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Abstract
Realisation of experiments even on small andmedium-scale quantum computers requires an
optimisation of several parameters to achieve high-fidelity operations. As the size of the quantum
register increases, the characterisation of quantum states becomesmore difficult since the number of
parameters to bemeasured grows aswell andfinding efficient observables in order to estimate the
parameters of themodel becomes a crucial task. Herewe propose amethod relying on application of
Bayesian inference that can be used to determine systematic, unknown phase shifts ofmulti-qubit
states. Thismethod offers important advantages as compared to Ramsey-type protocols. First,
application of Bayesian inference allows the selection of an adaptive basis for themeasurements which
yields the optimal amount of information about the phase shifts of the state. Secondly, thismethod
can process the outcomes of different observables at the same time. This leads to a substantial decrease
in the resources needed for the estimation of phases, speeding up the state characterisation and
optimisation in experimental implementations. The proposed Bayesian inferencemethod can be
applied in various physical platforms that are currently used as quantumprocessors.

1. Introduction

Quantumcomputers have the potential to solve some computationally hard problems in amore efficient way
than classical computers [1]. However, due to couplingwith the environment, they aremore susceptible than
their classical counterparts to dynamical errors that affect the correct behaviour of the algorithms performed [2].
In order to copewith dynamical errors, quantum error correction techniques [3]need to be applied together
with a correct initialisation of quantum states that, in general, suffers fromdifferent types of noise. These
imperfections can often bemodelled as irreversible couplings to the environment [4] or as unknownbut
constant unitary operations appearing due to systematic errors. Due to their constant nature, the latter can be
compensated by determining the unknown operations and applying their inverse onto the state. The simplest
instance of such systematic errors is given by single-qubit phase shifts which can transform a desired state

0 1a bñ + ñ∣ ∣ into 0 e 1ia bñ + ñf∣ ∣ wheref is an unknown but constant phase. Estimates of this phase shift can be
obtained by performing Ramsey-type experiments[5, 6] and,more recently, by adaptivemethods based on
application of Bayesian inference [7–15].Most of these adaptivemethods select themeasurement to be
performed by numerical optimisation of the information gained based on the results obtained in the previous
measurements.

The characterisation ofmulti-qubit states, such as those needed for quantum error correcting codes [16], is a
more complex problem. It is well known that quantum state tomography [17] becomes impractical to fully
characterise these states since the resources needed scale exponentially with the number of qubits. Additionally,
the systematic errors to be corrected can drift slowly over time. Thus, the error estimation processmust be
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performed on a time scale small enough so that, after the process yields an estimate of the error, the actual true
value of the error has not shifted considerably compared to the uncertainty of the estimation process. As
adaptive techniques can take advantage of experimental data collected at eachmeasurement step, they can be
successfully employed for increasing the information obtainedwith eachmeasurement and thus decreasing the
amount of resources and time needed as compared to non-adaptive techniques.

Along this line, in this work, we propose and explore an adaptivemethod based on the application of
Bayesian inference for the characterisation ofmedium-scalemulti-qubit states. For concreteness, we focus on
the estimation of phases appearing in stabiliser states used in quantum error correction.We examine the
efficiency of themethod by studying the number ofmeasurements needed andwe derive an analytical rule to
obtain the optimalmeasurement to perform at each time. This simple rule does not rely on numerical
calculations and ensures the adaptiveness of themethod tofind the optimalmeasurement at each step. This
renders the protocol particularly suitable for on-chip processing in adaptive control systems.

In addition, we evaluate the efficiency of our adaptivemethod and compare it to that of the phase
optimisationmethod (PHOM), a non-adaptive phase estimationmethod developed in [18]. The lattermethod is
based on a generalisation of a Ramsey experiment to determine and compensate systematic phases appearing in
multi-qubit states and it was proposed and performed experimentally for the seven-qubit quantum error
correcting colour code (Steane code) [19]. For this reason, we choose to evaluate the efficiency of our adaptive
method for the phase characterisation of the states used for the Steane code andwe show that ourmethod has an
improvement in the efficiency compared to the PHOM.

Remarkably, this adaptivemethod is not restricted only to the Steane code, but can be used for othermulti-
qubit states since it only relies on the application of simple single-qubit operations andmeasurements. As a
consequence, the results shown in this paper are applicable to the optimisation of otherQEC codes and the
compensation of systematic errors appearing in other physical platforms for quantum-information processing
such as, e.g. trapped ions [20–28], Rydberg atoms [29–31] in optical lattices [32–34] or tweezer arrays [35, 36] or
other AMOor solid-state architectures [37–42].

This paper is organised as follows: in section 2we introduce the concepts and notation for a one-qubit state
phasemeasurement by using a Ramsey experiment and a Bayesian inference process. In section 3we briefly
review basic properties of the Steane code towhichwewill apply our technique. In section 4we compare the
efficiencies of the PHOMproposed in [18] and our Bayesian inferencemethod to an intermediate quantum state
obtained during the preparation of the logical states of the Steane code since this intermediate state has a less
complex structure than the final states of the code. In section 5we generalise the previous results and present a
Bayesian inferencemethod to estimate the phase shifts on the fully encoded seven-qubit logical states. Finally, in
section 6we summarise our results, especially the comparison between the results obtained for the efficiency of
ourmethodwith themethod in [18], and concludewith a brief outlook.

2.One qubit case

In this section, wewill showhow to estimate the unknown phasef of the following quantum state

1

2
0 e 1 1iyñ = ñ + ñf∣ (∣ ∣ ) ( )

from a finite set of data obtained frommeasurements.We supposewe can prepare asmany copies of yñ∣ as

needed. Sincemeasurements of the Ẑ Pauli operator yield no information aboutfwewill perform
measurements of the operator

O X Ycos sin 2q q= +qˆ ( ) ˆ ( ) ˆ ( )
on theXYplane of the Bloch sphere (see figure 1 (a)). Thus, the expected value of this operator for the state yñ∣ is

O cos . 3y y f qá ñ = -q∣ ˆ ∣ ( ) ( )

In the following, wewill study two different ways inwhichwe can select θ in equation (2) in order to obtain the
valuef: Ramsey scan and a Bayesian inference process.

2.1. Ramsey scan
In order to estimatef, one can apply a Ramsey-type experiment that can be summarised as follows (seefigure 1):
first we divide the interval [−π,π) inM equidistant points

m
M

m M
2

, 0, 1, , 1. 4mq
p

p= - = ¼ -· ( )

2
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For each of the values θmwe estimate the expected value of O
mq

ˆ by O N N Nm m
m

y yá ñ = -q + -∣ ˆ ∣ ( )( ) ( ) where

N m
+
( ) (N m

-
( )) is the number of timeswe obtain a+ (−)whenmeasuring in the O

mq
ˆ basis andN is the total number

ofmeasurements. Using the values O
m

y yá ñq∣ ˆ ∣ obtained, we perform a least squares fit to a function of the form

f Acos , 5q q= -( ) ( ) ( )

whereA is a phase. By comparison of equations (3) and (5), our estimate off is given by the fitted parameterA.

2.2. Bayesian inference
In this sectionwe discuss how to use Bayes’ theorem in order to estimate the value off. Bayes’ theorem
prescribes how to update the prior probability distribution off,P(f), after ameasurementusing its
likelihood, P  f( ∣ ) (see figure 2). Thefinal result is a posterior probability distribution of P, f f( ∣ ), with
the form

P P P 6 f f fµ( ∣ ) ( ∣ ) ( ) ( )

up to a normalisation factor. If we perform a newmeasurement we can apply Bayes’ theorem again and use the
obtained posterior as a prior for the nextmeasurement and so on. For an increasing number ofmeasurements
the degree of uncertainty offwill decrease, allowing us to reach a desired value in the uncertainty of the
estimated value off. In our case wemeasure the operators Oqˆ (with different values of θ for eachmeasurement)
with possible outcomes+q and-q. The likelihoods of these outcomes for the state as given by equation (1) are

P
1 cos

2
. 7f

f q
 =

 -
q( ∣ ) ( ) ( )

Assuming no prior knowledge about the value offwe start with a uniformprobability distribution P(f)=1/2π
as a prior. AfterNmeasurements and applying equation (6) iteratively, the probability distribution forf is
given by

P P P P, , ...
1

2

1 cos

2
...

1 cos

2
. 8N1

N N1 1f f f f
p

f q f q
 ¼  µ   =

 -  -
q q q q( ∣ ) ( ) ( ∣ ) · · ( ∣ ) · ( ) · · ( ) ( )

As the number ofmeasurements increases, the posterior probability distribution can be approximated by a
normal distributionwith decreasing standard deviation.

2.2.1. Efficiency of the parameter learning process
In this sectionwe showhow thebehaviour of the standarddeviation of the distribution in equation (8) allowsus to
choose the value θ after eachmeasurement in order tomaximise the information gainoff. It is expected that aswe
performmoremeasurements, themean value of the probability distribution in equation (8) gets closer to the true
value off and its standard deviationdecreases. Let us suppose that, after a sufficiently largenumbernof
measurements, the probability distributionPn(f) canbe approximated by aGaussianwithmean nf̄ and standard

deviationσn. For themeasurementn, the probability pn
 ofmeasuring±when the angle selected isθn is

Figure 1. (a)Bloch sphere representation of themeasurements to be performed for estimating the phasef of the quantum state of
equation (1). The observables Oqˆ are obtained by rotating the observable X̂ around theZ axis by an angle θ. Theway Oqˆ is selected
depends on themethod used to estimatef. In the Ramsey scan case different values of θ are selected and severalmeasurements are
performed for each of these values. This allows a reconstruction of the expected sinusoidal dependence of Oy yá ñq∣ ˆ ∣ with θ that yields
an estimate for the phasef (panel (b)). In the Bayes case, the outcomes of Oqˆ are used to update the probability distribution P(f). In
this case, the value θ for eachmeasurement is different and it is selected in away thatmaximises the information gain permeasurement
(see section 2.2 andfigure 2). (b)Ramsey scan simulation for the phase estimation of the state yñ∣ in equation (1)withf=1. The
points represent the values O mq

ˆ where the θm areM=10 equidistant points in the interval [−π,π). The points are obtained by
simulatingN=50measurements of O mq

ˆ for each θm and they are used to fit a cosinewhose phaseA is the estimation obtained forf
and it is given byA=0.99±0.09. The error ofA is obtained by a bootstrap resampling [43].

3
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p P
1 cos

2
d . 9

n
n

nò
f q

f f=
 -

p

p


-

( ) ( ) ( )

The probability distribution after having obtained+ or− is updated as

P
p

P
1 1 cos

2
, 10n

n

n
n1 f

f q
f=

 -
+


( ) ( ) ( ) ( )

where pn
 appears due to normalisation. These posterior probability distributions will have a standard deviation

denoted by n 1s +
 .We obtain that the average decrease of the variance after performingmeasurement n is

11n n n n1
2 2 4s s a s- = -+ ( )

with

e

e

sin

1 cos
. 12n

n n

n n

2

2

n

n

2

2a
f q

f q
º

-

- -

s

s

( )
( )

( )

From an inspection of equations (11) and (12), we conclude that themaximumdecrease on average for the
variance is obtainedwhenwe select a value of θn thatmaximises the value ofαn. This is achieved (seefigure 3) for

2
. 13n nq f

p
=  ( )

For this selection, the value ofαn approaches a constant value. Then, it can be proven that the succession in
equation (11) has the following asymptotic solution:

n

1
. 14n

n

2s
a

= ( )

However, as the variance decreases,αn approaches the constant value1 (except for values close to
k k,n n q f p=  Î ) as figure 3 shows. Thismeans that after severalmeasurements, the decrease of the

variancewill be independent on the value of θwe select for the nextmeasurement and n
2s will evolve as

n

1
. 15n

2s = ( )

Figure 2.Bayesian inference process for the phase estimation of the state yñ∣ in equation (1)withf=2. Each step of the inference
process consists in performing ameasurement of the operator O n 1q -

ˆ , updating the probability distribution based on the result of the
measurement and selecting an optimal angle θn for the nextmeasurement. (1)One starts with a uniformprobability distribution off.
θ=0 is selected for thefirstmeasurement. (2) If the+ outcome is obtained (as assumed here), the probability distribution is updated
bymultiplying the prior probability distribution by the likelihood of obtaining a+ and renormalizing. Themaximumof
P 1measurementf( ∣ ) is located atf=0. (3)The optimal selection of θwill be given by equation (13). Thus, we select θ=π/2 for the
nextmeasurement. (4)Assume+ is obtained again. The probability distribution can be updated again based on this result. This
process ofmeasuring, updating and finding the next optimal θ can be performed iteratively. (5)After 10measurements the probability
distribution can be approximated by a normal distribution. (6)After 500measurements we obtain a normal distribution centred near
the valuef=2 used for the simulation.

4
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Similar results can be obtained by performing calculations involving Shannon’s entropy [44] for the selection of
the optimalmeasurement. However, this approach requires numerical calculations to obtain the optimal
measurement in each step of the iteration. This increases the computational resources needed for in situ
optimisationbetween experimentalmeasurement runs as compared to the simple rule governed by equation (13)
of ourmethod. Figure 3 shows that after severalmeasurements this adaptive way of selecting the next
measurement becomes as efficient as a non-adaptivemethod for the one-qubit case.However, we stress that this
is not a generic feature but specific to this simple example. In fact, wewill show below that for the phase
measurement ofmulti-qubit states an adaptive approach to the selection of themeasurements yields an
improvement in the efficiency as compared to the non-adaptive approach. It is worthmentioning that the result
in equation (15) indicates that our increase in the knowledge of the system satisfies the standard quantum
limit (SQL).

3. Characterisation ofmulti-qubit states

In quantum error correction the quantum information is encoded in entangledmany-qubit systems. This
provides protection against noise.

In the following sections wewill discuss the estimation of systematic errors appearing in the preparation of
the stabiliser states used in quantum error correction. For concreteness, we focus on the states used for the
seven-qubit Steane code [19]. This code represents theminimal instance of 2D colour codes [45] and it is
obtained by restricting a theHilbert space of seven qubits to the subspace of states which are simultaneous+1
eigenstates of six commuting stabiliser operators Sx

i( ) and S i, 1, 2, 3z
i =( ) (see figure 4). These stabilisers

define a two-dimensional subspace for this seven-qubit system that can be used to encode a logical qubit.
Additionally, the logicalX andZ operators can be chosen as X XL i i1

7=  = and Z ZL i i1
7=  = . The logical state

0 Lñ∣ is defined by Z 0 0L L Lñ = ñ∣ ∣

Z S0 1 1 0 . 16L L
i

x
i

1

3
7ñ µ + + ñ

=

Ä∣ ( ) ( )∣ ( )( )

Similarly, the logical 1 Lñ∣ is defined by Z 1 1L L Lñ = - ñ∣ ∣ . These states satisfy X1 0L L Lñ = ñ∣ ∣ and X0 1L L Lñ = ñ∣ ∣ .
However, due to imperfections during the initial state preparation of, for example, 0 Lñ∣ in the experimental

realisation of this code in [26], the obtained statewill differ from the expected ideal one: on the one hand,
dynamical phase shifts during the encoding sequence can accumulate and give rise to unknown, though
systematic relative phases between the eight components of the expected ideal final state as given by
equation (16), resulting instead in a state

0
1

2 2
0000000 e 0110110 e 1111000 e 1001110

e 0011011 e 0101101 e 1100011 e 1010101 . 17

L
i i i

i i i i

1 2 3

4 5 6 7

¢ñ = ñ + ñ + ñ + ñ

+ ñ + ñ + ñ + ñ

f f f

f f f f

∣ (∣ ∣ ∣ ∣

∣ ∣ ∣ ∣ ) ( )

Additionally, other errors and in particular incoherent processes can also generate population in additional
states. A simple one-parametermodel of such such state, ρ, which includes these possible errors is given by a

Figure 3.The quantityα dictates the decrease of the variance n n1
2 2s s-+ after eachmeasurement step. Thisfigure shows the

dependence ofαwith θn for the case 0nf =¯ and different values of n
2s . Other values of nf̄ produce the same plot with a translation on

the horizontal axis. As n
2s decreasesα approaches 1 except for the values knq f p= ¯ .
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Werner-state of the form

p
p

dim
1 0 0 , 18L Lr = + - ¢ñ á ¢( )∣ ∣ ( )

where thefirst component represents a completelymixed state (dim=27=128 in our case). The parameter
pä [0, 1] quantifies themagnitude of this white-noise component. Formore experimental details on the origin
of these errors we refer the interested reader to [18, 26].

We note that incoherent errors such as the one described by themixed-state contribution in state (18)
cannot be corrected by the techniques we discuss here. Therefore, to keep notation simple, inwhat followswe
will omit themixed state component in state descriptions and only consider the part of the state containing the
relative phases which can be detected and compensated by themethods discussed. In the following sectionswe
develop amethod tomeasure these relative phases. As an introductory example, wewillfirst study an
intermediate state of the full seven-qubit Steane encoding process (two-plaquette case) to introduce the concepts
that will be needed to correct the phases appearing in the fully encoded system (three-plaquette case).

4. Two-plaquette case

At the start of the preparation of the seven-qubit quantum error correcting code, four-qubit entanglement
operations are applied to the first plaquette (figure 5 (a)). This yields the quantum state S1 0x1

1 7y ñ µ + ñÄ∣ ( )∣( )

composed by the superposition of two components in the computational basis which can have a relative phase
due to systematic errors. This is equivalent to a single-qubit phase estimation, as the phase can be corrected by
rotating one of the four qubits and performingmeasurements of the Sx

1( ) stabiliser.
Therefore, we consider the state 2y ñ∣ obtained by application of four-qubit entangling operations to thefirst

and second plaquettes (see figure 5 (b))

Figure 4. Steane code or seven-qubit colour code: a structure composed of seven qubits is used for encoding one logical qubit. The
code is defined by six stabiliser generators SX

j( ) and SZ
j( ) for j=1, 2, 3 associatedwith each of the four-qubit plaquettes. The code space

is defined as the simultaneous+1 eigenspace of these stabilisers.

Figure 5. (a)One-plaquette case. During the first step of the preparation of the seven-qubit error correcting code, four-qubit
entangling operations are performed on qubits 1–4. A phase appearing in the resulting state due to systematic errors can be estimated
by performingmeasurements of Sx

1( ) for different rotations on the first qubit. This is similar to the single-qubit phase estimation. (b)
Two-plaquette case. After themanipulation of thefirst and second plaquettes, up to three relative phases can appear in quantum state
obtained. To estimate these phaseswe can performmeasurements of S S,x x

1 2( ) ( ) and S Sx x
1 2( ) ( ) for different rotations on thefirst, second

andfifth qubit.

6
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S S1 1 0 . 19x x2
1 2 7y ñ µ + + ñÄ∣ ( )( )∣ ( )( ) ( )

This statemaximises themean value of theX-type stabilisers on the first and second plaquette,
S X X X X S X X X X,x x

1
1 2 3 4

2
2 3 5 6= =( ) ( ) and the product of both, S S X X X Xx x

1 2
1 4 5 6=( ) ( ) :

S S S S 1. 20x x x x2
1

2 2
2

2 2
1 2

2y y y y y yá ñ = á ñ = á ñ =∣ ∣ ∣ ∣ ∣ ∣ ( )( ) ( ) ( ) ( )

However, systematic phase shifts accumulate during the preparation of 2y ñ∣ due to experimental errors. The
state 2y¢ñ∣ containing these unknown phase shifts is

0000000 e 0110110 e 1111000 e 1001110 . 212
i i i1 2 3y¢ñ µ ñ + ñ + ñ + ñf f f∣ ∣ ∣ ∣ ∣ ( )

In order to compensate these relative phase shifts we can apply single qubitZ rotations (see figure 5(b)). For
example, by rotating the first, second andfifth qubits we obtain

e e e 0000000 e 0110110

e 1111000 e 1001110 . 22

Z Z Zi i i
2

i 2

i 2 i 2

1 1 2 2 5 5 1 2 5

2 1 2 3 1 5

y¢ñ µ ñ + ñ

+ ñ + ñ

q q q f q q

f q q f q q

+ +

+ + + +

∣ ∣ ∣
∣ ∣ ( )

[ ( )]

[ ( )] [ ( )]

The selection of qubits to be rotated is arbitrary as long as these three rotations do not commutewith
S S,x x

1 2( ) ( ) and S Sx x
1 2( ) ( ), respectively. The expected values of the stabilisers for the state in equation (22) are given by

S
cos 2 cos 2

2
, 23x

1 2 2 1 1 3 2 1f q q f f q q
á ñ =

+ + + - + -[ ( )] [ ( )]
( )( )

S
cos 2 cos 2

2
, 24x

2 1 2 5 2 3 2 5f q q f f q q
á ñ =

+ + + - + -[ ( )] [ ( )]
( )( )

S S
cos 2 cos 2

2
, 25x x

1 2 3 5 1 1 2 5 1f q q f f q q
á ñ =

+ + + - + -[ ( )] [ ( )]
( )( ) ( )

In order to obtain information about the unknown systematic phases, we can performmeasurements of these
stabilisers for different values of the rotation angles θ. Once the values of these phases aremeasured it is possible
to perform single-qubit rotations to transform the state 2y¢ñ∣ into the desired state 2y ñ∣ . Away to obtain these
values is the PHOM [18].We propose anothermethod based on application of Bayesian inference. In the
following subsectionswe review the PHOMand introduce our Bayesian protocol.

4.1. Phase optimisationmethod
The PHOM introduced in [18] is given by the following iterative protocol. For concreteness, here we review how
it works for the optimisation of the state in equation (21).

(i) For each stabiliser, an associated rotation on a qubit i, θi, is chosen. The selection is arbitrary, but each
stabilisermust not commutewith its associated qubit rotation.We associate θ2 with S ,x

1
5q( ) with Sx

2( ) and θ1
with S Sx x

1 2( ) ( ).

(ii) Choose an initial configuration for the set of rotation parameters , ,0
1
0

2
0

5
0q q q q= { }( ) ( ) ( ) ( ) .

(iii) Scan Sx
1á ñ( ) in a similar way as in the single-qubit case (see figure 1(b)) over its associated angle, θ2, in the

interval [−π,π]while keeping 1 1
0q q= ( ) and 5 5

0q q= ( )
fixed.Determine andfix θ2 to the value 2 2

1q q= ( ) for
which Sx

1á ñ( ) ismaximised. Similarly perform scans of Sx
2á ñ( ) over θ5 to obtain 5

1q( ) and S Sx x
1 2á ñ( ) ( ) over θ1 to

obtain 1
1q( ).With these steps , ,0

1
0

2
0

5
0q q q q= { }( ) ( ) ( ) ( ) has changed to , ,1

1
1

2
1

5
1q q q q= { }( ) ( ) ( ) ( ) . Performing this

step completes one PHOM iteration.

(iv) The values of the angles q might not converge to the values that correct the phases after only one iteration.
Thus, repeat step (iii) for a number of iterations Iuntil the set of angles q converges to a desired precision.

Thismethod gives an estimate of the angles θ1, θ2 and θ5 that correct the systematic phasesf1,f2 andf3. The
precision of this estimate will become better as the number ofmeasurements used for the scans increases. In this
workwe also introduce a variation of this PHOMtomeasure phases that we call the constant cosine PHOM.

4.1.1. Constant cosine PHOM
The constant cosine PHOM is a similarmethod that also performs scans of the expected values of the stabilisers
for different qubit rotations to obtain a correction for systematic phases. This process ismore similar to a
Ramsey experiment as only one scan of each stabiliser is needed. From equation (23)we can see that, if we keep
the value θ2−θ1fixed and vary θ2+θ1, themean value of Sx

1á ñ( ) will be given by

7
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S
h

h
cos 2

2
, cos 2 , 26x

1 2 2 1
1 3 2 1

f q q
f f q qá ñ =

+ + +
º - + -

[ ( )]
[ ( )] ( )( )

where h is constant for all themeasurements since the difference θ2−θ1 isfixed. Thus the anglef2 that
represents the phase shift to be corrected is given by the value of−2(θ2+θ1) for which amaximum in themean
value Sx

1á ñ( ) is reached. By analysing Sx
2á ñ( ) and S Sx x

1 2á ñ( ) ( ) in a similar way one can then obtainf1 andf3, too.

4.2. Bayesian inferencemethod
In the followingwewill introduce and analyse twoBayesian inferencemethods tomeasure the phases in the state

2y¢ñ∣ of equation (21) of the two-plaquette case. Thesemethods are (i) a Bayesian inferencemethod by direct
application of the likelihoods, and (ii) a Bayesian inferencemethod usingmarginal likelihoods.Wewillfirst
describe this direct Bayesian inferencemethod and then explain themethodwe propose to improve the PHOM,
namely themarginal likelihoodmethod.

4.2.1. Direct Bayesian inferencemethod
An estimation of the phases using Bayesian inference is performed bymeasuring the plaquettes and updating the
probability distribution based on the results obtained. The likelihoods for each plaquettemeasurement can be
obtained from the expressions for the expected values by

P
S

P
S

P
S S1

2
,

1

2
,

1

2
, 27x x x x

1

1

2

2

12

1 2

f f f =
 á ñ

 =
 á ñ

 =
 á ñ

q q q( ∣ ) ( ∣ ) ( ∣ ) ( )
( ) ( ) ( ) ( )

where P1 fq( ∣ ) is the likelihood of obtaining a+ or a− outcomewhenmeasuring Sx
1( ) for , ,1 2 5q q q q= { }and

, ,1 2 3f f f f= { }. Similarly, P2 fq( ∣ ) is related to Sx
2( ) and P12 fq( ∣ ) to S Sx x

1 2( ) ( ). For instance, the likelihood
for Sx

1( ) is given by

P
2 cos 2 cos 2

4
. 281

2 2 1 1 3 2 1f
f q q f f q q

 =
 + +  - + -

q( ∣ )
[ ( )] [ ( )]

( )

Since the likelihoods used are functions of three variables, the obtained probability distributionwill be a three-
dimensional function. In general, if the number of unknownparameters appearing in the likelihoods of the
experiment increases, the probability distribution obtainedwill be a function ofmany variables and, therefore,
finding themost probable values for the phases and their variance becomesmore difficult. This complication
can be avoided if in themeasurement of each stabiliser we keep one of the cosines constant in a similar way as it is
done for the constant cosine PHOM.This yields a likelihood given by (see also equation (26))

P h
h

,
2 cos 2

4
291 2

2 2 2 1f
f q q

 =
  + +

q( ∣ )
[ ( )]

( )

for thefirst plaquette, where the value θ2−θ1 is kept constant to ensure that one of the cosines has a constant
value given by h2. Similar expressions can be obtained for the other stabilisers. This approach yields normal
probability distributions defined on two variables, one being h1, h2 or h3 and the other beingf1,f2 orf3
depending on the stabiliser that ismeasured. The estimate for each phase is easily obtained from its
corresponding probability distribution.

Wenownumerically compare thismethod and the constant cosine PHOMprotocol (see figure 6).
Performing a fit of the numerical data we obtain that for the PHOMthe scaling of the variance as a function of
the number ofmeasurements n is given by n6.6 0.2i n,

2s = ( ) when estimating the single anglefi. Similarly,

for the constant cosine Bayes we obtain n6.2 0.6i n,
2s = ( ) . However, in order to obtain an estimate of the

other two phases, this processmust be repeated for each of the other stabilisers. This yields a scaling of the
variance of n19.8 0.4n

2s = ( ) for the PHOMand n18.6 1.0n
2s = ( ) for the constant cosine Bayes

method. This provides an estimate of the efficiency of the PHOMand the direct Bayesian inferencemethod for
the intermediate state 2y¢ñ∣ .

In the following, wewill introduce and analyse the Bayesianmarginal likelihoodmethod, which provides an
improvement in efficiency over both the PHOMand the constant cosine Bayesian inferencemethod.

4.2.2.Marginal likelihoodmethod
Let usfirst considermeasurements of the first stabiliser whose likelihood is given by

P
2 cos 2 cos 2

4
. 301

2 2 1 1 3 2 1f
f q q f f q q

 =
 + +  - + -

q( ∣ )
[ ( )] [ ( )]

( )

Let us for themoment focus onmeasuring the value off2. To estimate this phase, we have two different control
parameters, θ1 and θ2, that we can change before eachmeasurement.We choose to perform ameasurement
under the constraint of keeping the value of 2(θ2−θ1)fixed to a certain value θcwhile changing the value of
2(θ2+θ1).With this choice the argument of the cosine containingf1−f3 isfixed and this cosine term assumes
a constant value c2. This yields the following likelihood
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P
c2 cos 2

4
. 311 2

2 2 1 2f
f q q

 =
 + + 

q( ∣ )
[ ( )]

( )

Now, for a secondmeasurement we select 1q and θ2 values such that they fulfil the same constraint as before but
shifted by±π, i.e.2 c2 1q q q p- = ( ) . For this selection, the value of the second cosine term in equation (30)
becomes c2- instead of c2 and the likelihoodwill be given by

P
c2 cos 2

4
. 321 2

2 2 1 2f
f q q

 =
 + +

q


( ∣ )
[ ( )]

( )

Therefore, if we fix 2(θ2+θ1) and perform such a combined pair ofmeasurements under the discussed
constraints, onewith c2 and anotherwith c2- , we canmarginalise over c2 to obtain the followingmarginal
likelihood for each individualmeasurement

P
2 cos 2

4
, 331 2

2 2 1f
f q q

 =
 + +

q( ∣ )
[ ( )]

( )

which only depends onf2. After this pair ofmeasurements, we thenfix 2(θ2+θ1) to a new value and perform
another pair ofmeasurements in the sameway as before. The key observation is that, as a result of this process,
the likelihood obtained is similar to the one for the single qubit case of equation (7). This allows one to directly
generalise the analysis for the scaling of the variance forf2 (see equation (11) and appendix B) obtaining

, 34n n n n2, 1
2

2,
2

2, 2,
4s s a s- = -+ ( )

where

exp sin

4 exp cos
, 35n

n n n

n n n
2,

2,
2 2

2, 2,

2,
2 2

2, 2,

a
s f q

s f q
º

-

- -

( ) ( ˜ )
( ) ( ˜ )

( )

and 2n n n2, 2, 1,q q qº - +˜ ( ). For small values of ,n n2,
2

2,s a can be approximated by (seefigure 7)

sin

4 cos
. 36n

n n

n n
2,

2
2, 2,

2
2, 2,

a
f q

f q
»

-

- -

( ˜ )
( ˜ )

( )

Note that in this two-plaquette case, in equation (36) a 4 appears in the denominator, as opposed to the 1
appearing in the one-qubit case. Due to this, the quantity n2,a , which determines the decrease in the uncertainty,
has a sinusoidal behaviour between 0 and 1/4.Note also that in constrast to the single-qubit case (see figure 3)
this oscillatory behaviour does not disappear with an increasing number ofmeasurements. Figure 7 shows that
the decrease in the standard deviation ismaximised if we choose 2n n2, 2,q f p= ˜ ¯ , making this the optimal
adaptivemeasurement selection. For this optimal choice the value of n2,a is 1/4 and accordingly the variance
scales as n4n2,

2s = .
So far, in the explanation of the protocol we have focused on estimatingf2. However, our protocol allows

one tomeasuref1,f2 andf3 at the same time. Based on the adaptive way of selecting themeasurements as
explained above, wemake the following selection

Figure 6.Behaviour of the variance off1 obtained for the simulations of the constant cosine approach for both the PHOM (red circles)
and the Bayesian inference (green squares) as a function of the number ofmeasurements n. Solid lines represent fits of the numerical
data obtained for bothmethods. The same behaviour is obtained forf2 andf3 (not shown).
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where eachβj is eitherπ/2 or−π/2.Making these selections fixes the following values

2

2

2

. 38

2 5 2 3 3 2

5 1 1 2 2 1

2 1 1 3 3 1

q q f f b b

q q f f b b
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( ) ¯ ¯
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Since the combinations ofβj appearing in equation (38) yield either±π or 0, we choose theβ-parameters in a
way thatwe alternate between these values tomarginalise over the value ci appearing in each of the three
likelihoods. This yields a likelihood equivalent to equation (33) for themeasurement of each stabiliser. For the
selection given by equation (37) it is guaranteed that our protocol realises adaptive optimalmeasurements with a
scaling of the variance of the estimated phases given by n4i n,

2s = . A pseudocode that summarises the steps
presented here is shown infigure 8. Additionally, the discussed protocol has the benefit that in each
measurement one can use the value of all three stabilisers as opposed to the PHOMand the Bayesian inference
with the constant cosine, for which eachmeasurement only yields information about the scanned stabiliser
currently under consideration. Thus, the estimate of each phasewill still have a variance n

2s given by

n

4
. 39n

2s = ( )

Finally, it is interesting to analyse by howmuch the efficiency of the protocol would decrease if one did not
make an adaptive choice of the parameters. If one selected the values i n,q̃ randomly, then i n,a would have amean
value equal to 2 3 2 0.134i n,a = - »( ) , which is readily obtained by integrating equation (36) over a
uniformprobability distribution of i n,q̃ . Taking into consideration equation (14) the scaling of the variance in
such a non-adaptive protocol would be given by

n n

1

0.134

7.5
. 40i n,

2s » » ( )

Thus, adaptive optimal selection of parameters in our protocol reduces the number ofmeasurements
needed by almost a factor of two.

5. Three-plaquette case

Themethods seen in theprevious sections canbe generalised to themore complex case of the entire seven-qubit code.
In this case the objective is tomeasure the 7phases that can appear in thepreparationof the state that represents the
logical state 0 Lñ∣ (see appendixA). To this end,we canmeasure sevendifferent combinations of stabilisers:

S S S S S S S S S, , , , ,x x x x x x x x x
1 2 3 1 2 1 3 2 3( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) and S S Sx x x

1 2 3( ) ( ) ( ). Themarginal likelihood for themeasurement of thefirst
stabiliser is

Figure 7.Dependence of the factor i n,a on i n,q̃ for i=1, 2, 3 (here 0i n,f =¯ ). i n,a dictates the decrease of the variance step by step. i n,a
oscillates between 0 and 0.25 and itsmean value is 2 3 2 0.134- »( ) , with itsmaximumat 2i n i n, ,q f p= ˜ ¯ . By equation (14),
this is the optimal way of selecting i n,q̃ .
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P
4 cos

8
, 411 2

2 2f
f q

 =
 -

q( ∣ )
( ˜ )

( )

where 22 1 2 3 4q q q q qº - + + +˜ ( ). Similar expressions are obtained for the other six combinations of
stabilisers (see appendix A). Following the same process as in the previous sections, the behaviour of the variance
and the values ofα for each anglefi at the step n ( i n,a ) are now given by (see appendix B)

, 42i n i n i n i n, 1
2

,
2

, ,
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where for small values of i n,
2s onefinds

sin

16 cos
. 44i n

i n i n

i n i n
,

2
, ,

2
, ,

a
f q

f q
»

-
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( ˜ )
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Themaximumvalue of each i n,a is 1/16 for the selection 2i n i n, ,q f p= ˜ ¯ . Thus, this rule ensures an adaptiveway
of selecting themeasurements that yieldsmore information than anon-adaptive selection and gives a scaling as

n

16
45n

2s = ( )

for the variance of the estimate for each phasemeasured.

5.1. PHOMsimulations
In this sectionwe discuss numerical simulations to obtain the behaviour of the variances for the PHOMwith the
number ofmeasurements used in the three-plaquette case.

We initiallyfix thenumberof iterations I tobeperformedas explained in step (iv)of section4.1 andwechoose a
numbernof copies of the initial quantumstate thatwe canmeasure.We thenchoose  different seven-dimensional

Figure 8.Pseudocode to determine the three phases, , ,1 2 3f f f f= { }, appearing in the two-plaquette case of section 4 by
implementation of themarginal likelihood Bayesian inferencemethod. This pseudocode can also be applied for estimating the seven
phases appearing in the three-plaquette case of section 5 after redefining f, the list of unknownphases and their indices J; , their
probability distributions; q, the angles for the rotations of themeasurements;Π, the likelihoods;  the list of stabilisers; the list of
qubits to be rotated; the systemof equations S according to (A.20) in appendix A.
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vectors representing the seven initially unknownphases kf( ) (k 1, ,= ¼ ).WeperformthePHOMfollowing
section4.1 and the expressions (A.4)–(A.11) in appendixA inorder toobtain an estimateof the sevenphases k

estf( ). For
eachof the vectors,we calculate thedifferencebetween the estimatedphases and thephases chosen initially:

k k
estf f-( ) ( ).Wefinally compute an estimateof the varianceof thePHOMfor a givenn andafixednumberof

iterations I as

1
, 46n

k

k k2

1
est

2





å f fs = -
=

( ) ( )( ) ( )

where  is a large number to obtain a good estimate of n
2s , in our case 50 000 = . To perform the scans of

each stabiliser we divide the intervals ,p p-[ ]of the angles θs intoM=10 points. Sincewe have tomeasure
seven stabilisers, the number ofmeasurements per point we can perform is n MImpp 7= ( ).

Repeating this processusing adifferentn and I=1,K, 4 yields thedataplottedwith circles infigure9.A similar
process is done for the constant cosinePHOMwithoutperforming iterations since they arenotneeded for thismethod
(see section4.1). The results obtained for this case are representedby the triangles infigure9. It canbe seen that as the
numberof iterationsused for thePHOMincreases, the variancewith thenumberof resourcesdecreasesuntil reaching
a similarbehaviour as that of the constant cosinePHOM.The reason for this is that thePHOMhas two limitations,
one givenby thenumberof iterations andanotherby thefinitenumberofmeasurementsused for each scan. If a small
numberof iterations is used,mostof thePHOMsimulationsdonot converge and the result is awrongestimation for
thephaseswhich results in abig variance.As thenumberof iterations increases,more simulations converge to a correct
phase and the varianceobtaineddecreases.After performing enough iterations, all the simulations converge and the
only sourceof error is thenumberofmeasurementsused for each scan.As this number increases, the statistical error of
each scanperformeddecreases yielding abetter estimateof eachphase.This behaviour is represented infigure 10.

Performing afit of the relation between the variance and the number ofmeasurements for the constant
cosine PHOMyields a behaviour of n209.5 0.5n

2s = ( ) .

5.2.Marginal likelihoodBayes simulations
To obtain the behaviour of the variancewith the number ofmeasurements for themarginal likelihood Bayes
inferencemethodwe apply a generalisation of themethod shown in the pseudocode offigure 8with the
expressions (A.12)–(A.20) in appendix A. After performing enoughmeasurements (≈100) the probability
distribution obtained can be approximated by a normal probability distribution for each of the phases that is
used for computing the variances and for estimating the error of this adaptive technique. The results for the
variances are shown infigure 9where the data is plottedwith squares. It can be seen that the variance decreases as
the number ofmeasurements used increases. A numericalfit of the data obtained reveals that the variance
decreases as n16.2 0.1n

2s = ( ) , as was expected from the analytical derivation of themethod in section 5.

6. Conclusions and outlook

In this work, we have introduced an adaptive Bayesianmethod tomeasure systematic phase shift errors
appearing in the experimental preparation ofmulti-qubit states, in particular, we have used it for correcting the
errors appearing in the logical states of the Steane code. Thismethod is capable offinding the experimental

Figure 9.Behaviourof the variance as a function of the total number ofmeasurementsn.Only for thePHOM, the total number of
measurements is given by n M I7 mpp= · · · , where 7 corresponds to thenumberofphases tobe estimated,M is thenumber of
divisions of the interval [−π,π]of eachphase, I is thenumber of iterations used for thePHOM, andmpp is thenumberofmeasurements
for eachof theMdivisions. For thePHOMusing constant cosines a behaviour of n209.5 0.5n

2s = ( ) is obtained. ThePHOMshows a
similar behaviourwhenusing enough iterations for themethod to converge. Finally, usingmarginal Bayes theperformance is

n16.2 0.1n
2s = ( ) . Error bars for results of the constant cosinePHOMand theBayesmethodare smaller than the symbol size.
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configuration that optimises the information gained by eachmeasurement performed. An analytical
development of thismethod that yields a simple rule for this adaptive selection has been shown, thus saving
computational power thatwould be otherwise used infinding numerically the optimalmeasurement at each
step of the process.

We compared ourmethod to the PHOM, a non-adaptive phase estimationmethod based on a generalisation
of a Ramsey experiment formulti-qubit states that was recently realised for the implementation of the Steane
code [26].We simulated both of them tomeasure quantumphases appearing in the preparation of quantum
states needed for the Steane code. The efficiency obtained by simulation of ourmethod is in agreementwith the
efficiency derived from the theoretical calculations, and shows an improvement by a reduction of the required
measurement time bymore than one order ofmagnitudewhen comparedwith the efficiency of the PHOM (see
figure 11).We notice that although there aremethods that yield a better efficiency than the SQL [8, 46–48], these
methods rely on the non-trivial implementation ofmulti-qubit gates whichwe do not consider here.However, it
might be interesting to analyse generalisations of our protocol by using these kind of techniques.

Furthermore, themethod, illustrated for the optimisation of the seven-qubit Steane code, is applicable to
otherQEC codes and stabiliser states. Additionally, since thismethod only relies on the application of single-
qubit rotations andmeasurements, it can correct systematic errors appearing inmulti-qubit states implemented
in different physical platforms. Thus, it has potential application in a variety of systems for quantum
information processing such as, e.g. trapped ions, Rydberg atoms in optical lattices or tweezer arrays or other
AMOor solid-state architectures.
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AppendixA. Three-plaquette case: quantum states, likelihoods and pseudocode
generalisation

In this appendixwe provide details on the expressions appearing in the three-plaquette case. For the seven-qubit
Steane code the logical 0 is given by

0
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2 2
0000000 0110110 1111000 1001110

0011011 0101101 1100011 1010101 . A.1
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+ ñ + ñ + ñ + ñ

∣ (∣ ∣ ∣ ∣

∣ ∣ ∣ ∣ ) ( )

Due to experimental errors, phases appear in the preparation of the 0 Lñ∣ state. The state obtainedwill be then
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Single-qubitZ rotations can be performed on the seven qubits of the code state 0 L¢ñ∣ to obtain the following state
and likelihoods for each stabiliser combination
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The expected values of each plaquette can be easily obtained from these expressions. For example, the first
plaquette expected value is given by
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The expected values for the other plaquettes can be obtained from the corresponding likelihood in the sameway.
Themarginal likelihoods are given by
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As for the generalisation of the pseudocode infigure 8, it is achieved by changing the previous definitions to the
following ones
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where theβi in S are chosen randomly from the set 2, 2p p+ -{ }.

Appendix B. Analytical study of the scaling of the variance

In this appendix, we present some details on the scaling of the variance with the number ofmeasurements when
applying the Bayesian adaptivemethod to the single-qubit state of equation (1). The expressions obtained are
easy to generalise to the two and three-plaquette cases. Let us suppose after nmeasurements the knowledge
about the phasef is given by a normal distributionwithmean value nf and variance n
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After performing ameasurement the updated probability distribution is given by
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where pn
 is the probability at step n of obtaining a+ or− in themeasurement n+1. Since at step n it is

unknownwhat themeasurement n+1will yield, we consider the expected value of the variance after the
measurement n 1, n
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Introducing (B.5) and (B.6) into (B.3) yields
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If we consider Pn(f) has a low standard deviationwe can change the intervals of integration [−π,π)with
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Replacing the values of these integrals in (B.10)we obtain
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Similar calculations can be performed for the two and three plaquette case likelihoods, the only difference being
the cosine appearing in the likelihood having amplitude 1/4 and 1/8 respectively and the angle i n,q̃ being a linear
combination of the rotations performed on different qubits at the step n. Taking this into account, for the two
plaquette case the decrease in the variance for eachfi is
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and for the three plaquette case
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