,−γ− 0

)
;

(3) Assuming −γ− = γ+ = γ > 0, then A wγ B⇐⇒ (A	gH B wγ 0)⇐⇒ (B	gH A vγ 0).

Proof. For an interval X we have that X wγ− ,γ+ 0 if and only if (x̂ ≤ 0 and x̃ ≤ γ− x̂) and 0 wγ− ,γ+ X
if and only if (x̂ ≥ 0 and x̃ ≤ γ+ x̂); the conclusion follows from the definition of A	gH B and from
equality A	gH B = −(B	gH A).
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Remark 4. Considering the distinction between type (i) and type (ii) of gH-difference, several other implications
can be established, not used in this paper. For example in type (i), it is ã ≥ b̃ and we have

- A	gH B wγ− ,γ+ 0 if and only if
(

â ≤ b̂ and b̃ ≥ ã + γ−(b̂− â)
)

;

- A	gH B vγ− ,γ+ 0 if and only if
(

â ≥ b̂ and b̃ ≥ ã + γ+(b̂− â)
)

.

Figures below show, for the given interval A = (0; 5) = [−5, 5], the gH-differences
C = A	gH X comparing it with the corresponding set of dominated, dominating and incomparable
intervals in different cases of dominance. In particular it is shown: (−1, 1)-dominance in Figure 5,
(−0.5, 0.5)-dominance in Figure 6, (−1, 2)-dominance in Figure 7 and (−1, 0.5)-dominance in Figure 8.
In all figures, the three pictures on top give the gH-differences for intervals X with x̃ ≤ ã and the
pictures on bottom correspond to the intervals with x̃ > ã.

In Figures 7 and 8 we have γ−+ γ+ 6= 0 and the incomparable sets are not symmetric with respect
to the vertical line x̂ = â. In this cases, indeed, gH-differences A	gH X are differently asymmetric
and the position of A	gH X with respect to 0 does not correspond uniquely to the position of X with
respect to A; the distinction is determined by the midpoint values, i.e., when x̂ ≤ â or x̂ < â.

Figure 5. (−1, 1)-dominance for interval A: representation of the gH-differences A	gH X.

Figure 6. (−0.5, 0.5)-dominance for interval A: representation of the gH-differences A	gH X .
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Figure 7. (−1, 2)-dominance for interval A: representation of the gH-differences A	gH X .

Figure 8. (−1, 0.5)-dominance for interval A: representation of the gH-differences A	gH X .

5. Interval-Valued Functions

An interval-valued function is defined to be any F : [a, b] −→ KC with F(x) = [ f−(x), f+(x)] ∈ KC

and f−(x) ≤ f+(x) for all x ∈ [a, b]. In midpoint representation, we write F(x) =
(

f̂ (x); f̃ (x)
)

where

f̂ (x) ∈ R is the midpoint value of interval F(x) and f̃ (x) ∈ R+ ∪ {0} is the nonnegative half-length
of F(x):

f̂ (x) =
f+(x) + f−(x)

2
and f̃ (x) =

f+(x)− f−(x)
2

≥ 0

so that
f−(x) = f̂ (x)− f̃ (x) and f+(x) = f̂ (x) + f̃ (x).

We will frequently use a second graphical representation of F, obtained in the half-plane (ẑ; z̃),
z̃ ≥ 0, where each interval F(x) is identified with the point ( f̂ (x); f̃ (x)) and the arrows give the
direction of moving the intervals for increasing x ∈ [a, b].

Example 1. Let [a, b] = [−1.25, 2.5], F(x) =
(
−x3 + 2x2 + x− 1; 1 + sin(π

2 x)
)

in midpoint notation,
i.e., f̂ (x) = −x3 + 2x2 + x − 1, f̃ (x) = 1 + sin(π

2 x). Using the corresponding endpoint functions,
the graphical representation of F(x) in the plane (x, y) is given in Figure 9. For x = −1.25 we have
F(−1.25) = (2.828; 1.854) = [0.974, 4.682] and for x = 2.5 it is F(2.5) = (−1.625; 1.5) = [−3.125,−0.125];
by lucking at the midpoint representation in in Figure 10, the arrows start at point (2.828; 1.854) and terminate
at point [−3.125,−0.125]. The values of x ∈ [−1.25, 2.5] where the midpoint function f̂ (x) is minimal or
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maximal are, approximately, xm = −0.215 with interval value F(xm) = (−1.113; 1.110) and xM = 1.549
with interval value F(xM) = (1.631; 1.424).

Limits and continuity can be characterized, in the Pompeiu–Hausdorff metric dH for intervals,
by the gH-difference. The following result is well known [15]; the second equivalence defines the
continuity at an accumulation point.

Proposition 10. Let F : K −→ KC, K ⊆ R, be such that F(x) = [ f−(x), f+(x)] and let L = [l−, l+] ∈ KC.
Let x0 be an accumulation point of K. Then we have

lim
x→x0

F(x) = L ⇐⇒ lim
x→x0

(F(x)	gH L) = 0

where the limits are in the metric dH . If, in addition, x0 ∈ K, we have

lim
x→x0

F(x) = F(x0) ⇐⇒ lim
x→x0

(F(x)	gH F(x0)) = 0.

Figure 9. (Top) Interval-valued function F(x) in terms of endpoints functions (blue color);
(bottom) function F in terms of midpoint f̂ (x) (black color) and radius f̃ (x) (red color).

Figure 10. Graphical representation of F in the half-plane (ẑ; z̃).

Proof. Follows immediately from the property dH(F(x), L) =
∥∥F(x)	gH L

∥∥.
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In midpoint notation, let F(x) = ( f̂ (x); f̃ (x)) and L = (l̂; l̃); then the limits and continuity can be
expressed, respectively, as

lim
x→x0

F(x) = L ⇐⇒ lim
x→x0

f̂ (x) = l̂ and lim
x→x0

f̃ (x) = l̃ (24)

and
lim

x→x0
F(x) = F(x0) ⇐⇒ lim

x→x0
f̂ (x) = f̂ (x0) and lim

x→x0
f̃ (x) = f̃ (x0).

The following proposition connects limits to the order of intervals; we will consider the lattice
(KC,wγ− ,γ+) with partial order wγ−γ+defined for any fixed values of γ− ≤ 0 and γ+ ≥ 0. Analogous
results can be obtained for the reverse partial order vγ−γ+ .

Proposition 11. Let F, G, H : K −→ KC be interval-valued functions and x0 an accumulation point for K.

(i) if F(x) wγ−γ+ G(x) for all x ∈ K in a neighborhood of x0 and limx→x0 F(x) = L ∈ KC, limx→x0 G(x) =
M ∈ KC, then L wγ−γ+ M;

(ii) If F(x) wγ−γ+ G(x) wγ−γ+ H(x) for all x ∈ K in a neighborhood of x0 and limx→x0 F(x) =

limx→x0 H(x) = L ∈ KC, then limx→x0 G(x) = L.

Proof. We will use the midpoint notation for intervals. For the proof of i), we have F(x) wγ− ,γ+ G(x)

if and only if f̂ (x) ≤ ĝ(x) and g̃(x) + γ+
(

f̂ (x)− ĝ(x)
)
≤ f̃ (x) ≤ g̃(x) + γ−

(
f̂ (x)− ĝ(x)

)
;

from (24) we have at the limit that l̂ ≤ m̂ and m̃ + γ+
(

l̂ − m̂
)
≤ l̃ ≤ m̃ + γ−

(
l̂ − m̂

)
and this

means that L wγ−γ+ M. For the proof of ii) we have f̂ (x) ≤ ĝ(x), g̃(x) + γ+
(

f̂ (x)− ĝ(x)
)

≤ f̃ (x) ≤ g̃(x) + γ−
(

f̂ (x)− ĝ(x)
)

and ĝ(x) ≤ ĥ(x), h̃(x) + γ+
(

ĝ(x)− ĥ(x)
)
≤ g̃(x) ≤ h̃(x) +

γ−
(

ĝ(x)− ĥ(x)
)

; from f̂ (x) ≤ ĝ(x), ĝ(x) ≤ ĥ(x) we have that limx→x0 ĝ(x) = l̂ exists; on the

other hand, h̃(x) + γ+
(

ĝ(x)− ĥ(x)
)
≤ g̃(x) ≤ f̃ (x)− γ+

(
f̂ (x)− ĝ(x)

)
and from limx→x0 f̃ (x) =

l̃ = limx→x0 h̃(x), we also have limx→x0

(
h̃(x) + γ+

(
ĝ(x)− ĥ(x)

))
= l̃ + γ+(l̂ − l̂) = l̃ and

limx→x0

(
f̃ (x)− γ+

(
f̂ (x)− ĝ(x)

))
= l̃ − γ+(l̂ − l̂) = l̃ so that limx→x0 g̃(x) = l̃; the conclusion

follows from (24) applied to G.

Remark 5. Similar results as in Propositions 10 and 11 are valid for the left limit with x −→ x0, x < x0

(x ↗ x0 for short) and for the right limit x −→ x0, x > x0 (x ↘ x0 for short); the condition that lim
x→x0

F(x) = L

if and only if lim
x↗x0

F(x) = L = lim
x↘x0

F(x) is obvious.

The gH-derivative for an interval-valued function, expressed in terms of the difference quotient by
gH-difference, has been first introduced in 1979 by S. Markov (see [12]). In the fuzzy context it has been
introduced in [13,62]; the interval case has been analyzed in [15] and the fuzzy case again reconsidered
(level wise) in [30]. Several authors have then proposed alternative equivalent definitions and studied
its properties and applications; actually, it is of interest for an increasing number of researchers. A very
recent and complete description of the algebraic properties of gH-derivative can be found in [63].

Definition 10. Let x0 ∈]a, b[ and h be such that x0 + h ∈]a, b[, then the gH-derivative of a function
F :]a, b[→ KC at x0 is defined as

F′gH(x0) = lim
h→0

1
h
[F(x0 + h)	gH F(x0)] (25)

if the limit exists. The interval F′gH(x0) ∈ KC satisfying (25) is called the generalized Hukuhara derivative of F
(gH-derivative for short) at x0.
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For the function in Example 1, we have that both f̂ (x) and f̃ (x) are differentiable so that F′gH(x)
exists at all internal points (see Figures 11 and 12).

Figure 11. Graphical representation of the derivatives f̂ ′(x) and f̃ ′(x) (top) and F′gH(x) (bottom) in the

plane (x, y); the four points where f̃ ′(x) is zero correspond to a singleton gH-derivative.

Figure 12. Graphical representation of F′gH(x) in the half-plane (ẑ; z̃); the two marked points (red)

correspond to zeros of the derivative f̂ ′(x).

Also, one-side derivatives can be considered. The right gH-derivative of F at x0 is F′(r)gH(x0) =

lim
h↘0

1
h [F(x0 + h)	gH F(x0)] while to the left it is defined as F′(l)gH(x0) = lim

h↗0
1
h [F(x0 + h)	gH F(x0)].

The gH-derivative exists at x0 if and only if the left and right derivatives at x0 exist and are the
same interval.

The following properties are indeed immediate to prove.

Proposition 12. Let F : [a, b]→ KC be given, F(x) =
(

f̂ (x); f̃ (x)
)

. Then

(1) F(x) is left gH-differentiable at x0 ∈]a, b] if and only if f̂ (x) and f̃ (x) are left differentiable at x0;
in this case, F′(l)gH(x0) =

(
f̂ ′l (x0);

∣∣∣ f̃ ′l (x0)
∣∣∣)
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(2) F(x) is right gH-differentiable at x0 ∈ [a, b[ if and only if f̂ (x) and f̃ (x) are right differentiable at x0;
in this case, F′(r)gH(x0) =

(
f̂ ′r(x0);

∣∣∣ f̃ ′r(x0)
∣∣∣).

(3) F(x) is gH-differentiable at x0 ∈]a, b[ if and only if f̂ (x) is differentiable and f̃ (x) is left and
right differentiable at x0 with

∣∣∣ f̃ ′l (x0)
∣∣∣ = ∣∣∣ f̃ ′r(x0)

∣∣∣ and in this case, F′gH(x0) =
(

f̂ ′(x0);
∣∣∣ f̃ ′r(x0)

∣∣∣);
equivalently, if and only if F′(l)gH(x0) = F′(r)gH(x0).

In terms of midpoint representation F(x) =
(

f̂ (x); f̃ (x)
)

we can write

F(x + h)	gH F(x)
h

=

(
f̂ (x + h)− f̂ (x)

h
;

∣∣∣∣∣ f̃ (x + h)− f̃ (x)
h

∣∣∣∣∣
)

and taking the limit for h −→ 0, we obtain the gH-derivative of F, if and only if the two limits

lim
h−→0

f̂ (x+h)− f̂ (x)
h and lim

h−→0

∣∣∣∣ f̃ (x+h)− f̃ (x)
h

∣∣∣∣ exist in R; remark that the midpoint function f̂ is required to

admit the ordinary derivative at x. With respect to the existence of the second limit, the existence of the
left and right derivatives f̃ ′l (x) and f̃ ′r(x) is required with

∣∣∣ f̃ ′l (x)
∣∣∣ = ∣∣∣ f̃ ′r(x)

∣∣∣ = w̃F(x) ≥ 0 (in particular

w̃F(x) =
∣∣∣ f̃ ′(x)

∣∣∣ if f̃ ′(x) exists) so that we have

F′gH(x) =
(

f̂ ′(x); w̃F(x)
)

(26)

or, in the standard interval notation,

F′gH(x) =
[

f̂ ′(x)− w̃F(x), f̂ ′(x) + w̃F(x)
]

. (27)

Equation (26) is of help in the interpretation of gH-derivative; indeed, the separation of
midpoint and half-length components in F(x) is inherited by the gH-derivative F′gH(x). In particular,
the correspondence

F =
(

f̂ ; f̃
)

: f̂ , f̃

↓ ↓ ↓
F′gH =

(
f̂ ′; w̃F

)
: f̂ ′ , w̃F = | f̃ ′l | = | f̃

′
r |

(28)

shows that the midpoint derivative f̂ ′ is the derivative of the midpoint f̂ while the half-length
derivative is the absolute value | f̃ ′l | = | f̃

′
r | of the left and right derivatives of the half-length f̃ (with

f̃ ′l = ± f̃ ′r , for details see [33,35]).

For a function F : [a, b]→ KC, we can define the gH-comparison index-function of F(x) by

CIF(x) =
f̂ (x)
‖F(x0)‖ 2

=
f̂ (x)√∣∣∣ f̂ (x)
∣∣∣2 + ∣∣∣ f̃ (x)

∣∣∣2 .

If F(x) has gH-derivative F′gH(x) =
(

f̂ ′(x); w̃F(x)
)

at x, we can consider the gH-comparison

index of F′gH at x, given by

CIF′gH
(x) =

f̂ ′(x)∥∥∥F′gH(x)
∥∥∥

2

=
f̂ ′(x)√∣∣∣ f̂ ′(x)
∣∣∣2 + |w̃F(x)|2
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and if f̂ ′(x) 6= 0, the ratio

γF′(x) =
w̃F(x)
f̂ ′(x)

is well defined so that CIF′gH
(x) = sgn( f̂ ′(x))√

1+(γF′ (x))
2 (sgn(z) = 1 if z > 0, sgn(z) = 0 if z = 0, sgn(z) = −1

if z < 0). We can use the index γF′(x) extensively, to valuate the order relations F′gH(x) wγ− ,γ+ 0
and similar.

The partial order (wγ− ,γ+) can be appropriately introduced for the gH-derivative by the inequality

γ− ≤ γF′(x) ≤ γ+, i.e., γ− ≤ w̃F(x)
f̂ ′(x)

≤ γ+; if f̂ and f̃ are differentiable, we have w̃F(x) = | f̃ ′(x)| and

the inequality is equivalent to
f̂ ′(x) ≥ 0

f̃ ′(x) ≤ γ+ f̂ ′(x)
f̃ ′(x) ≥ γ− f̂ ′(x)

or


f̂ ′(x) ≤ 0

f̃ ′(x) ≥ γ+ f̂ ′(x)
f̃ ′(x) ≤ γ− f̂ ′(x)

. (29)

If f̃ is not differentiable or if its left and right derivatives do not have the same absolute value,
then F′gH(x) does not exist, but possibly the left and right gH-derivatives F′(l)gH , F′(r)gH exist and we

have F′(l)gH(x) = ( f̂ ′l (x); | f̃ ′l (x)|), F′(r)gH(x) = ( f̂ ′r(x); | f̃ ′r(x)|), where (·)′l and (·)′r are the notations for
left and right derivatives. In this case, the inequalities γ− ≤ γF′

(l)
(x) ≤ γ+ are equivalent to


f̂ ′l (x) ≥ 0

f̃ ′l (x) ≤ γ+ f̂ ′l (x)
f̃ ′l (x) ≥ γ− f̂ ′l (x)

or


f̂ ′l (x) ≤ 0

f̃ ′l (x) ≥ γ+ f̂ ′l (x)
f̃ ′l (x) ≤ γ− f̂ ′l (x)

(30)

and the inequalities γ− ≤ γF′
(r)
(x) ≤ γ+ are equivalent to


f̂ ′r(x) ≥ 0

f̃ ′r(x) ≤ γ+ f̂ ′r(x)
f̃ ′r(x) ≥ γ− f̂ ′r(x)

or


f̂ ′r(x) ≤ 0

f̃ ′r(x) ≥ γ+ f̂ ′r(x)
f̃ ′r(x) ≤ γ− f̂ ′r(x)

. (31)

Observe that if f̂ ′(x) = 0, then the other conditions in (29) and (30) become f̃ ′r(x) = f̃ ′l (x) = 0 so

that f̃ ′(x) = 0; as a consequence, if f̂ ′(x) = 0 and
∣∣∣ f̃ ′l (x)

∣∣∣ = ∣∣∣ f̃ ′r(x)
∣∣∣ 6= 0, then we cannot have neither

F′gH(x) wγ− ,γ+ 0 nor F′gH(x) vγ− ,γ+ 0, i.e., F′gH(x) and 0 are incomparable.

Remark 6. As we have seen, the existence of gH-derivative F′gH(x) is equivalent to the existence (and their
equality) of both the left and right gH-derivatives, defined as follows

F′(l)gH(x) = lim
h↗0

F(x + h)	gH F(x)
h

∈ KC

and

F′(r)gH(x) = lim
h↘0

F(x + h)	gH F(x)
h

∈ KC;

indeed, we have F′(l)gH(x) =
(

f̂ ′l (x);
∣∣∣ f̃ ′l (x)

∣∣∣) and F′(r)gH(x) =
(

f̂ ′r(x);
∣∣∣ f̃ ′r(x)

∣∣∣).

In many cases, the midpoint function is defined as f̃ (x) = |ϕ(x)| where ϕ(x) is differentiable; then, if also
f̂ ′(x) exists, we have that F(x) is gH-differentiable and F′gH(x) =

(
f̂ ′(x); |ϕ′(x)|

)
.
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6. Monotonicity of Functions with Values in (KC,wγ− ,γ+)

Monotonicity of interval-valued functions has not been much investigated and this is partially
due to the lack of unique meaningful definition of an order for interval-valued functions. By definition
of the lattice (KC,wγ− ,γ+), endowed with the partial order wγ− ,γ+ (γ− ≤ 0 and γ+ ≥ 0) and with
use of the reverse order vγ− ,γ+ , we can analyze monotonicity and, using the gH-difference, related
characteristics of inequalities for intervals.

Definition 11. Let F : [a, b]→ KC be given, F(x) =
(

f̂ (x); f̃ (x)
)

. We say that F is
(a-i) (wγ− ,γ+)-nondecreasing on [a, b] if x1 < x2 implies F(x1) wγ− ,γ+ F(x2) for all x1, x2 ∈ [a, b];
(a-ii) (wγ− ,γ+)-nonincreasing on [a, b] if x1 < x2 implies F(x2) wγ− ,γ+ F(x1) for all x1, x2 ∈ [a, b];
(b-i) (strictly) (�γ− ,γ+)-increasing on [a, b] if x1 < x2 implies F(x1) �γ− ,γ+ F(x2) for all x1, x2 ∈ [a, b];
(b-ii) (strictly) (�γ−,γ+)-decreasing on [a, b] if x1 < x2 implies F(x2) �γ−,γ+ F(x1) for all x1, x2 ∈ [a, b];
(c-i) (strongly) (≺γ−,γ+)-increasing on [a, b] if x1 < x2 implies F(x1) ≺γ−,γ+ F(x2) for all x1, x2 ∈ [a, b];
(c-ii) (strongly) (≺γ−,γ+)-decreasing on [a, b] if x1 < x2 implies F(x2) ≺γ−,γ+ F(x1) for all x1, x2 ∈ [a, b].

If one of the six conditions is satisfied, we say that F is monotonic on [a, b]; the monotonicity is strict if
(b-i,b-ii) or strong if (c-i,c-ii) are satisfied.

The monotonicity of F : [a, b]→ KC can be analyzed also locally, in a neighborhood of an internal
point x0 ∈]a, b[, by considering condition F(x) w−γ− ,γ+ F(x0) (or condition F(x) v−γ+ ,−γ− F(x0)) for
x ∈]a, b[ and |x− x0| < δ with a positive small δ.

Definition 12. Let F : [a, b] → KC be given, F(x) =
(

f̂ (x); f̃ (x)
)

and x0 ∈]a, b[. Let Uδ(x0) =

{x; |x− x0| < δ} (for positive δ) denote a neighborhood of x0. We say that F is (locally)
(a-i) (wγ− ,γ+)-nondecreasing at x0 if x1 < x2 implies F(x1) wγ− ,γ+ F(x2) for all x1, x2 ∈ Uδ(x0) ∩ [a, b]
and some δ > 0;
(a-ii) (wγ− ,γ+)-nonicreasing at x0 if x1 < x2 implies F(x2) wγ− ,γ+ F(x1) for all x1, x2 ∈ Uδ(x0) ∩ [a, b] and
some δ > 0;
(b-i) (strictly)(�γ− ,γ+)-increasing at x0 if x1 < x2 implies F(x1) �γ− ,γ+ F(x2) for all x1, x2 ∈ Uδ(x0)∩ [a, b]
and some δ > 0;
(b-ii) (strictly)(�γ− ,γ+)-decreasing at x0 if x1 < x2 implies F(x2) �γ− ,γ+ F(x1) for all x1, x2 ∈ Uδ(x0) ∩
[a, b] and some δ > 0;
(c-i) (strongly) (�γ− ,γ+)-increasing at x0 if x1 < x2 implies F(x1) ≺γ− ,γ+ F(x2) for all x1, x2 ∈
Uδ(x0) ∩ [a, b] and some δ > 0;
(c-ii) (strongly) (�γ− ,γ+)-decreasing at x0 if x1 < x2 implies F(x2) ≺γ− ,γ+ F(x1) for all x1, x2 ∈
Uδ(x0) ∩ [a, b] and some δ > 0.

We have F(x) wγ− ,γ+ F(x0) if and only if f̂ (x)− f̂ (x0) ≤ 0, f̃ (x)− f̃ (x0) ≥ γ+
(

f̂ (x)− f̂ (x0)
)

and f̃ (x)− f̃ (x0) ≤ +γ−
(

f̂ (x)− f̂ (x0)
)

, i.e., for increasing case,

x < x0 =⇒


f̂ (x)− f̂ (x0) ≤ 0

f̃ (x)− γ+ f̂ (x) ≥ f̃ (x0)− γ+ f̂ (x0)

f̃ (x)− γ− f̂ (x) ≤ f̃ (x0)− γ− f̂ (x0),
(32)

so that F(x) is (wγ− ,γ+)-monotonic at x0 according to the monotonicity of the three functions f̂ (x),
f̃ (x)− γ+ f̂ (x) and f̃ (x)− γ− f̂ (x):

Proposition 13. Let F : [a, b]→ KC be given, F(x) =
(

f̂ (x); f̃ (x)
)

and x0 ∈]a, b[. Then
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(i) F(x) is (wγ− ,γ+)-nondecreasing at x0 if and only if f̂ (x) is nondecreasing, f̃ (x)−γ+ f̂ (x) is nonincreasing
and f̃ (x)− γ− f̂ (x) is nondecreasing at x0;

(ii) F(x) is (wγ− ,γ+)-nonincreasing at x0 if and only if f̂ (x) is nonincreasing, f̃ (x)−γ+ f̂ (x) is nondecreasing
and f̃ (x)− γ− f̂ (x) is nonincreasing at x0.

Analogous conditions are valid for strict and strong monotonicity.

The following scheme summarizes these results:

F is (wγ− ,γ+)↗ ⇐⇒


f̂ is ↗ ,

f̃ − γ+ f̂ is ↘ ,
f̃ − γ− f̂ is ↗ ,

F is (wγ− ,γ+)↘ ⇐⇒


f̂ is ↘ ,

f̃ − γ+ f̂ is ↗ ,
f̃ − γ− f̂ is ↘ .

Remark 7. In terms of the endpoint functions f− and f+, given by f− = f̂ − f̃ , f+ = f̂ + f̃ , the conditions
in (32) are written as

x < x0 =⇒


f+(x)− f+(x0) + f−(x)− f−(x0) ≤ 0

(1− γ+) ( f+(x)− f+(x0)) ≥ (1 + γ+) ( f−(x)− f−(x0))

(1− γ−) ( f+(x)− f+(x0)) ≤ (1 + γ−) ( f−(x)− f−(x0))

(33)

and the conditions on f+ and f−, for the monotonicity of F are less intuitive than the ones on f̂ and f̃ :

F is (wγ− ,γ+)↗ ⇐⇒


f+ + f− is ↗ ,

(1− γ+) f+ − (1 + γ+) f− is ↘ ,
(1− γ−) f+ − (1 + γ−) f− is ↗ ,

F is (wγ− ,γ+)↘ ⇐⇒


f+ + f− is ↘ ,

(1− γ+) f+ − (1 + γ+) f− is ↗ ,
(1− γ−) f+ − (1 + γ−) f− is ↘ .

If we divide the three inequalities in (32) by x− x0 we obtain, for F to be (wγ− ,γ+)-nondecreasing
at x0, 

f̂ (x)− f̂ (x0)
x−x0

≥ 0
f̃ (x)− f̃ (x0)

x−x0
≤ γ+

(
f̂ (x)− f̂ (x0)

x−x0

)
f̃ (x)− f̃ (x0)

x−x0
≥ γ−

(
f̂ (x)− f̂ (x0)

x−x0

) . (34)

Analogously, for F to be (wγ− ,γ+)-nonincreasing at x0, we obtain

f̂ (x)− f̂ (x0)
x−x0

≤ 0
f̃ (x)− f̃ (x0)

x−x0
≥ γ+

(
f̂ (x)− f̂ (x0)

x−x0

)
f̃ (x)− f̃ (x0)

x−x0
≤ γ−

(
f̂ (x)− f̂ (x0)

x−x0

) . (35)

Suppose now that f̃ and f̂ have both left and right (finite) derivatives at x0; denote them by
f̃ ′l (x0), f̃ ′r(x0), f̂ ′l (x0), f̂ ′r(x0). Taking the limits in (34) and (35) with x ↗ x0 and x ↘ x0, we obtain the
conditions for (�γ− ,γ+)-monotonicity of F at x0:
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Proposition 14. Let F : [a, b]→ KC be given, F(x) =
(

f̂ (x); f̃ (x)
)

and assume that f̂ and f̃ have left and
right derivatives at an internal point x0 ∈]a, b[. The following are necessary conditions for local monotonicity:
(i-n) If F is (wγ− ,γ+)-nondecreasing or (wγ− ,γ+)-increasing at x0, then

f̂ ′r(x0) ≥ 0 , f̂ ′l (x0) ≥ 0
f̃ ′r(x0) ≤ γ+ f̂ ′r(x0) , f̃ ′l (x0) ≤ γ+ f̂ ′l (x0)

f̃ ′r(x0) ≥ γ− f̂ ′r(x0) , f̃ ′l (x0) ≥ γ− f̂ ′l (x0)

(36)

(ii-n) If F is (wγ− ,γ+)-nonincreasing or (wγ− ,γ+)-decreasing at x0, then
f̂ ′r(x0) ≤ 0 , f̂ ′l (x0) ≤ 0

f̃ ′r(x0) ≥ γ+ f̂ ′r(x0) , f̃ ′l (x0) ≥ γ+ f̂ ′l (x0)

f̃ ′r(x0) ≤ γ− f̂ ′r(x0) , f̃ ′l (x0) ≤ γ− f̂ ′l (x0)

. (37)

The following are sufficient conditions for local strong monotonicity:
(i-s) If 

f̂ ′r(x0) > 0 , f̂ ′l (x0) > 0
f̃ ′r(x0) > γ+ f̂ ′r(x0) , f̃ ′l (x0) > γ+ f̂ ′l (x0)

f̃ ′r(x0) < γ− f̂ ′r(x0) , f̃ ′l (x0) < γ− f̂ ′l (x0)

(38)

then F is strongly (≺γ− ,γ+)-increasing at x0;
(ii-s) If 

f̂ ′r(x0) < 0 , f̂ ′l (x0) < 0
f̃ ′r(x0) < γ+ f̂ ′r(x0) , f̃ ′l (x0) < γ+ f̂ ′l (x0)

f̃ ′r(x0) > γ− f̂ ′r(x0) , f̃ ′l (x0) > γ− f̂ ′l (x0)

(39)

then F is strongly (≺γ− ,γ+)-decreasing at x0.

If f̂ ′(x) and f̃ ′(x) exist on ]a, b[, then the conditions for monotonicity can be expressed in the
obvious way as for elementary calculus, in terms of the derivatives f̂ ′(x), f̃ ′(x)− γ+ f̂ ′(x) and f̃ ′(x)−
γ− f̂ ′(x). Therefore, the necessary conditions for nonincreasing F(x) are

f̂ ′(x) ≤ 0
f̃ ′(x)− γ+ f̂ ′(x) ≥ 0
f̃ ′(x)− γ− f̂ ′(x) ≤ 0

. (40)

and for nondecreasing F(x) are 
f̂ ′(x) ≥ 0

f̃ ′(x)− γ+ f̂ ′(x) ≤ 0
f̃ ′(x)− γ− f̂ ′(x) ≥ 0

. (41)

With reference to Example 1, the functions f̂ (x), f̃ (x)− γ+ f̂ (x) and f̃ (x)− γ− f̂ (x) are pictured
in Figure 13 and their derivatives are in Figure 14; the partial order is fixed with γ− = −1 and γ+ = 1,
i.e., wLU .

Now, but only for the case of a partial order wγ− ,γ+ with the condition that γ− + γ+ = 0, i.e.,
γ+ = −γ− = γ > 0, we can establish a strong connection between the monotonicity of F and the sign
of its gH-derivative F′gH(x). Denote the corresponding partial order w−γ,γ simply by wγ.
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Figure 13. Functions f̂ (x), f̃ (x)− γ+ f̂ (x) and f̃ (x)− γ− f̂ (x) in Example 1.

Figure 14. Derivatives of functions f̂ (x), f̃ (x)− γ+ f̂ (x) and f̃ (x)− γ− f̂ (x) in Example 1.

Proposition 15. Let F :]a, b[→ KC be given, F(x) =
(

f̂ (x); f̃ (x)
)

and assume F has gH-derivative F′gH(x)
at the internal points x ∈]a, b[. Let γ > 0 be fixed. Then

(1) If F is (wγ)-nondecreasing on ]a, b[, then for all x, F′gH(x) vγ 0;

(2) If F is (wγ)-nonincreasing on ]a, b[, then for all x, F′gH(x) wγ 0.

Proof. We prove only (i). By definition, F′gH(x) = lim
h→0

1
h [F(x + h) 	gH F(x)] and F is continuous.

If F is nondecreasing, then, for sufficiently small h > 0 we have F(x) wγ F(x + h) and so 0 wγ

F(x + h) 	gH F(x) which gives 0 wγ
F(x+h)	gH F(x)

h ; by taking the limit for h ↘ 0, 0 wγ F′gH(x).
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On the other hand, for h < 0, we have F(x + h) wγ F(x), i.e., F(x + h) 	gH F(x) wγ 0 which

gives
F(x+h)	gH F(x)

−h wγ 0; by taking the limit for h↗ 0 we get (−F′gH(x)) wγ 0 and, changing sign on
both sides, it is F′gH(x) vγ 0. The proof of (ii) is similar.

An analogous result is also immediate, relating strong (local) monotonicity of F to the “sign” of its
left and right derivatives F′(l)gH(x) =

(
f̂ ′l (x);

∣∣∣ f̃ ′l (x)
∣∣∣) and F′(r)gH(x) =

(
f̂ ′r(x);

∣∣∣ f̃ ′r(x)
∣∣∣); at the extreme

points of [a, b], we consider only right (at a) or left (at b) monotonicity and right or left derivatives.
Again we assume the condition γ+ = −γ− = γ > 0.

Proposition 16. Let F : [a, b]→ KC be given, F(x) =
(

f̂ (x); f̃ (x)
)

with left and/or right gH-derivatives at
a point x0 ∈ [a, b]. Then
(i.a) if 0 ≺γ F′(l)gH(x0), then F is strongly (≺γ)-increasing on [x0 − δ, x0] for some δ > 0 (here x0 > a);
(i.b) if 0 ≺γ F′(r)gH(x0), then F is strongly (≺γ)-increasing on [x0, x0 + δ] for some δ > 0 (here x0 < b);
(ii.a) if 0 �γ F′(l)gH(x0), then F is strongly (≺γ)-decreasing on [x0 − δ, x0] for some δ > 0 (here x0 > a);
(ii.b) if 0 �γ F′(r)gH(x0), then F is strongly (≺γ)-decreasing on [x0, x0 + δ] for some δ > 0 (here x0 < b).

Proof. We prove only (i.a). From
(

f̂ ′l (x);
∣∣∣ f̃ ′l (x)

∣∣∣) �γ 0 we have f̂ ′l (x0) > 0 and
∣∣∣ f̃ ′l (x0)

∣∣∣ < γ f̂ ′l (x0),

i.e., −γ f̂ ′l (x0) < f̃ ′l (x0) < γ f̂ ′l (x0); then 0 < f̃ ′l (x0) + γ f̂ ′l (x0), f̃ ′l (x0)− γ f̂ ′l (x0) < 0 and the conclusion
follows from conditions (38).

We conclude this section with the following

Example 2. Function F : [a, b] → KC, F(x) =
(

f̂ (x); f̃ (x)
)

, for x ∈ [a, b] = [−2, 4], is defined by

f̂ (x) = −x3 + 4x2 + 3x− 1 and f̃ (x) =
∣∣x2 − x− 2

∣∣ (Figure 15).

Figure 15. (Top) functions f̂ (x) = −x3 + 4x2 + 3x − 1 (black) and f̃ (x) =
∣∣x2 − x− 2

∣∣ (red);

(Bottom) interval function F(x) =
[

f̂ (x)− f̃ (x), f̂ (x) + f̃ (x)
]
.

Remark that function f̂ (x) is differentiable on ]a, b[ with f̂ ′(x) = −3x2 + 8x + 3 and f̃ (x) is
differentiable with f̃ (x)′ = (2x− 1)sign(x2 − x− 2) for x 6= −1 and x 6= 2; at these two points the left
and right derivatives exist: f̃ ′l (−1) = −3, f̃ ′r(−1) = 3, f̃ ′l (2) = −3, f̃ ′r(2) = 3.

Function F(x) is gH-differentiable on ]a, b[ (including the points x = −1 and x = 2) and
F′gH(x) =

(
−3x2 + 8x + 3; |2x− 1|

)
(Figure 16). Also right and left gH-derivatives exist at a = −2

and b = 4, respectively. Considering the points a1 = −0.527525, a2 = −0.189255, a3 = 2.527525
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and a4 = 3.522588, the corresponding gH-derivatives are (approximately) F′gH(a1) = [−4.11, 0],
F′gH(a2) = [0, 2.757], F′gH(a3) = [0, 8.11], F′gH(a1) = [−12.09, 0].

Figure 16. (Top) derivatives of f̂ (x) at all points (black) and of f̃ (x) at x 6= −1 and x 6= 2 (red);
(Bottom) gH-derivative of function F(x); points ai, i = 1, ..., 4, are marked in red color.

With γ+ = −γ− = 1, i.e., with (wLU)-order, the functions f̂ (x), f̃ (x)− γ+ f̂ (x) and f̃ (x)− γ− f̂ (x)
are pictured in Figure 17.

Figure 17. Functions f̂ (x), f̃ (x)− γ+ f̂ (x) and f̃ (x)− γ− f̂ (x) in Example 2.

According to Proposition 13, necessary conditions for decreasing F(x) are satisfied on [a, a1] and
[a4, b] and for increasing F(x) are satisfied on [a2, a3]. Corresponding necessary conditions using the
sign of the derivatives of functions f̂ (x), f̃ (x)−γ+ f̂ (x) and f̃ (x)−γ− f̂ (x) can be checked in Figure 18;
at the points x = −1 and x = 2 we can apply the conditions involving left and right derivatives
of f̃ (x).
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Figure 18. Derivatives of functions f̂ (x), f̃ (x)− γ+ f̂ (x) and f̃ (x)− γ− f̂ (x) in Example 2.

Finally, according to Proposition 16, it is easy to check that the sufficient conditions for strong≺LU
monotonicity are satisfied: decreasing on [−2, a1] and [a4, 4], increasing on [a2, a3]. In the remaining
points x ∈]a1, a2[ and x ∈]a3, a4[ the sufficient conditions for strong ≺γ monotonicity are not satisfied
(the interval-valued gH-derivatives of F(x) contain zero as an interior value).

7. Conclusions and Further Work

In the first part of this work we have introduced a general framework for ordering intervals,
using a comparison index based on gH-difference; the suggested approach includes most of the partial
orders proposed in the literature and preserves important desired properties, including that the space
of real intervals is a lattice with the bounded property (all bounded sets of intervals have a supremum
and an infimum interval).

The monotonicity properties are defined and analyzed in terms of the suggested partial orders
and the relevant connections with gH-derivative are established.

In Part II of the paper, we will further develop new results to define extremal points (local or
global minimum or maximum) in terms of the same general partial orders developed in this part
and we will analyze the important concepts of concavity and convexity by the use of first-order and
second-order gH-derivatives.

Interesting connections with differential geometry and with periodic curves (as in [64–66]) will
be analyzed.
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