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Abstract: This study deals with approaches for a social-ecological friendly European bioeconomy
based on biomass from industrial crops cultivated on marginal agricultural land. The selected crops
to be investigated are: Biomass sorghum, camelina, cardoon, castor, crambe, Ethiopian mustard,
giant reed, hemp, lupin, miscanthus, pennycress, poplar, reed canary grass, safflower, Siberian elm,
switchgrass, tall wheatgrass, wild sugarcane, and willow. The research question focused on the
overall crop growth suitability under low-input management. The study assessed: (i) How the growth
suitability of industrial crops can be defined under the given natural constraints of European marginal
agricultural lands; and (ii) which agricultural practices are required for marginal agricultural land
low-input systems (MALLIS). For the growth-suitability analysis, available thresholds and growth
requirements of the selected industrial crops were defined. The marginal agricultural land was
categorized according to the agro-ecological zone (AEZ) concept in combination with the marginality
constraints, so-called ‘marginal agro-ecological zones’ (M-AEZ). It was found that both large marginal
agricultural areas and numerous agricultural practices are available for industrial crop cultivation
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on European marginal agricultural lands. These results help to further describe the suitability of
industrial crops for the development of social-ecologically friendly MALLIS in Europe.

Keywords: bioeconomy; bio-based industry; biomass; bioenergy; industrial crop; perennial crop;
low-input agriculture; marginal land; MALLIS; sustainable agriculture

1. Introduction

In the targeted ‘ideal’ bioeconomy, the production of biomass will take social, ecological, and
health aspects into account [1] to help achieve the sustainable development goals 2015–2030. From the
bioeconomy’s ambitions and definitions, conclusions can be drawn that the growth of the bioeconomy
demands both a reduction of waste and losses and an adequate supply of sustainably grown biomass [2].
However, an increasing biomass production also carries a higher risk of social-ecological threats, such
as increased use of fertilizers and pesticides, negative impacts from land-use changes and additional
pressure on water resources [3–5]. The EU Horizon 2020 project MAGIC (Grant agreement ID: 727698)
was established with the ambition of supporting the mitigation of these risks. This study deals with
the basic findings of the ‘Low-input agricultural practices for industrial crops on marginal land’.

Low-input agriculture (Figure 1) generally provides a number of promising practices that can
help improve the social-ecological sustainability of biomass production while maintaining economic
feasibility [6]. Here, a key parameter is the ratio between on- and off-farm inputs. According to Biala
et al. (2007) [6], in low-input agriculture, the use of on-farm inputs should be maximized and off-farm
inputs minimized. Currently, there are four concrete and real farming system types which follow these
low-input agriculture principles (taken from Reference [7]): (i) Integrated farming, (ii) organic farming,
(iii) precision farming, and (iv) conservation farming.

Energies 2019, 12, x FOR PEER REVIEW 2 of 26 

 

to further describe the suitability of industrial crops for the development of social-ecologically 
friendly MALLIS in Europe. 

Keywords: bioeconomy; bio-based industry; biomass; bioenergy; industrial crop; perennial crop; 
low-input agriculture; marginal land; MALLIS; sustainable agriculture 

 

1. Introduction 

In the targeted ‘ideal’ bioeconomy, the production of biomass will take social, ecological, and 
health aspects into account [1] to help achieve the sustainable development goals 2015–2030. From 
the bioeconomy’s ambitions and definitions, conclusions can be drawn that the growth of the 
bioeconomy demands both a reduction of waste and losses and an adequate supply of sustainably 
grown biomass [2]. However, an increasing biomass production also carries a higher risk of social-
ecological threats, such as increased use of fertilizers and pesticides, negative impacts from land-use 
changes and additional pressure on water resources [3–5]. The EU Horizon 2020 project MAGIC 
(Grant agreement ID: 727698) was established with the ambition of supporting the mitigation of these 
risks. This study deals with the basic findings of the ‘Low-input agricultural practices for industrial 
crops on marginal land’. 

Low-input agriculture (Figure 1) generally provides a number of promising practices that can 
help improve the social-ecological sustainability of biomass production while maintaining economic 
feasibility [6]. Here, a key parameter is the ratio between on- and off-farm inputs. According to Biala 
et al. (2007) [6], in low-input agriculture, the use of on-farm inputs should be maximized and off-farm 
inputs minimized. Currently, there are four concrete and real farming system types which follow 
these low-input agriculture principles (taken from Reference [7]): (i) Integrated farming, (ii) organic 
farming, (iii) precision farming, and (iv) conservation farming. 

 
Figure 1. Principles of low-input agriculture (Source: This study). Figure 1. Principles of low-input agriculture (Source: This study).



Energies 2019, 12, 3123 3 of 25

For each of these farming systems, crop selection was found to be highly relevant for efficient use
of resources during their cultivation [8–11]. The resource use efficiency becomes even more relevant
for industrial crop cultivation on marginal agricultural lands (Figure 2). This is because both the yield
potential and the resilience of the agro-ecosystems (their robustness against cropping failures) may
be lower on marginal agricultural lands compared to fertile agricultural lands [9,12–17]. According
to Elbersen et al. [12], marginal agricultural lands can be defined as ‘lands having limitations which in
aggregate are severe for sustained application of a given use and/or are sensitive to land degradation, as a result of
inappropriate human intervention, and/or have lost already part or all of their productive capacity as a result
of inappropriate human intervention and also include contaminated and potentially contaminated sites that
form a potential risk to humans, water, ecosystems, or other receptors’. The implementation of a low-input
approach that can potentially reduce the risk to humans, water, ecosystems or other receptors is mainly
dependent on the farming system and requires site-specific consideration [18,19].
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Figure 2. Illustration of relevant biophysical constraints and both economic and social-ecological
challenges selected for marginal agricultural land low-input systems (Source: This study). Numbers
1–7 indicate the major biophysical constraints on marginal lands as defined by the Joint Research
Centre (JRC) [20–22]. The other parameters either influence (main constraints) or follow on (combined
constraints) from the major biophysical constraints, which limit the site-specific plant growth suitability
(Table A1). The economic and social-ecological challenges have been added, due to their increasing
relevance for modern agricultural systems [23–26]. These challenges can render a site marginal
under both economic and social-ecological aspects, such as environmental protection, biodiversity
conservation, infrastructure, markets and landscape appearance.

2. Material and Methods

For ethical reasons, low-input industrial crop cultivation on marginal agricultural lands is to be
preferred in order to reduce competition for agricultural land use with both food crop cultivation and
biodiversity conservation [9,27–30]. As favorable agricultural lands should primarily be used for food
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crop cultivation, this study focuses on the use of marginal agricultural lands for low-input industrial
crop cultivation. Consequently, it aimed at:

1. Mapping the major climatic and biophysical constraints across European marginal
agricultural lands;

2. Assessing the growth suitability of pre-selected industrial crops under the prevailing climatic
and biophysical constraints; and

3. The development of social-ecologically friendly marginal agricultural land low-input systems
(MALLIS) for industrial crop cultivation.

To address the above-mentioned research objectives, a thorough literature review was conducted
using the search engines of SCOPUS (Elsevier, B.V.) and Google Scholar (Google LLC.). The pre-selection
of the industrial crops (Table 1) which was based on a multi-criteria analysis (among others, the
maturity of knowledge on industrial crops on marginal land and crops’ productivity on marginal land)
did not form part of this study. Instead, the study deals with the further evaluation of the growth
suitability of 19 promising industrial crops (Table 1), and thus how they meet the requirements for
successful development of MALLIS.

Table 1. Overview of physiological and technical characteristics of the industrial crops.

Crop Physiology

Common Name Binomial Name Life Cycle Photo-Synzthetic
Pathway

Purpose/Type of
Use

Biomass sorghum Sorghum bicolor L. Moench Annual C4 Multipurpose
Camelina Camelina sativa L. Crantz Annual C3 Oil
Cardoon Cynara cardunculus L. Perennial C3 Multipurpose

Castor bean Ricinus communis L. Annual C3 Oil
Crambe Crambe abyssinica Hochst Ex Re Fries Annual C3 Oil

Ethiopian mustard Brassica carinata A. Braun Annual C3 Oil
Giant reed Arundo donax L. Perennial C3 Lignocellulosic

Hemp Cannabis sativa L. Annual C3 Multipurpose
Lupin Lupinus mutabilis Sweet Perennial C3 Multipurpose

Miscanthus Miscanthus × giganteus Greef et Deuter Perennial C4 Lignocellulosic
Pennycress Thlaspi arvense L. Annual C3 Oil

Poplar Populus spp. Perennial C3 Lignocellulosic
Reed canary grass Phalaris arundinacea L. Perennial C3 Lignocellulosic

Safflower Carthamus tinctorius L. Annual C3 Oil
Siberian elm Ulmus pumila L. Perennial C3 Lignocellulosic
Switchgrass Panicum virgatum L. Perennial C4 Lignocellulosic

Tall wheatgrass Thinopyrum ponticum Podp. Z.-W. Liu
and R.-C. Wang Perennial C3 Lignocellulosic

African fodder
cane

Saccharum spontaneum L. ssp.
aegyptiacum (Willd.) Hack. Perennial C4 Lignocellulosic

Willow Salix spp. Perennial C3 Lignocellulosic

The following sub-sections present the concepts underlying the key elements of this study. These
key elements are (i) the identification of marginal agro-ecological zones (M-AEZ), (ii) the determination
of the growth suitability of the pre-selected industrial crops in the prevailing M-AEZ, and (iii) the
development of MALLIS for industrial crop cultivation.

2.1. The Identification of Marginal Agro-Ecological Zones (M-AEZ)

To achieve the first two key elements, mapping was performed as follows: Marginal agricultural
lands were mapped [31] according to the biophysical limitations defined and classified by JRC [20–22].
The mapping was limited to a so-called ‘agricultural mask’. This mask includes all land that was
classified in an agricultural land cover class in at least one of the four Corine Land Cover (CLC)
versions (1990, 2000, 2006, and 2012). Further details of the methodological approaches are provided in
the following sub-sections.
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2.2. Determination of the Growth Suitability of the Pre-Selected Industrial Crops in the Prevailing M-AEZ

The approach to mapping the growth suitability of the 19 pre-selected crops involves the identification
of the minimum and maximum climate and soil requirements per crop. The growth suitability
requirements of the selected industrial crops were determined according to the literature [32,33]. They
were used to map and calculate both the distribution and size of the crop-specific growth suitability areas
across European marginal agricultural land. The thresholds for the suitability parameters were set as
the starting point at which the crop can grow and survive. The suitable area is, thus, given as the area
where all suitability factors are within the minimum and maximum range. In this mapping assessment,
a distinction was made between suitable and unsuitable area per crop. However, no further classification
of the suitable area was made, for example, into high to low suitability. For an easier interpretation of the
results, the European land surface was divided into the three agro-ecological zones (AEZ): Mediterranean
(AEZ1), Atlantic (AEZ2) and Continental and Boreal (AEZ3) (Figure 3, Table 2). Each combination of an
AEZ with at least one biophysical constraint (Table A1) refers to as ‘M-AEZ’ (Table 2).Energies 2019, 12, x FOR PEER REVIEW 6 of 26 
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from Reference [34]).

The basic crop-specific biophysical growth requirements were compiled according to Ramirez-
Almeyda et al. (2017) [32]. Each biophysical parameter was divided into a number of classes.
For instance, the parameter “precipitation” was divided into eight classes (in mm a−1): 0–100,
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100–200, 200–300, 300–400, 400–500, 500–600, 600–800, and 800–1000 (Table A2). Afterwards, the
growth suitability of each crop was ranked according to these classes based on available literature.
Additionally, the basic climatic growth requirements of the crops were compiled (Table 3).

Table 2. Relevance of the constraints and constraint combinations expressed as agricultural area (km2)
per AEZ.

Constraint(-s) a AEZ 1 AEZ 2 AEZ 3 AEZ 1-3

RT 62,247 51,823 41,449 155,519
CL 27,752 4564 79,780 112,096
WT 2526 65,322 40,233 108,081
TR 31,332 5710 11,362 48,404

RT-TR 15,636 14,656 2157 32,449
CL-RT 25,675 593 6064 32,332
CL-WT 701 13,141 16,263 30,105

FE 15,205 3087 5246 23,538
CH 6883 3642 11,987 22,512

CL-FE 14,527 291 3524 18,342
WT-RT 348 10,541 1745 12,634
CL-TR 2920 1577 4189 8686

CL-RT-TR 4240 1072 1150 6462
CL-WT-RT 95 1531 3472 5098
CL-WT-TR 12 4663 61 4736
CL-FE-RT 4272 47 97 4416

CL-FE-RT-TR 4272 47 97 4416
CL-WT-RT-TR 603 2361 1421 4385

CL-FE-TR 151 2361 1421 3933
WT-TR 51 1935 976 2962
FE-RT 1268 603 289 2160

CL-WT-FE 0 1344 594 1938
WT-RT-TR 4 1158 58 1220

WT-FE 11 986 198 1195
CL-CH 1173 0 0 1173
FE-CH 200 1 950 1151
CH-TR 273 46 654 973

CL-WT-FE-RT 0 185 697 882
CH-RT 280 107 195 582
WT-CH 37 239 154 430

CL-WT-FE-TR 0 417 1 418
CL-WT-FE-RT-TR 1 143 106 250

CL-FE-CH 244 0 0 244
FE-TR 117 49 51 217

WT-FE-RT 0 87 10 97
WT-FE-TR 0 77 1 78
CL-CH-RT 54 0 0 54
FE-RT-TR 7 32 6 45
CH-RT-TR 26 2 16 44
CL-CH-TR 18 0 0 18
FE-CH-TR 1 0 17 18
FE-CH-RT 4 0 7 11
CL-WT-CH 5 0 0 5
WT-FE-CH 0 0 1 1

Total marginal 218,962 192,302 235,569 646,833
Total not marginal 422,565 538,855 704,818 1,666,238

Total 641,527 731,157 940,387 2,313,071
a CH: Salinity or sodicity; CL: Low temperature, high temperature or dryness; FE: Acidity, alkalinity or soil organic
matter; RT: Shallow rooting depth or unfavorable texture; TR: Steep slope; WT: Limited soil drainage or excess
soil moisture.
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Table 3. Main thermal growth requirements of the 19 pre-selected industrial crops.

Crop Factors of Thermal Growth Requirements

Base Temperature
(◦C)

Minimum Length of
Growing Season (d)

Minimum of Growing Degree
Days a (Thermal Time, ◦C d)

Biomass sorghum 8 100 1500
Camelina 5 90 1000
Cardoon 7.5 120 1100

Castor bean 10 135 1500
Crambe 5 100 1200

Ethiopian mustard 5 120 2000
Giant reed 5 210 1843

Hemp 6 90 1400
Lupin 0 222 2260

Miscanthus 5 78 1700
Pennycress 4 90 1200

Poplar 0 180 2200
Reed canary grass 0 111 2000

Safflower 2 120 1800
Siberian elm 6 150 2000
Switchgrass 6 140 2060

Tall wheatgrass 4 90 1200
Wild sugarcane 10 210 2400

Willow 2 180 2000
a Accumulated mean daily temperature equal to or above than the crop-specific base temperature.

When mapping the crop-specific growth suitability areas, we only considered whether a crop
could potentially grow. We did not take different yield levels into account. In the constraint-specific
ranking, classes 0 and 1 were denoted as not suitable. Therefore, if any of the basic climatic growth
requirements are not met or any of the constraint-specific rankings falls within class 0 or 1, the area
is designated as ‘not suitable’. The result was an overview of the potential growth suitability of
the pre-selected industrial crops across European marginal agricultural land. This means that only
agricultural areas were considered; woodlands and urban areas were excluded from the mapping of
marginal agricultural land.

2.3. Definition and Methodology of Marginal Land Low-Input Systems (MALLIS) Development for
Industrial Crops

In this sub-section, the definition of best-practice low-input management systems for the
pre-selected industrial crops (Table 1) is elaborated. This ties in with current knowledge on
best low-input agricultural practices for food crop production on good soils [6]. The concept of
best-practice low-input agricultural cropping systems considers management approaches from many
categories of agricultural production, including organic, integrated, conservation agriculture and
mixed crop-livestock farming [35–37]. These all have one constant: Low-input agricultural practices
seek to optimize the use of on-farm resources while minimizing off-farm resources [6,35,36]. This
leads to a more ‘closed’ cycle of production (and less external inputs) [37]. Note, that this more
closed production cycle requires both more advanced agronomic skills [38,39] and additional links
within the value chain, such as application of biochar [40–49] or phosphate salt recovery from the
digestates [50,51]. Therefore, practical guidelines for industrial crops are also under development
within the MAGIC project.

Agronomic strategies for the successful application of low-input agricultural practices in a crop
management system should be seen as a set of strategies that take into consideration both the
interactions between plants, soil, the atmosphere and the efficient use of inputs to enable the highest
output with minimal (on-farm and/or off-farm) input supply [6,52–54]. Agronomic strategies for
low-input systems may also match good agricultural practices—cultivation practices that address
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economic, social and environmental sustainability [37] for high-quality food and non-food agricultural
products [38,55]. Such practices include the implementation of appropriate crop rotations, pasture
management, manure application, soil management that maintains or improves soil organic matter,
and other land-use practices, as well as conservation tillage practices [8,37,48].

Diversity in crop rotations is a way to reduce reliance on synthetic chemicals, control weeds
and pests, maintain soil fertility and reduce soil erosion, prevent soil-borne diseases, leading to the
reduction of off-farm inputs [54]. Reduced soil tillage is a way to reduce soil erosion, improve water
buffer capacity, and increase both soil fertility and organic matter [37]. Water management is a major
challenge in the Common Agricultural Policy (CAP) and requires the monitoring of soil and crop water
status to schedule irrigation efficiently. Fertilizers and agrochemicals should be applied following
the good agricultural practices, e.g., to replace only the amount of nutrients that were extracted by
harvest [37].

Crop protection should be done in a way that maximizes the biological prevention of pests and
diseases, in particular by promoting integrated pest management (IPM) and though appropriate rates
and timings of agrochemicals. Preventive crop protection can also be supported by the selection of
resistant cultivars and varieties, crop sequences, crop associations (e.g., intercropping), and proper
cultural practices [35].

The development of ‘marginal agricultural land low-input systems’, referred to as ‘MALLIS’,
is based on the following definition: ‘MALLIS is defined as a set of low-input practices which are
relevant management components to form viable cropping systems on marginal (arable) lands under
specific climatic conditions and are sustainable in both socio-economic and environmental terms’. The
implementation of MALLIS should enable farmers to cultivate industrial crops on marginal agricultural
lands, considering both economic and socio-environmental aspects. Consequently, MALLIS should
not only allow for profitable net farm income under the challenging biophysical growth conditions of
marginal lands. It also helps to (i) reduce off-farm inputs, such as synthetic fertilizer, pesticides and
energy (e.g., for water pumps, fuel, crop harvest machinery, storage, processing, etc.) and (ii) mitigate
negative macro-economic externalities (GHG emissions, biodiversity loss, ground- and surface water
contamination, soil organic matter loss, erosion, degradation, land-use change), while (iii) ensuring
feasible economic benefits at farm level. Therefore, the development of MALLIS considers not only the
biophysical constraints, but also socio-economic and ecological demands of the respective areas.

The conceptualization of MALLIS development always begins with the selection of the most
promising industrial crop, because all other agricultural practices (tillage, fertilization, weeding,
irrigation, etc.) strongly depend on the type and site-specific performance of the crop. This MAEZ-
specific growth-suitability ranking (and mapping) of the pre-selected industrial crops was based
on the crop-suitability rankings. The basic climatical growth suitability thresholds are presented
in Table 3. After the identification of suitable crops, the conceptualization of MALLIS for MAEZ
was done on a general level (regional scale), since detailed best practice recommendations for the
optimized management of agricultural practices very much depend on local conditions (field-to-farm
scale) [56–60]. Therefore, the MALLIS for the new field trials to be conducted in the MAGIC project
(field-to-farm scale) were developed considering three main MAEZ criteria:

• The crop’s performance according to site-specific climatic and geographic conditions, especially
under given biophysical constraints;

• The kind and quality of biomass required in the given infrastructure, processing industries and
distribution channels (markets);

• The agricultural status of the farm(s), e.g., the techniques, knowledge and resources available to
ensure successful cultivation of the crop.
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3. Results and Discussion

3.1. Marginal Agro-Ecological Zones in Europe

As illustrated in Figure 2, there are various biophysical constraints and socio-economic challenges
which need to be considered for MALLIS development. Table 2 shows the relevance of the numerous
biophysical constraint combinations within each of the three AEZ. According to category 1 (‘natural
constraints’), the total marginal area across European land surface amounts to 646,833 km2 (Table 2)—an
area as large as France. However, this marginal agricultural land is widely scattered across Europe
(Figure 4). Furthermore, there were 38 combinations of ≥ 2 constraints identified (Table 2). Across
Europe, the most prevailing constraints are adverse rooting conditions, (155,519 km2), adverse climatic
conditions (112,096 km2) and excessive soil wetness (108,081 km2). The total marginal arable land
characterized by soil constraints accounts for about 535,000 km2. This is about 155,000 km2 more than
reported by Gerwin et al. (2018) (380,000 km2) [56,61]. It is likely that this difference results from the
use of different thresholds for determining what is marginal and what is not. However, both values are
within the same range.Energies 2019, 12, x FOR PEER REVIEW 10 of 26 
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3.2. The Growth Suitability of the Pre-Selected Industrial Crops in the Prevailing M-AEZ

Potentially suitable industrial crops were identified for virtually all types of marginal agricultural
land across Europe (Table A3). Each AEZ appears to have its own best-adapted industrial crops. A closer
look at the type of biomass reveals that, for instance, oil crops are more suitable for Mediterranean
regions than for the Atlantic region (Table A3). Among the woody lignocellulosic crops, Siberian elm
outperforms poplar in the Mediterranean region (Table A3). The dominating lignocellulosic crops are
tall wheatgrass, followed by reed canary grass and miscanthus (Table A3).

3.3. Marginal Agricultural Land Low-Input Systems (MALLIS) for Industrial Crop Cultivation

Sections 3.1 and 3.2 revealed both the major M-AEZ in Europe and the growth suitability of
the pre-selected industrial crops. This section explains how MALLIS could be developed using the
information on M-AEZ and the crops’ growth suitabilities. Furthermore, it discusses which other
aspects need to be taken into account for MALLIS development in order to improve both the economic
and social-ecological sustainability of the MALLIS in the long term.

3.3.1. Agricultural Measures for MALLIS Development

The potential effects of structured and systematic agricultural measures on agriculture facing
biophysical constraints are provided in Tables A4 and A5. Furthermore, the literature review revealed
that there are several ways to overcome each of the biophysical constraints. Tables A4 and A5 provide
an overview of the suitability of agricultural management options for dealing with the prevailing
biophysical constraints on marginal agricultural lands. For example, the use of mulch helps to increase
the soil thermal time, and thus increase the yield level in regions affected by water limitations and low
temperatures [62].

3.3.2. Environmental Threats and Social Requirements

MALLIS implementations at a regional scale should also take both environmental threats and
social requirements into consideration. Marginal agricultural lands could be characterized as fragile
environments being highly susceptible to any types of external disturbance and input [6,12,63].
Key measures that can be highly recommended for the improvement of resilience include (i) the
selection of low-demanding industrial crops (reduces the amount of fertilizers, and thus the risk of
nutrient-leaching) [27], (ii) the development of heterogeneous landscape concepts (many small fields
rather than only a few large fields) [64–67], and (iii) the implementation of agricultural diversification
measures (intercropping, crop rotations, wildflower strips) [35,68,69]. Consequently, the assessment of
the environmental performance of MALLIS should not be exclusively based on the global warming
potential, but also on a number of other environmental impact categories, such as human toxicity
threats, marine ecotoxicity, freshwater eutrophication and freshwater ecotoxicity, biodiversity and soil
quality, pollution [70], and use of resources, e.g., water resources [71]. However, to enable a long-term
sustainable implementation of MALLIS, besides the environmental impact categories, the social
demands and the economic and market aspects must also be taken into account. The potential and
viability of agricultural investments have to take into account land and labor costs, inputs, such as
mechanical equipment costs, and income (which is linked with the market opportunities) [72]. The
socioeconomic impacts can be measured via quantitative and qualitative parameters [73]. Moreover,
aspects related to technological viability should also be taken into consideration. The yield loss
associated with cultivation on marginal agricultural land may lead to higher contents of nutrients, such
as nitrogen and potassium in the biomass, which may complicate further processing of the biomass [74].
Generally, this means that the prevailing structures of the existing agricultural systems [75], the farm
typology [76], and the behavior patterns of the rural communities [24,77] require specific bottom-up
research structures, such as the Integrated Renewable Energy Potential Assessment (IREPA) [78]. This
would enable a better adaptation of MALLIS to the farm diversity [76,77] and the local community.
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Finally, this could potentially have a positive influence on the overall public acceptance of the
MALLIS [79].

3.3.3. Biodiversity Conservation

Another aspect worthy of discussion is the ecosystem functionality [80] of the pre-selected
industrial crops in terms of biodiversity conservation. Concerning the soil ecological functions
fulfilled by pedofauna, recent works on the following of bioenergy crops establishment on marginal
contaminated soils showed that belowground fauna was stimulated [81]. Higher densities and
diversity of soil invertebrates were found under miscanthus compared to annual cropping systems [82],
as well as the positive effect on microbial diversity [83]. These crops were specifically selected as
representative of those that deliver the most important crop-based biomass resources for current
biomass industries. However, the recent (alarming) decrease in pollinator abundances across Central
European landscapes [23,25] may induce changes in the priorities for crop selection, and thus the
development of MALLIS in the future. For example, pollinator-supporting traits, such as nectar
provision and high resistance to pests and diseases could become more important than economic traits,
such as biomass yield and biomass quality if public awareness of this topic continues to increase [84].
There are a number of reports on alternative pollinator-supporting industrial crops, such as perennial
wild plants [85–89], cup plant (Silphium perfoliatum L.) [90–92], sida (Sida hermaphrodita L.) [93–95],
and amaranth (Amaranthus hypochondriacus L.) [96–98]. However, many of the pre-selected industrial
crops are also expected to have positive effects on pollinators. These include camelina [99–101],
crambe [100,102], safflower [103,104], lupin [105,106], cardoon [107,108] and willow [63,109,110].
In addition, the suitability of the MALLIS for habitat networking in combination with other highly
diverse cropping systems, such as species-rich meadows [111] should be investigated to improve the
overall efficiency of the MALLIS for biodiversity conservation. Also, marginal land can anchor rich
biodiversity components (plants with high significance for locals, e.g., for medicinal or food purposes),
and change of land use should take this element into account [112].

3.3.4. Explanatory Setup of a MALLIS on a Shallow Stony Soil

This section provides an example on how MALLIS could be implemented on a marginal agricultural
site characterized by two biophysical constraints [21]: (i) Shallow soil (<35 cm topsoil depth); and (ii)
stoniness (≥15% of topsoil volume is coarse material, rock outcrop or boulder). Due to these constraints,
both the rooting conditions and the soil fertility are lower than in deep soils. It is economically not
feasible to grow food crops under these conditions, and thus, the cultivation of certain industrial crops
would not compete with food security on sites like this. However, not all industrial crops are able to
grow well under these conditions either. Thus, the identification of a best-adapted industrial crop is
the first step in developing a site-specifically suitable MALLIS. In this case, perennial crops, such as
miscanthus and switchgrass are found to be suitable because (i) they do not require soil tillage and
sowing each year compared to annual crops which helps both increasing soil fertility [113,114] and
reducing erosion [115] in the long term, (ii) they can manage to root deep enough despite shallow soil,
because their root systems are stronger and more developed than those of annual crops, and (iii) the
climatic conditions meet the crop-specific growth requirements. In this case, the perennial C4-grass
miscanthus (Miscanthus × giganteus Greef et Deuter) was chosen (Figure 5), due to its low demanding
nature and high biomass yield potential under challenging conditions [116]. This is part of ongoing
research on the cultivation of miscanthus on marginal agricultural lands in MAGIC [117]. In the
EU-funded project ‘GRACE’ (Grant agreement ID: 745012), it is also investigated how the cultivation
of miscanthus on marginal agricultural lands can be optimized [118].

Preliminary results of a field trial in southwest Germany indicate that miscanthus can establish
well (Figure 5) under the given conditions [119]. The dry matter yield (DMY) averages 13 Mg ha−1

a−1 from the second year onwards [119]. This is a medium DMY level compared with miscanthus
grown on good soil [116,120,121]. However, it should be mentioned that miscanthus requires very
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low nitrogen (N) fertilization [122], especially when harvested for combustion in winter [60,123]. This
is because miscanthus has very efficient nutrient-recycling when harvested in winter [79,124]. The
low demand for nitrogen fertilization renders a key low-input factor [6,32] of this MALLIS, due to
an improvement of the on-farm/off-farm-ratio in favor of the on-farm inputs. Furthermore, low N
fertilization levels help improve the ecosystem services of miscanthus cultivation, such as groundwater
protection, environmental protection [26,80,120], while maintaining the soil nitrogen balance [125].
Overall, both the improved ecosystem services and low production costs justify the medium DMY level
of miscanthus at comparable marginal agricultural sites (shallow soil, stoniness, etc.). Consequently,
MALLIS must be developed under careful consideration of the given site-specific conditions [57].
Therefore, the major development steps are (i) the identification of the growth conditions and the
biophysical constraints [20,20,22], (ii) the selection of best-adapted crops, and (iii) the conceptualization
of best-adapted site-specific low-input agricultural practices.Energies 2019, 12, x FOR PEER REVIEW 13 of 26 
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3.4. Recommendations and Outlook

The results of the suitability mapping are in line with the available literature [17,56,61,121,126–128].
Uncertainties were identified within the basic climatic requirements, because in some cases the
distribution does not meet the expectations. This could be caused by the wide genetic variation within
both perennial crop species, such as switchgrass and miscanthus, and annual crop species, such as
camelina and safflower. To improve the representability, the basic climatic growth requirements should
either include ranges (minimum–maximum) for each parameter per crop or different genotypes for
each crop. For instance, there is a wide genetic variation among miscanthus genotypes with regard
to their heat and cold tolerance [129–131]. For some annual industrial crops, such as camelina and
safflower, winter-annual genotypes are also available [132–135]. It would very likely further increase
the potential growth suitability of the pre-selected industrial crops to take these genetic variations
into account. Nevertheless, this study provides valuable first insights into the potential distribution
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of growth suitability, contributing to an improved crop selection for the development of MALLIS
across Europe.

The results of this study indicate that there are large areas potentially available for industrial crop
cultivation. This is in line with available literature [17,56,61,126,127]. In many cases there are ≥2 crops
suitable for the same area (Table A3). Thus, careful consideration should be given to the selection
of crops or their most favorable combination according to the site conditions [136]. For an adequate
crop selection, site-specific conditions other than the growth suitability should also be considered,
such as the local social-ecological needs and the distance to the markets. For instance, if a site is
prone to erosion, a perennial cropping system would be preferable to an annual (rotational) cropping
system [115,137–139]. This could help ensure a more sustainable biomass production from both an
environmental and economic point of view in the long term [140]. It would reduce the risk of further
degradation through erosion, and thus help maintain or even improve the resilience of the given
agroecosystem [14,141,142].

In this study, the growth suitability of the crops did not include yield and quality levels. This
means that potential differences in yield or biomass quality between suitable industrial crops for the
various types of marginal land across Europe remain unclear. Furthermore, the study did not cover
macroeconomic aspects, such as infrastructure and market accessibility, which also play a vital role
in the determination of the best site-specific crop selections across European marginal agricultural
lands. In some cases, the suitability of an industrial crop also depends on the local conditions of
the farms. For example, either the technical equipment or the know-how may impede an optimal
MALLIS implementation. However, this study contributes to the ongoing research into how biomass
for a growing bioeconomy can be provided in low-input systems, as the growth suitability of the
crops forms the basis for the successful development of MALLIS. The site-specific growth suitability
presented here are also available in the form of a decision support system [136]. This aims at enabling
the selection of suitable case study regions for further optimization of site-specific MALLIS for industrial
crop cultivation. In addition, the missing links mentioned above, including detailed information on
the best crop- and site-specific harvesting technology and guidelines for farmers are also explored
in the EU Horizon 2020 project MAGIC (GA 727698) [117]. As climate-change-forced shifts in the
distribution of both marginal agricultural land and growth suitability of the industrial crops are to be
expected [126,143–145], they are also under investigation [58,146]. This could help to better prepare
European agriculture for the projected severe effects of climate change [143,144,147].

4. Conclusions

This study introduces the concept of marginal agricultural land low-input systems (MALLIS) for
industrial crop cultivation. MALLIS are defined as sets of agricultural low-input practices to form
viable cropping systems on marginal agricultural lands under specific climatic conditions. These
sets of practices are intended to be holistically sustainable in both social-ecological and economic
terms. The study identified the climatic and geophysical constraints on biomass production and the
ability of 19 industrial crops to cope with these limitations. Overall, the industrial crops showed high
suitability for low-input cultivation on marginal agricultural lands across Europe. However, further
investigations of MALLIS are required to investigate their social-ecological sustainability and climate
change effects on marginal agricultural lands.
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Appendix A

Table A1. Overview of the three categories of marginality constraints as classified within this
deliverable. Category 1 was adapted from Reference [20]. Categories 2 and 3 were developed based on
the literature review.

Constraint Category Factor Category Thresholds/Specifications

Category 1: “Natural
constraint based

marginality”

Low temperature
(insufficient thermal time)

Length of growing period ≤ 180 days
Thermal time sum ≤ 1500 degree days

Dryness—Too dry
conditions Precipitation/Potential Evapotranspiration (P/ET ≤ 0.5)

Limited soil drainage and
excess soil moisture

Wet 80 cm > 6 months
Wet 40 cm > 11 months
Poorly or very poorly drained
Gleyic colour pattern within 40 cm
Soil moisture above field capacity for >230 days (excessive
soil moisture)

Unfavorable soil texture
and stoniness

Topsoil with stones (15% of topsoil volume is coarse material, rock
outcrop, boulder)
Texture class in half of the soil in a profile of 100 cm vertical depth is
sand, loamy sand
Organic soil, defined as having organic matter ≥ 30% of at least 40 cm
Topsoil with 30% or more clay and presence of vertical properties
within 100 cm

Shallow rooting depth
The physical anchorage of the rooting system (rooting depth ≤ 30 cm)
The provision/storage of nutrients and water
The possibility of mechanized tillage

Poor chemical properties
(Soil salinity, soil sodicity,

soil acidity)

The possibility of mechanized tillage
Limitation to plant growth, due to toxic elements in soil
Vulnerability to waterlogging
Damage to soil structure (and consequently increase in risk of erosion)
Limited availability of nutrients for plants
Salinity ≥ 4 dS/m in topsoil
Sodicity ≥ 6 ESP in half or more of the 100-cm surface layer
Soil Acidity of topsoil with pH (H20) ≤ 5

Steep slope Slope ≥ 15%

Category 2:
“Socio-economic-political

constraints”

Lack of awareness (alternative strategies—lack of know-how, etc.)
Social norms (adoption of same cropping patterns as done by elders)
Economic viability, especially of set-aside, small land holdings
Lack of infrastructure
Lack of policies
Lack of government programs, such as extension services

Category 3: “Endangered
Sites”

Lands which are currently productive, but will be transformed into
marginal lands in the long term if not managed properly (also, lack of
know-how or lack of awareness from farmers/government).
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Table A2. Crop-suitability ranking (from 0 = unsuitable to 4 = very suitable, whereas both 0 and 1 were
defined as marginal) according to precipitation.

Crop
Precipitation Classes (mm year−1 or mm (Growth Season of Annuals)−1)

0–100 100–200 200–300 300–400 400–500 500–600 600–800 800–1000

Biomass sorghum 0 1 2 3 4 4 4 4
Camelina 3 4 4 4 4 4 2 2
Cardoon 0 0 0 1 2 3 3 4

Castor bean 1 2 2 3 3 4 4 4
Crambe 3 4 4 4 4 4 2 2

Ethiopian mustard 2 3 3 3 3 4 4 4
Giant reed 0 0 1 1 2 3 4 4

Hemp 0 1 2 3 4 4 4 3
Lupin 0 1 2 2 3 4 4 4

Miscanthus 0 0 0 0 1 2 3 4
Pennycress 1 1 2 4 4 4 4 4

Poplar 0 0 0 0 0 0 2 3
Reed canary grass 0 0 0 0 0 0 2 3

Safflower 0 1 2 3 4 4 4 3
Siberian elm 0 0 1 2 3 4 4 4
Switchgrass 0 0 0 1 2 3 4 4

Tall wheatgrass 0 0 1 3 4 4 4 4
Wild sugarcane 0 1 1 2 3 4 4 4

Willow 0 0 0 0 0 0 2 3

Table A3. Total area (km2) per selected industrial crop suitable for cultivation on marginal land across
Europe (EU-28) and share (%) of marginal land suitable for cultivation of the crop.

Crop
AEZ 1 AEZ 2 AEZ 3 AEZ 1–3

km2 % km2 % km2 % Km2 %

Biomass sorghum 193,118 88 31,322 16 6323 3 230,763 36
Camelina 209,761 96 186,018 97 183,667 78 579,446 90
Cardoon 172,804 79 71,822 37 83,249 35 327,875 51
Castor 160,990 74 10,658 6 3412 1 175,060 27

Crambe 216,577 99 175,244 91 130,959 56 522,780 86
Ethiopian mustard 184,988 84 43,177 22 10,111 4 238,276 37

Giant reed 129,501 59 2459 1 1173 0 133,133 21
Hemp 162,794 74 80,422 42 17,392 7 260,608 41
Lupin 201,888 92 36,790 19 37,162 16 275,840 43

Miscanthus 130,634 60 83,820 44 88,010 37 302,464 48
Pennycress 208,388 95 64,812 34 76,465 32 349,665 56

Poplar 48,166 22 159,938 83 150,428 64 358,532 60
Reed canary grass 45,863 21 124,828 65 147,470 63 318,161 53

Safflower 201,689 7 145,382 76 16,164 92 363,235 58
Siberian elm 179,148 82 20,611 11 28,261 12 228,020 36
Switchgrass 160,238 73 19,732 10 26,628 11 206,598 32

Tall wheatgrass 211,255 96 151,166 79 172,355 73 534,776 88
Wild sugarcane 46,516 21 252 0 0 0 46,768 7

Willow 56,880 26 164,191 85 119,536 51 340,607 56
Average 153,747 66 82,771 43 68,356 33 304,874 49



Energies 2019, 12, 3123 16 of 25

Table A4. Suitability ranking of selected agricultural management options for competing with the prevailing biophysical constraints on arable marginal lands (from
−3 = strong negative effect to +3 = strong positive effect).

Agricultural Management
Options

Biophysical Constraints

Climatical Soil/Terrain

Low
Temperature

High
Temperature Dryness Excessive

Moisture
Poor Soil
Drainage

Unfav.
Texture/Stoniness

Shallow
Rooting Depth

Steep
Slope

Low Soil
Fertility Alkalinity Acidity Salinity Other

Contamination

Structured measures

Line irrigation −1 0 1 −3 −3 −1 1 −3 1 0 0 1 0
Sprinkler irrigation 0 2 2 −3 0 2 1 1 1 1 1 1 0

Microirrigation (drip irrigation) 0 0 3 −3 1 3 3 2 2 0 0 2 0
Deficit irrigation technique 0 0 3 −3 1 2 2 3 3 1 1 −1 0

Terracing 0 0 0 0 0 0 0 3 0 0 0 0 0
Field shaping, planting density

and geometry 0 0 1 1 0 2 2 1 0 0 0 0 0

Hedges 1 0 0 1 1 0 0 1 0 0 0 0 0
Water channels −1 0 −3 2 3 0 0 −3 0 1 1 0 0

Systematic measures

Catch crops 1 2 1 2 3 1 −1 0 1 0 0 1 1
Crop rotation 0 0 1 0 1 2 1 −1 2 0 0 1 2
Agroforestry 0 0 1 2 2 2 1 3 2 2 2 0 2
Intercropping 1 1 2 2 2 1 0 2 1 1 1 1 1

Mixed cropping 1 1 1 2 1 2 0 1 2 1 1 1 1

Crop selection

Deep roots 1 2 3 2 3 −1 −3 2 1 1 1 1 0
Shallow roots 1 0 −3 −1 −2 2 3 1 0 0 0 0 0

C3-Metabolism 3 1 0 0 0 0 0 0 0 0 0 0 0
C4-Metabolism 1 3 2 0 0 0 0 0 0 0 0 1 0
Annual lifecycle 0 0 0 −2 −3 0 0 0 1 0 0 1 1
Biennial lifecycle 1 1 1 1 1 0 1 1 2 0 0 1 1

Perennial lifecycle 2 1 3 2 2 1 2 2 3 1 1 2 1
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Table A5. Suitability ranking of selected components of agricultural management systems for competing with the prevailing biophysical constraints on arable
marginal lands (from −3 = strong negative effect to +3 = strong positive effect).

Components of Management
System

Biophysical Constraints

Climatic Soil/Terrain

Low
Temperature

High
Temperature Dryness Excessive

Moisture
Poor Soil
Drainage

Unfav.
Texture/Stoniness

Shallow
Rooting Depth

Steep
Slope

Low Soil
Fertility Alkalinity Acidity Salinity Other

Contamination

Soil cultivation

Full till 1 −2 −2 −3 −1 −1 −1 −3 −1 1 1 0 1
Reduced till −1 1 1 1 1 1 1 −1 1 0 0 0 1

Precision tillage 3 2 2 0 2 2 1 1 2 0 0 0 1
No till 2 3 3 2 1 2 2 3 2 0 0 0 0

Living mulch 1 −2 −2 3 1 1 −1 2 2 1 1 1 −1
Cover soil with film 2 1 2 −1 −2 2 1 1 1 0 0 −1 −1

Harvest residuals 2 −1 −1 0 1 1 −1 −3 2 1 1 0 −1

Establishment

Pesticides a 1 0 1 1 2 1 0 0 1 1 1 1 0
Micronutrients a 1 1 1 1 1 2 1 0 3 0 1 1 −1
Bio-stimulators a 0 0 1 1 1 2 1 0 2 1 1 1 0

Rhizomes 1 1 1 −1 0 1 1 1 1 −1 −1 0 0
Plantlets 1 2 2 1 1 2 2 2 2 0 0 1 0
Collars 1 2 2 −1 0 0 −1 1 1 −1 −1 −1 0

Unrooted cuttings 1 2 0 2 1 0 −1 2 0 1 1 1 0

Crop protection

Pesticides 1 1 1 1 −1 0 0 2 1 1 1 1 0
Biological pest control 1 0 0 2 2 2 0 1 1 0 0 0 0
Crop rotation strategy 2 1 2 1 2 2 1 1 2 1 1 1 2
Mechanical weeding 1 1 1 −1 0 −1 −1 −3 1 0 −1 −1 0

Thermal weeding 3 1 1 2 2 2 0 0 2 0 0 −1 0
Chemical weeding 1 1 1 0 −1 2 1 1 0 0 0 1 0
Biological weeding 2 1 −1 2 2 1 1 2 1 1 1 1 1
Cover soil with film 2 1 1 0 0 2 2 2 −2 0 0 0 0

Fertilization

Broadcast application −1 1 1 −1 1 1 0 1 1 0 0 0 0
Ground level application 0 1 1 0 0 1 0 −1 1 0 0 −1 0

Injection 1 2 1 0 2 0 −1 1 1 0 0 0 0
Organic fertilizer 2 3 3 −1 −1 2 1 2 3 2 2 2 3

Liming 1 0 0 1 1 2 0 0 2 −1 3 −2 0
Chemical fertilizer 1 1 1 −1 1 1 1 −1 3 −1 −1 −2 0

Solid 2 1 2 1 1 2 0 0 1 0 0 1 0
Liquid 2 −3 −3 −1 1 1 0 0 1 0 1 0 0

Spring application −1 2 2 1 1 1 0 0 1 0 0 0 0
Summer application −2 1 2 1 1 1 0 0 1 0 0 0 0
Autumn application 0 0 0 −1 1 0 0 1 −1 0 0 0 0
Winter application 0 0 0 −2 −1 0 0 −1 0 0 0 0 0

One application 1 −1 −1 1 1 −1 1 1 1 0 0 0 0
>1 applications 1 1 1 −1 −1 1 −1 −1 2 0 0 0 0

a Priming of seeds and planting material.
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101. Stolarski, M.J.; Krzyżaniak, M.; Tworkowski, J.; Załuski, D.; Kwiatkowski, J.; Szczukowski, S. Camelina and
crambe production – Energy efficiency indices depending on nitrogen fertilizer application. Ind. Crop. Prod.
2019, 137, 386–395. [CrossRef]

102. Righini, D.; Zanetti, F.; Monti, A. The bio-based economy can serve as the springboard for camelina and
crambe to quit the limbo. OCL 2016, 23, 23. [CrossRef]

http://dx.doi.org/10.1016/j.eja.2016.05.006
http://dx.doi.org/10.1111/gcbb.12640
http://dx.doi.org/10.3390/su9122267
http://dx.doi.org/10.1002/jpln.201700162
http://dx.doi.org/10.1016/j.indcrop.2014.09.047
http://dx.doi.org/10.1016/j.indcrop.2014.04.017
http://dx.doi.org/10.1016/j.egypro.2014.10.358
http://dx.doi.org/10.1016/j.biombioe.2016.02.010
http://dx.doi.org/10.1111/gcbb.12346
http://dx.doi.org/10.1016/j.indcrop.2017.03.047
http://dx.doi.org/10.1016/j.indcrop.2019.05.009
http://dx.doi.org/10.1016/j.energy.2018.03.021
http://dx.doi.org/10.1016/j.indcrop.2019.05.047
http://dx.doi.org/10.1051/ocl/2016021


Energies 2019, 12, 3123 23 of 25

103. Dordas, C.A.; Sioulas, C. Dry matter and nitrogen accumulation, partitioning, and retranslocation in safflower
(Carthamus tinctorius L.) as affected by nitrogen fertilization. Field Crop. Res. 2009, 110, 35–43. [CrossRef]

104. Bassil, E.S.; Kaffka, S.R. Response of safflower (Carthamus tinctorius L.) to saline soils and irrigation II. Crop
response to salinity. Agric. Water Manag. 2002, 54, 81–92. [CrossRef]

105. Rodrigues, M.L.; Pacheco, C.M.A.; Chaves, M.M. Soil-plant water relations, root distribution and biomass
partitioning in Lupinus albus L. under drought conditions. J. Exp. Bot. 1995, 46, 947–956. [CrossRef]

106. Huyghe, C. White lupin (Lupinus albus L.). Field Crop. Res. 1997, 53, 147–160. [CrossRef]
107. Mauromicale, G.; Sortino, O.; Pesce, G.R.; Agnello, M.; Mauro, R.P. Suitability of cultivated and wild cardoon

as a sustainable bioenergy crop for low input cultivation in low quality Mediterranean soils. Ind. Crop. Prod.
2014, 57, 82–89. [CrossRef]

108. Francaviglia, R.; Bruno, A.; Falcucci, M.; Farina, R.; Renzi, G.; Russo, D.E.; Sepe, L.; Neri, U. Yields and
quality of Cynara cardunculus L. wild and cultivated cardoon genotypes. A case study from a marginal land
in Central Italy. Eur. J. Agron. 2016, 72, 10–19. [CrossRef]
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110. Stolarski, M.J.; Niksa, D.; Krzyżaniak, M.; Tworkowski, J.; Szczukowski, S. Willow productivity from
small-and large-scale experimental plantations in Poland from 2000 to 2017. Renew. Sustain. Energy Rev.
2019, 101, 461–475. [CrossRef]

111. Boob, M.; Truckses, B.; Seither, M.; Elsäs ser, M.; Thumm, U.; Lewandowski, I. Management effects on
botanical composition of species-rich meadows within the Natura 2000 network. Biodivers. Conserv. 2019, 28,
729–750. [CrossRef]

112. Dauber, J.; Brown, C.; Fernando, A.L.; Finnan, J.; Krasuska, E.; Ponitka, J.; Styles, D.; Thrän, D.; Van
Groenigen, K.J.; Weih, M. Bioenergy from“ surplus” land: Environmental and socio-economic implications.
BioRisk 2012, 7, 5–50. [CrossRef]

113. Felten, D.; Emmerling, C. Effects of bioenergy crop cultivation on earthworm communities—A comparative
study of perennial (Miscanthus) and annual crops with consideration of graded land-use intensity. Appl. Soil
Ecol. 2011, 49, 167–177. [CrossRef]

114. Emmerling, C.; Pude, R. Introducing Miscanthus to the greening measures of the EU Common Agricultural
Policy. Gcb Bioenergy 2017, 9, 274–279. [CrossRef]

115. Cosentino, S.L.; Copani, V.; Scalici, G.; Scordia, D.; Testa, G. Soil erosion mitigation by perennial species
under Mediterranean environment. BioEnergy Res. 2015, 8, 1538–1547. [CrossRef]

116. Anderson, E.; Arundale, R.; Maughan, M.; Oladeinde, A.; Wycislo, A.; Voigt, T. Growth and agronomy of
Miscanthus x giganteus for biomass production. Biofuels 2011, 2, 71–87. [CrossRef]

117. MAGIC. Marginal Lands for Growing Industrial Crops: Turning a Burden into an Opportunity. Available
online: http://magic-h2020.eu/ (accessed on 14 June 2019).

118. GRACE. GRowing Advanced Industrial Crops on Marginal Lands for Biorefineries. Available online:
https://www.grace-bbi.eu/project/ (accessed on 14 June 2019).

119. Von Cossel, M.; Lewandowski, I. Miscanthus (Miscanthus x giganteus Greef et Deuter) cultivation on
a shallow stony soil in southwest Germany. Manuscript unpublished.

120. Mangold, A.; Winkler, B.; Von Cossel, M.; Iqbal, Y.; Kiesel, A.; Lewandowski, I. Implementing miscanthus
into sustainable farming systems: A review on agronomic practices, capital and labor demand. Review
article, under review, unpublished.

121. Fajardy, M.; Chiquier, S.; Mac Dowell, N. Investigating the BECCS resource nexus: Delivering sustainable
negative emissions. Energy Environ. Sci. 2018, 11, 3408–3430. [CrossRef]

122. Heaton, E.; Voigt, T.; Long, S.P. A quantitative review comparing the yields of two candidate C4 perennial
biomass crops in relation to nitrogen, temperature and water. Biomass Bioenergy 2004, 27, 21–30. [CrossRef]

123. Iqbal, Y.; Kiesel, A.; Wagner, M.; Nunn, C.; Kalinina, O.; Hastings, A.F.S.J.; Clifton-Brown, J.C.; Lewandowski, I.
Harvest Time Optimization for Combustion Quality of Different Miscanthus Genotypes across Europe.
Front. Plant Sci. 2017, 8. [CrossRef] [PubMed]

124. Lewandowski, I.; Schmidt, U. Nitrogen, energy and land use efficiencies of miscanthus, reed canary grass
and triticale as determined by the boundary line approach. Agric. Ecosyst. Environ. 2006, 112, 335–346.
[CrossRef]

http://dx.doi.org/10.1016/j.fcr.2008.06.011
http://dx.doi.org/10.1016/S0378-3774(01)00144-5
http://dx.doi.org/10.1093/jxb/46.8.947
http://dx.doi.org/10.1016/S0378-4290(97)00028-2
http://dx.doi.org/10.1016/j.indcrop.2014.03.013
http://dx.doi.org/10.1016/j.eja.2015.09.014
http://dx.doi.org/10.1016/j.rser.2018.11.034
http://dx.doi.org/10.1007/s10531-018-01689-1
http://dx.doi.org/10.3897/biorisk.7.3036
http://dx.doi.org/10.1016/j.apsoil.2011.06.001
http://dx.doi.org/10.1111/gcbb.12409
http://dx.doi.org/10.1007/s12155-015-9690-2
http://dx.doi.org/10.4155/bfs.10.80
http://magic-h2020.eu/
https://www.grace-bbi.eu/project/
http://dx.doi.org/10.1039/C8EE01676C
http://dx.doi.org/10.1016/j.biombioe.2003.10.005
http://dx.doi.org/10.3389/fpls.2017.00727
http://www.ncbi.nlm.nih.gov/pubmed/28539928
http://dx.doi.org/10.1016/j.agee.2005.08.003


Energies 2019, 12, 3123 24 of 25

125. Sastre, C.M.; Carrasco, J.; Barro, R.; González-Arechavala, Y.; Maletta, E.; Santos, A.M.; Ciria, P. Improving
bioenergy sustainability evaluations by using soil nitrogen balance coupled with life cycle assessment: A case
study for electricity generated from rye biomass. Appl. Energy 2016, 179, 847–863. [CrossRef]

126. Tuck, G.; Glendining, M.J.; Smith, P.; House, J.I.; Wattenbach, M. The potential distribution of bioenergy
crops in Europe under present and future climate. Biomass Bioenergy 2006, 30, 183–197. [CrossRef]

127. Cosentino, S.L.; Testa, G.; Scordia, D.; Alexopoulou, E. Future yields assessment of bioenergy crops in relation
to climate change and technological development in Europe. Ital. J. Agron. 2012, 7, 22. [CrossRef]

128. Cai, X.; Zhang, X.; Wang, D. Land availability for biofuel production. Environ. Sci. Technol. 2011, 45, 334–339.
[CrossRef] [PubMed]

129. Iqbal, Y.; Lewandowski, I. Inter-annual variation in biomass combustion quality traits over five years in
fifteen Miscanthus genotypes in south Germany. Fuel Process. Technol. 2014, 121, 47–55. [CrossRef]

130. Kalinina, O.; Nunn, C.; Sanderson, R.; Hastings, A.F.S.; van der Weijde, T.; Özgüven, M.; Tarakanov, I.;
Schüle, H.; Trindade, L.M.; Dolstra, O.; et al. Extending Miscanthus Cultivation with Novel Germplasm at
Six Contrasting Sites. Front. Plant Sci. 2017, 8, 185. [CrossRef]

131. Clifton-Brown, J.; Hastings, A.; Mos, M.; McCalmont, J.P.; Ashman, C.; Awty-Carroll, D.; Cerazy, J.;
Chiang, Y.-C.; Cosentino, S.; Cracroft-Eley, W.; et al. Progress in upscaling Miscanthus biomass production
for the European bio-economy with seed-based hybrids. GCB Bioenergy 2017, 9, 6–17. [CrossRef]

132. Johnson, R.C.; Petrie, S.E.; Franchini, M.C.; Evans, M. Yield and yield components of winter-type safflower.
Crop. Sci. 2012, 52, 2358–2364. [CrossRef]

133. Jamshidmoghaddam, M.; Pourdad, S.S. Genotype$\times$ environment interactions for seed yield in rainfed
winter safflower (Carthamus tinctorius L.) multi-environment trials in Iran. Euphytica 2013, 190, 357–369.
[CrossRef]

134. Gesch, R.W.; Matthees, H.L.; Alvarez, A.L.; Gardner, R.D. Winter camelina: Crop growth, seed yield, and
quality response to cultivar and seeding rate. Crop. Sci. 2018, 58, 2089. [CrossRef]

135. Walia, M.K.; Wells, M.S.; Cubins, J.; Wyse, D.; Gardner, R.D.; Forcella, F.; Gesch, R. Winter camelina seed
yield and quality responses to harvest time. Ind. Crop. Prod. 2018, 124, 765–775. [CrossRef]

136. MAGIC DSS MAGIC Decision Support System Marginal Lands and Industrial Crops. Available online: https:
//iiasa-spatial.maps.arcgis.com/apps/webappviewer/index.html?id=a813940c9ac14c298238c1742dd9dd3c
(accessed on 28 April 2019).

137. Kort, J.; Collins, M.; Ditsch, D. A review of soil erosion potential associated with biomass crops.
Biomass Bioenergy 1998, 14, 351–359. [CrossRef]

138. Vaughan, D.H.; Cundiff, J.S.; Parrish, D.J. Herbaceous crops on marginal sites Erosion and economics. Biomass
1989, 20, 199–208. [CrossRef]

139. Fagnano, M.; Impagliazzo, A.; Mori, M.; Fiorentino, N. Agronomic and environmental impacts of giant
reed (Arundo donax L.): Results from a long-term field experiment in hilly areas subject to soil erosion.
Bioenergy Res. 2015, 8, 415–422. [CrossRef]

140. Dauber, J.; Jones, M.B.; Stout, J.C. The impact of biomass crop cultivation on temperate biodiversity.
Gcb Bioenergy 2010, 2, 289–309. [CrossRef]

141. Folke, C.; Carpenter, S.; Walker, B.; Scheffer, M.; Elmqvist, T.; Gunderson, L.; Holling, C.S. Regime shifts,
resilience, and biodiversity in ecosystem management. Annu. Rev. Ecol. Evol. Syst. 2004, 35, 557–581.
[CrossRef]

142. Deutsch, L.; Folke, C.; Skånberg, K. The critical natural capital of ecosystem performance as insurance for
human well-being. Ecol. Econ. 2003, 44, 205–217. [CrossRef]

143. Teuling, A.J. A hot future for European droughts. Nat. Clim. Chang. 2018, 8, 364. [CrossRef]
144. Samaniego, L.; Thober, S.; Kumar, R.; Wanders, N.; Rakovec, O.; Pan, M.; Zink, M.; Sheffield, J.; Wood, E.F.;

Marx, A. Anthropogenic warming exacerbates European soil moisture droughts. Nat. Clim. Chang. 2018, 8,
421. [CrossRef]

145. Garbolino, E.; Daniel, W.; Hinojos Mendoza, G. Expected Global Warming Impacts on the Spatial Distribution
and Productivity for 2050 of Five Species of Trees Used in the Wood Energy Supply Chain in France. Energies
2018, 11, 3372. [CrossRef]

http://dx.doi.org/10.1016/j.apenergy.2016.07.022
http://dx.doi.org/10.1016/j.biombioe.2005.11.019
http://dx.doi.org/10.4081/ija.2012.e22
http://dx.doi.org/10.1021/es103338e
http://www.ncbi.nlm.nih.gov/pubmed/21142000
http://dx.doi.org/10.1016/j.fuproc.2014.01.003
http://dx.doi.org/10.3389/fpls.2017.00563
http://dx.doi.org/10.1111/gcbb.12357
http://dx.doi.org/10.2135/cropsci2011.12.0659
http://dx.doi.org/10.1007/s10681-012-0776-z
http://dx.doi.org/10.2135/cropsci2018.01.0018
http://dx.doi.org/10.1016/j.indcrop.2018.08.025
https://iiasa-spatial.maps.arcgis.com/apps/webappviewer/index.html?id=a813940c9ac14c298238c1742dd9dd3c
https://iiasa-spatial.maps.arcgis.com/apps/webappviewer/index.html?id=a813940c9ac14c298238c1742dd9dd3c
http://dx.doi.org/10.1016/S0961-9534(97)10071-X
http://dx.doi.org/10.1016/0144-4565(89)90060-7
http://dx.doi.org/10.1007/s12155-014-9532-7
http://dx.doi.org/10.1111/j.1757-1707.2010.01058.x
http://dx.doi.org/10.1146/annurev.ecolsys.35.021103.105711
http://dx.doi.org/10.1016/S0921-8009(02)00274-4
http://dx.doi.org/10.1038/s41558-018-0154-5
http://dx.doi.org/10.1038/s41558-018-0138-5
http://dx.doi.org/10.3390/en11123372


Energies 2019, 12, 3123 25 of 25

146. Von Cossel, M.; Mohr, V.; Elbersen, B.; Staritsky, I.; Van Eupen, M.; Mantel, S.; Iqbal, I.; Happe, S.; Scordia, D.;
Cosentino, S.L.; et al. How to feed the European bioeconomy in the future? Climate change-forced shifts in
growth suitability of industrial crops until 2100. unpublished.

147. Pachauri, R.K.; Allen, M.R.; Barros, V.R.; Broome, J.; Cramer, W.; Christ, R.; Church, J.A.; Clarke, L.; Dahe, Q.;
Dasgupta, P. Climate Change 2014: Synthesis Report, Contribution of Working Groups I, II and III to the Fifth
Assessment Report of the Intergovernmental Panel on Climate Change; IPCC: Geneva, Switzerland, 2014.

© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Material and Methods 
	The Identification of Marginal Agro-Ecological Zones (M-AEZ) 
	Determination of the Growth Suitability of the Pre-Selected Industrial Crops in the Prevailing M-AEZ 
	Definition and Methodology of Marginal Land Low-Input Systems (MALLIS) Development for Industrial Crops 

	Results and Discussion 
	Marginal Agro-Ecological Zones in Europe 
	The Growth Suitability of the Pre-Selected Industrial Crops in the Prevailing M-AEZ 
	Marginal Agricultural Land Low-Input Systems (MALLIS) for Industrial Crop Cultivation 
	Agricultural Measures for MALLIS Development 
	Environmental Threats and Social Requirements 
	Biodiversity Conservation 
	Explanatory Setup of a MALLIS on a Shallow Stony Soil 

	Recommendations and Outlook 

	Conclusions 
	
	References

