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Abstract

We present a generalization of Maehara’s lemma to show that the
extensions of classical and intuitionistic first-order logic with a special
type of geometric axioms, called singular geometric axioms, have Craig’s
interpolation property. As a corollary, we obtain a direct proof of inter-
polation for (classical and intuitionistic) first-order logic with identity,
as well as interpolation for several mathematical theories, including the
theory of equivalence relations, (strict) partial and linear orders, and
various intuitionistic order theories such as apartness and positive partial
and linear orders.

Craig’s interpolation theorem [1] is a central result in first-order logic. It
asserts that for any theorem 4 — B there exists a formula C, called interpolant,
such that A — C and C — B are also theorems and C only contains non-
logical symbols that are contained in both 4 and B (and if 4 and B have
no non-logical symbols in common, then either —4 is a theorem or B is).
The aim of this paper is to extend interpolation beyond first-order logic. In
particular, we show how to prove interpolation in extensions of intuitionistic
and classical sequent calculi with singular geometric rules. a special case of
geometric rules investigated in [7]. Interpolation for singular geometric rules
will be obtained by generalizing a standard result, reportedly due to Maehara
in [12] and known as “Maehara’s lemma” [5].

Proving Maehara-style interpolation for extensions of first-order logic is
not at all straightforward, since the standard proof normally relies on the fact
that such extensions admit a cut-free systematization in Gentzen’s sequent
calculus — which is in general not the case. To overcome this obstacle we shall
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build on previous work by Negri and von Plato who have shown (in a series
of papers starting from [8]) how to recover cut elimination (as well as the
admissibility of other structural rules) for extensions of the calculi G3c and
m-G3i for classical and intuitionistic first-order logic. Of particular interest for
the present work are the extensions with geometric rules, investigated in [7].
Once cut elimination is recovered in this way, we impose a singularity condition
on geometric rules to isolate those containing at most one non-logical predicate
(identity will be counted as logical). Our main result is to show that Maehara’s
lemma holds when G3c and G3i are extended with singular geometric rules
(Lemma 9). Then interpolation follows easily from the generalized Maehara’s
lemma (Theorem 10). Finally, we consider applications of Theorem 10 and
we show that singular geometric rules include many interesting extensions of
intuitionistic and classical first-order logic. especially (classical and intuition-
istic) first-order logic with identity, the theory of equivalence relations. (strict)
partial and linear orders, the theory of apartness and the theory of positive
partial and linear orders. We shall omit the proofs altogether and indicate
reference to the existing literature when necessary.

1 Classical and intuitionistic sequent calculi

The language L is a first-order language with individual constants and no
functional symbols. Moreover, let FV(A) be the set of free variables of a
formula 4 and let Con(A) be the set of its individual constants. We agree
that the set of terms Ter(4) of 4 is FV(A4) U Con(A4). Moreover, if Rel(4)
is the set of non-logical predicates of 4 then we define the language £(4)
of A as Ter(4) URel(A4). Notice that = ¢ £(A4), for all 4. Such notions are
immediately extended to multisets of formulas T". by letting FV(T") to be defined
as U ser FV(4). and analogously for Con(T"). Ter(I'). Rel(T") and £(I").

The calculus Gc (Gi) is a variant of LK (LI) for classical (intuitionistic,
respectively) first-order logic. originally introduced by Gentzen in [2]. In the
literature. especially in [13] and [9]. Gc and Gi are commonly referred to as
G3c and G3i but we will omit ‘3’ in the interest of readability. Moreover, we
will write G to refer to either Ge or Gi. The rules are the standard ones and the
reader interested is referred to [13] and [9].

The key feature of G is that the structural rules, including cut. are all
admissible in it.

Theorem 1. Cut elimination holds in G.

2 Geometric theories

Extensions of G are not, in general, cut free; this means that Theorem 1 does
not necessarily hold in the presence of new initial sequents or rules. It does
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hold, however, in the presence of rules following a certain pattern. To see this,
we recall basic results from [7].
A geometric axiom is a formula following the geometric axiom scheme
below:
VYX(PIA...AP, = 3Ap My V...V 3P, M,)

where each P; is an atom and each M; is a conjunction of a list of atoms
Qi,..... 0, and none of the variables in any j; are free in the P;s. We shall
conveniently abbreviate Q; ,.... Q;, in Q;. In a geometric axiom, if m = 0
then the consequent of — becomes L, whereas if n = 0 the antecedent of —
becomes T. A geometric theory is a theory containing only geometric axioms.
An m-premise geometric rule, for m > 0, is a rule following the geometric rule
scheme below:

Q;.Pi.... P, T=A - Q.P....P.T=A
P . P, T=A R

where each O is obtained from Q; by replacing every variable in j; with a
variable which does not occur free in the conclusion. Such variables will be
called the eigenvariables of R. Without loss of generality, we assume that each
¥ consists of a single variable. In sequent calculus a geometric theory can
be formulated by adding on top of G finitely many geometric rules (recall
that A contains exactly one formula in Gi). Moreover, geometric rules are
assumed to satisfy the well-known closure property for contraction (see [9.
6.1.7]). Let G& be any extension of G with finitely many geometric rules
satisfying the closure condition (from now on, we will tacitly assume that the
closure condition is always met). Cut elimination and the admissibility of the
structural rules hold in G8. Although we will heavily rely on [7], we start by
introducing a more general notion of substitution that allows an arbitrary
term u (possibly a constant) to be replaced by a term ¢. In the presence of such
general substitutions, special care is needed in order to maintain the height-
preserving admissibility of substitutions. In particular, general substitutions
are height-preserving admissible, provided that the replaced term « does not
occur essentially in the calculus. Intuitively, a term u occurs essentially in a
rule R when u cannot be replaced (by an arbitrary term), namely when u is a
constant and u already occurs in the axiom from which R is obtained. More
precisely.

Definition 2. A constant u occurs essentially in a geometric axiom 4 if and
only if, for some # # u, A[/]is not an instance of the axiom A4.

We also agree that a term u occurs essentially in a geometric rule R when it
does so in the corresponding axiom. For example, in the geometric axiom
-1 < 0 of non-degenerate partial orders (see [10. p. 116]) both 1 and 0 occur
essentially; hence they also occur essentially in the corresponding geometric
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rule Non-deg:
Non-deg

1<0.T'=A
The general substitution [ / ] is height-preserving admissible in G&, provided
that u occurs essentially in none of its geometric rules.

Lemma 3. In G8, if F" I = A, t is free for u in U, A, and u does not occur
essentially in any rule of G&, then F" T[] = A[!].

It is also easy to show that:
Theorem 4. Cut elimination holds for G&.

Proof. See [7] for Ge& and [3] for Gi&. QED

3 Singular geometric theories

To prove interpolation in extensions of first-order logic. the class of geometric
rules seems too large. Thus, we restrict our attention to a proper sub-class of it
and we introduce the class of singular geometric theories. In the next section
we will state (Lemma 9) that Maehara’s lemma holds for singular geometric
extensions of first-order logic.

A singular geometric axiom is a geometric axiom with at most one non-
logical predicate and no constant occurring essentially. A singular geometric
theory is a theory containing only singular geometric axioms. In sequent
calculus a singular geometric theory can be formulated by extending G with
finitely many geometric rules of form:

Q. Pl....PoT=>A -~ Q,P.. P.T=A
P.... . P Tl=A R

where no constant occurs essentially and that satisfy the following singularity
condition:

|Rel(Qf,.... 0. P1,...,P,)| <1 (%)

It is evident that a number of important classical and intuitionistic math-
ematical theories are singular geometric. Regarding the classical ones, the
theory of partial orders (R is reflexive. transitive and anti-symmetric). the
theory of linear orders (R is a linear partial order). as well as the theories of
strict partial orders (R is irreflexive and transitive) and strict linear orders
(R is a trichotomic strict partial order) are singular geometric. Constructive
singular geometric theories, on the other hand, include von Plato’s theories
of positive partial orders [11] (R is irreflexive and co-transitive) and positive
linear orders (R is an asymmetric positive partial order), as well as the theory
of apartness (R is irreflexive and splitting). Also the theory of equivalence
relations (R is reflexive. transitive and symmetric) falls within the class of
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singular geometric theories. Finally, the fact that a relation R is functional
(total and right-unique) can be axiomatized using singular geometric axioms.
Singular geometric axioms are important in logic, too. Specifically, the axioms
of identity are singular geometric.

= is reflexive Vx(x = x)
= satisfies the indiscernibility of identicals VxVy(x =y A P[] — P[}])

Notice that the indiscernibility of identicals satisfies the singularity condi-
tion (%) because identity is a logical predicate. Hence, first-order logic with
identity is a singular geometric theory.

Cut elimination for singular geometric rules clearly follows from cut
elimination for geometric rules. More precisely, let G° be any extension of G
with a finite set of singular geometric rules. Then:

Theorem 5. Cut elimination holds in G°.

4 Interpolation with singular geometric rules

The standard proof of interpolation in sequent calculi rests on a result due to
Maehara which appeared (in Japanese) in [5] and was later made available to
international readership by Takeuti in his [12]. While interpolation is a result
about logic, regardless the formal system (sequent calculus, natural deduction,
axiom system, etc), Maehara’s lemma is a “sequent-calculus version” of
interpolation. Although originally Maehara proved his lemma for LK, it is
easy to adapt the proof so that it holds also in G (cf. [13, §4.4]). We recall from
[13] some basic definitions.

Definition 6 (partition. split-interpolant). A partition of a sequent T = A is
an expression I'j ; Th = A ; Ay, where T =T, T and A = A, A, (for =
the multiset-identity). A split-interpolant of a partition Ty ; T = A ; Ayisa
formula C such that:

1 FTh=A,C
I FCIh,= A
I L(C) C LT, A) N L(T, Ay)

Weuse I'} ; I < A; : A; to indicate that C is a split-interpolant for
I:h=A: A

Lemma 7 (Maehara). In Gc every partition Uy : Ty = Ay ; Ay of a derivable
sequent I' = A has a split-interpolant. In Gi every partition T’ ; Ty = ; Aofa
derivable sequent I = A has a split-interpolant.

From Maehara’s lemma it is immediate to prove Craig’s interpolation
theorem.
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Theorem 8 (Craig). If A = B is derivable in G then there exists a C such that
FA= Candt+ C = Band L(C) C L(A) N L(B).

Of any calculus for which Theorem 8 holds, we say that it has the inter-
polation property. Now we extend Lemma 7 to extensions of G with singular
geometric rules.

Lemma 9. In Gc® every partition Ty ; Ty = Ay ; Ay of a derivable sequent
I' = A has a split-interpolant. In Gi® every partition I'y ; Th = ; A of a
derivable sequent I' = A has a split-interpolant.

Proof. The reader is referred to [3]. QED

From Lemma 9 it is immediate to conclude that singular geometric ex-
tensions of classical and intuitionistic logic satisfy the interpolation theorem,
namely:

Theorem 10. G® has the interpolation property.

5 Applications

We now consider some corollaries of Theorem 10 in which the strategy for
building interpolants provided in Lemma 9 is applied. Notice that in the
theories considered in this section all contracted instances are admissible and,
hence. we can ignore them.

5.1 First-order logic with identity

We start with first-order logic with identity. Recall that a cut-free calculus for
classical first-order logic with identity has been presented in [8] by adding on
top of Ge the rules Ref— and Repl_ corresponding to the reflexivity of = and
Leibniz’s principle of indiscernibility of identicals, respectively.

s=s.T=A ) P[LLP[{lt=s5sT=A
Ref_ Repl_
= A Plilt—sT=A

In intuitionistic theories, on the other hand, identity is often treated
differently and we will provide a constructively more acceptable treatment of
identity later in dealing with apartness. In general. however, nothing prevents
us from building intuitionistic first-order logic with identity in a parallel
fashion to the classical case. This is, for example, the route taken in [13] and
we will follow suit.

Corollary 11. G~ has the interpolation property.
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5.2 Equivalence relations

In a perfectly parallel fashion, we obtain the theory of equivalence relations

by adding to G the rules corresponding to the reflexivity, transitivity and

symmetry of a binary relation ~. Thus, EQ = G + {Ref., Trans.., Sym_}.
s~s5,'=A s~us~tt~ul =A

Ref., Trans~,
I'=A ’ s~tt~ul =A

t~s,s~t=A
s~t,I'=A

Sym,,

From the fact that these rules are singular geometric, it follows that:

Corollary 12. EQ has the interpolation property.

5.3 Partial and linear orders

Now we consider some well-known order theories. We start with partial orders.
In sequent calculus, the theory of partial orders is obtained by extending
Gc= with the following rules corresponding to the axioms of reflexivity.
transitivity and anti-symmetry of a binary relation <. Thus, let PO = Gc= +
{Refg , Trans , Anti—symg}:

s<u,s<tt<u,l'=A

ef < Trans<
s<tt<ul'=A

s<s, = A R
I'=A

s=ts<tt<s, I'=A
s<tt<s, = A

Anti-sym

Linear orders are obtained by assuming that the partial order < is also linear,
ie. LO = PO + {Ling}.

s<t,IT=A t<s,T=A
'=A

Ling

Both PO and LO are singular geometric theories, hence:
Corollary 13. LO (hence, PO) has the interpolation property.

Unlike G™ and EQ). the underlying logical calculus of both PO and LO is the
classical one. The reason is that linearity is intuitionistically contentious and
normally it requires a different, more constructively acceptable, axiomatization
that will be considered in Section 5.6.
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5.4 Strict partial and linear orders

The theory of strict partial orders consists of the axioms of first-order logic
with identity plus the irreflexivity and transitivity of <. As we did for PO and
LO. we consider this theory to be based on classical logic. i.e. by adding on
top of G¢™ the following rules:

. s<u,s< tt<ul =A Trans.

s<tt<ul =A

s<s,I'=A

Let SPO be Ge™ + {[Irref _, Trans}. Total strict partial orders are then
obtained assuming that < is also trichotomic. i.e. SLO = SPO + { Trich}:

s=tI'=A s<tI'=A t<s T =A
I'=A

Trich<
Corollary 14. SLO (hence, SPO) has the interpolation property.

5.5 Apartness

We noticed earlier that in intuitionistic theories the identity relation is not
always treated as in classical logic. In particular, identity is defined in terms
of the more constructively acceptable relation of apartness. Apartness was
originally introduced by Brouwer (and later axiomatized by Heyting in [4]) to
express inequality between real numbers in the constructive analysis of the
continuum: whereas saying that two real numbers ¢ and b are unequal only
means that the assumption a = b is contradictory, to say that ¢ and b are
apart expresses the constructively stronger requirement that their distance on
the real line can be effectively measured. i.e. that | @ — b | > 0 has a constructive
proof. Classically, inequality and apartness coincide, but intuitionistically two
real numbers can be unequal without being apart. The theory of apartness
consists of intuitionistic first-order logic plus the irreflexivity and splitting of
#. Following [6]. the theory of apartness is formulated by adding on top of Gi
the following rules:!

s#tus#t, I =4 t#us#tI =4

frref sELT = A

— Split
s#s.I'=4 i

Let AP = Gi + {Irref, . Split;}. Given that these two rules are singular
geometric rules, it follows that:

Corollary 15. AP has the interpolation propert)y.

"Notice that Negri’s underlying calculus is a quantifier-free version of Gi.
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5.6 Positive partial and linear orders

Just like apartness is a positive version of inequality. so excess & is a positive
version of the negation of a partial order <. The excess relation was introduced
by von Plato in [11] and has been further investigated by Negri in [6]. The
theory of positive partial orders consists of intuitionistic first-order logic plus
the irreflexivity and co-transitivity of £.2 Let PPO = Gi+ {Irref¢ , Co-tmnsﬁ}

s€usgtT =>4 udtsgtT =4
s€1.T =4

Irref. % Co-truns%

s€sT=4

The theory of positive linear orders extends the theory of positive partial
orders with the asymmetry of £. Specifically. let PLO = PPO + {Asynf%}:

Asym
sg€rrgs =4 *
Given that all these rules are singular geometric, from Theorem 10 it follows
that

Corollary 16. PPO and in PLO have the interpolation property.

To conclude, we have shown (Lemma 9) how to extend Maehara’s lemma to
extensions of classical and intuitionistic sequent calculi with singular geometric
rules and provided a number of interesting examples of singular geometric
rules that are important both in logic and mathematics. especially in order
theories. In particular, we have shown that Lemma 9 covers first-order logic
with identity and its extension with the theory of (strict) partial and linear
orders. We have also seen that the same holds for the intuitionistic theories of
apartness, as well as for positive partial and linear order.
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