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Abstract: Coal contains a large number of fractures, whose characteristics are difficult to describe in
detail, while their spatial distribution patterns may follow some macroscopic statistical laws. In this
paper, several fracture geometric parameters (FGPs) were used to describe a fracture, and the coal
seam was represented by a two-dimensional stochastic fracture network (SFN) which was generated
and processed through a series of methods in MATLAB. Then, the processed SFN image was able
to be imported into COMSOL Multiphysics and converted to a computational domain through the
image function. In this way, the influences of different FGPs and their distribution patterns on
the permeability of the coal seam were studied, and a finite element model to investigate gas flow
properties in the coal seam was carried out. The results show that the permeability of the coal seam
increased with the rising of fracture density, length, aperture, and with the decrease of the angle
between the fracture orientation and the gas pressure gradient. It has also been found that large-sized
fractures have a more significant contribution to coal reservoir permeability. Additionally, a numerical
simulation of CBM extraction was carried out to show the potential of the proposed approach in
the application of tackling practical engineering problems. According to the results, not only the
connectivity of fractures but also variations of gas pressure and velocity can be displayed explicitly,
which is consistent well with the actual situation.

Keywords: Monte Carlo method; coalbed methane; stochastic fracture network; fracture geometric
parameters; dual-porosity and dual-permeability media; finite element method

1. Introduction

Coal is a kind of porous medium with many fractures formed in it after a long-term geological
process. The existence of these weak structures has a great influence on the flow of coalbed methane
(CBM) that can not only lead to mine hazards but also provide a substantial source of energy in both
industry and households [1–3]. Therefore, it is of great significance to investigate the characteristics
of fractures and their internal gas flow properties for both CBM exploitation and gas outburst
prevention [4,5].

In terms of the investigation of flow in porous media, Darcy’s law was the earliest linear seepage
model to emerge [6,7]. Since its emergence, numerous experiments and theoretical investigations on
gas flow and transport properties in various porous media have been performed and reported for
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single-phase, multiphase, saturated, and partially saturated domains [8–10]. However, because of
the complex structure of porous media and the limitations of considering real geological conditions,
conventional experiments and theoretical achievements fail in describing the uncertainties of flow
and transport properties in porous media. For example, the continuous equivalent model averages
the permeability of reservoirs and overlooks the influence stemming from the discontinuity caused
by fractures [11,12]. This model is similar to the “black box” and its central problem is to solve the
permeability tensor. Obviously, it is not suitable for capturing some important mechanical behaviors
of fractured rocks, especially when some large-sized fractures exist. Barenblatt et al. have proposed
the dual medium model, though it is not suitable to describe the flow behavior of fractures [13].

With the increasingly used computer and simulation methods, many researchers have modeled
porous media using a discrete fracture network (DFN), which generally contains three categories
(geological-mapping-based DFN, geomechanically grown DFN, and stochastic fracture network
(SFN)) [14]. A DFN has advantages in the discretization of fracture networks and preservation of the
relationships between fractures and fracture sets compared to the extensively used lattice Boltzmann
method (LBM) in which fractures are discretized into cells or edges [15]. Geological-mapping-based
DFN illustrates fracture patterns from limited exposure of outcrops, boreholes, or tunnels [16].
Geomechanically grown DFN can reproduce natural fractures through a DFN simulator based on
paleostress conditions [17]. SFN is a simple and convenient DFN model generated from statistical
data of fracture network characteristics which applies various scale fractures [18]. Fracture network
characteristics can be described by FGPs, which basically comprise fracture density, length, aperture,
and orientation. These FGPs all have an obvious impact on the porosity and permeability of the whole
fracture structure [19–21]. However, due to the complexity of the stress environment, formation history,
and lithotype, the distribution patterns of FGPs in various areas and buried depths are different and
cannot be characterized by in situ observations or some conventional laboratory approaches including
nuclear magnetic resonance and mercury intrusion porosimetry. Micron computed tomography
scanning technology and scanning electron microscopy have limitations in the description of large-scale
fracture systems and the determination of fractures’ connectivity features [2,22]. Seismological surveys
may be able to assess and image large-scale structures but the current technology can hardly detect
widely-spreading medium and small fractures due to the resolution limit [23]. In contrast, SFN
modelling, as a probabilistic realization of a fracture network based on the theory of random processes
like the Monte Carlo method [24,25], provides an efficient way to generate fracture networks containing
differently distributed FGPs derived from field observations and measurements [26–32]. To date, SFN
modelling has been used in many fields such as civil, mining, enhanced geothermal systems, and water
resource engineering [33–40].

In the present work, even though the coal matrix is regarded as a homogeneous body with fixed
porosity and permeability, SFN is used to describe the fracture system of the coal seam, which can
reflect the relationships between fractures and describe the heterogeneity of the coal seam in a statistical
sense. Coming to the topic of this paper, although previous researchers have made great contributions
to solve engineering problems using the SFN model, few studies have directly combined it with
numerical simulation software to investigate engineering problems. The intention of this paper is
twofold. Firstly, a coal seam is represented by a two-dimensional SFN image. The pixels in the picture
represent fractures or the matrix and the image resolution determines the accuracy of the fracture size
(the higher the resolution is, the smaller the size of the fracture which can be generated). Secondly, a
finite element analysis of gas flow in the coal seam is carried out in COMSOL Multiphysics 5.4 on the
basis that an SFN image has been transformed to a computational domain. In this way, the temporal
and spatial distribution of gas velocity and pressure is able to be reflected more intuitively, which
provides a more efficient method to study the flow characteristics of CBM.
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2. The CBM Industry with a Worldwide View

As a kind of unconventional natural gas, CBM has been exploited in about 30 countries, and
among them, the U.S. is the first and most successful country in CBM exploitation, with the largest
production in the world throughout the given period shown in Figure 1b and the second largest
estimated CBM resources, which are at 49.2 Tcm, as shown in Figure 1a. According to the line graph
in Figure 1b, the U.S. saw a considerable increase in CBM production within the period 1989 to 2008.
However, after its production peaked at 55.67 Bcm in 2008, the figure had fallen to 28.88 Bcm by 2016.
This phenomenon may stem from three areas: the government provided effective policy support at
first, which greatly stimulated the commercial production of CBM; later, the average daily production
of single wells continued to decrease, which resulted in the economic benefits declining; and falling
natural gas prices led to a sharp drop in investment. The development history of the U.S. CBM industry
has important reference significance for other countries, including China.
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Figure 1. (a) The bar chart compares the five highest ranking countries in terms of estimated coalbed
methane (CBM) resources. (b) The line graph shows CBM production of these five countries from 1989 to
2016, 2000 to 2015, 2000 to 2014, 2000 to 2014, and 2010 to 2014, respectively. Source: International Energy
Agency https://www.iea.org/ugforum/ugd/, U.S. Energy Information Administration, Washington,
DC https://www.eia.gov/dnav/ng/ng_prod_coalbed_s1_a.htm and National Development and Reform
Commission http://www.ndrc.gov.cn/zcfb/zcfbghwb/201112/t20111231_585486.html.

With considerable CBM resources estimated at almost 37 Tcm, as shown in Figure 1a, China has
great potential for CBM exploitation. Although it has started to exploit CBM commercially relatively
late, production statistical data shows that Chinese CBM production has increased significantly from 1
Bcm in 2000 to 20 Bcm in 2015, which reflects a similar trend to the U.S.’s figures in the early years, as
shown in Figure 1b. Compared to the large integrated network of CBM pipelines in the U.S., Australia,
and Canada, commercial utilization of CBM in China is localized with most production coming from
high-rank coals in the Ordos or Qinshui basins [41]. In terms of the geological conditions, Chinese CBM
reservoirs generally reflect low permeability (under 1 × 10−3 µm2), low gas pressure, low resource
abundance (under 1.3 × 108 m3/km2) and great buried depth (over 600 m) compared with the U.S.’s
CBM reservoir conditions (permeability over 2 × 10−3 µm2, resource abundance over 2 × 108 m3/km2,
and buried depth under 500 m) [42]. With these challenges faced with the development of the Chinese
CBM industry, it is of great importance to have a good understanding of CBM occurrence conditions
(especially pores and fractures within reservoirs, which have fundamental impacts on gas transport).

3. SFN Reconstruction and Processing

In this section, the basic theory for SFN generation, SFN image processing, and the techniques
adopted for transforming an SFN image into a computational domain are presented.

https://www.iea.org/ugforum/ugd/
https://www.eia.gov/dnav/ng/ng_prod_coalbed_s1_a.htm
http://www.ndrc.gov.cn/zcfb/zcfbghwb/201112/t20111231_585486.html
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3.1. Basic Theory and Method of SFN Reconstruction

The Monte Carlo method, which is known as a statistical simulation method, is based on the
large number theorem and the central limit theorem. The basic idea is that when the problem is the
probability of a random event, the probability of the random event is estimated by the frequency of
the occurrence of this event by some "experimental" method or some digital features of the random
variable. The main means of the Monte Carlo method is to use random numbers to carry out statistical
tests and produce random numbers that follow a certain distribution function, which basically contains
two steps:

(1) The linear congruence method is used to generate uniformly distributed random numbers in
[0,1] interval [22], i.e., {

xi+1 = (axi + c)mod(m)

ξi+1 =
xi+1

m
(1)

where xi+1 is a random variable corresponding to a random number ξi+1; a is a multiplier; c is the
increment; m is a modulus; mod(m) represents the remainder of the modulus; the subscript i is an
integer; and the initial value is zero.

(2) The obtained uniformly distributed random numbers are used to generate other random
numbers that are subject to different distributions based on statistical data (averages and standard
variances of FGPs).

Taking normal distribution as an example, the probability density function is expressed as

f (x) =
1
√

2πσ
e−

(x−µ)2

2σ2 ,−∞ < x < +∞ (2)

Furthermore, the probability distribution function can be derived as

F(x) =
∫ x

−∞

f (t)dt =
1
√

2πσ

∫ x

−∞

e
1
2 (

t− t−2

σ
)dt (3)

The random number of normal distribution can be obtained as

x = µx + σx
√
−2 ln ξ cos(2πξ) (4)

where x is a random number which is subject to normal distribution; and ξ is a random number of
uniform distribution in the [0,1] interval.

Four distribution functions in Table 1 and four FGPs of SFN (density (ρ), fracture length (l),
fracture aperture (d), and fracture direction (θ)) have been investigated in this paper. A single fracture
is represented by a straight line in SFN. The center coordinates of a fracture are (x0, y0) and center
points of all fractures are uniformly distributed in an SFN. By using Equation (5), the starting point and
endpoint coordinates of a fracture can be obtained. In addition, the number of fractures is determined
by fracture density, and the fracture orientation is defined by the angle from the X-axis rotated along
counter clockwise to the fracture. In this way, SFNs can be reconstructed.{

x = x0 ± (
l
2 ) cosθ

y = y0 ± (
l
2 ) sinθ

(5)
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Table 1. The probability density functions and corresponding random variables used in this work.

Distribution Probability Density Function Random Variable

Uniform f (x) = 1
b−a (a ≤ x ≤ b) xr = (b− a)ξ+ a

Normal f (x) = 1
√

2πσ
e−

(x−µ)2

2σ2 xr =
√

12
n

(
n∑

i=1
ξi −

n
2

)
σ+ µ

Exponential f (x) = 1
µ e−(x/µ)(x > 0) xr = −µ ln(1− ξ)

Lognormal f (x) = 1
√

2πσx
e−

1
2 (

ln x−µ
σ )

2

(x > 0) xr = e

√
12
n (

n∑
i=1
ξi−

n
2 )σ+µ

3.2. SFN Image Processing

For the sake of simplicity and to show the efficient use of such an SNF model in a numerical
simulation, the simulations were restricted to two-dimensional images in the present study. A series
of images representing fracture structures were obtained and processed through MATLAB 2016b for
reconstructing the coal reservoir. Figure 2a represents an SFN which has been processed for frame
removing, grey processing, binarization, and color reversion. The white regions depict fractures and
the black regions depict the coal matrix. Figure 2b processed by image function defines a continuous
computational domain for CBM flow simulation in COMSOL. Similarly, based on these steps, other
SFN images were processed to obtain different computational domains.
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Figure 2. The process of transforming a stochastic fracture network (SFN) image to a computational
domain: (a) a stochastic fracture image generated and processed in MATLAB; (b) the same image
which has been imported into COMSOL through the image function.

3.3. Image function

The image function makes it possible to import an image to COMSOL and map the image’s RGB
data to a scalar (single channel) function output value. By default the function’s output uses the
mapping (R+G+B)/3. An image is defined on a two-dimensional domain, and we typically describe
the image function using spatial coordinates: im(x,y). According to Section 3.2, we made all the images
binarized, so im(x,y) = 0 or 1. If the area on the image represents the coal matrix (the red area in
Figure 2b), im(x,y) = 0, and where im(x, y) = 1 this represents fractures (the blue area in Figure 2b).
Therefore, the porosity and permeability of an SFN can be divided into two parts by the image
function using

ϕ =
(
ϕ f −ϕm

)
× im(x, y) + ϕm (6)

K =
(
K f −Km

)
× im(x, y) + Km (7)

where ϕ is the porosity of the SFN; ϕm is the porosity of the coal matrix; ϕf is the fracture porosity; and
K is the permeability of the SFN. Km is the permeability of the coal matrix and Kf is the permeability
of fracture.
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4. Numerical Simulation of Gas Flow in the Coal Seam

The basic assumptions, computational geometry, governing equations, and numerical techniques
adopted for investigating the influence of different FGPs on the permeability of the SFN are presented
in this section.

4.1. Basic Assumptions

In this study, the following basic assumptions were made:

(1) The coal seam is represented by an SFN and treated as a dual-porosity reservoir that is composed
of fractures and the coal matrix.

(2) FGPs consist of density, length, aperture, and orientation.
(3) The flow in the coal seam is a single phase and saturated Darcy flow.
(4) Gas absorption is described by the Langmuir law.
(5) Coupling effects of multiple physical fields are ignored.

4.2. Fracture Flow Model

Numerous investigations including theoretical analyses and numerical modeling about the flow
behavior in fractured rocks have been conducted with various rocks. Researchers have normally
assumed laminar flow in a single fracture with two fracture surfaces. According to the Navier-Stokes
equation, the average flow rate through a plane void can be calculated. It has been found that flow
transmissivity is proportional to the cube of the fracture aperture, which also known as the “cubic flow
equation” [43], i.e.,

q = −
b3

12µ
dP
dx

(8)

where q is the flow rate of a fracture at a unit height in the Z direction (Figure 3); b is the fracture
aperture; and µ is the fluid dynamic viscosity.
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As shown in Figure 3, when the height of the fracture is h, the flow rate Q of the total rock cross
section can be described as

Q = hq = −
Aϕ f b2

12µ
dP
dx

= −
K f A

µ
dP
dx

(9)

where A is the area of the rock cross section.
Then the permeability of the fracture becomes:

K f =
ϕ f b2

12
(10)

In this work, b is the average value of the fracture aperture in the SFN and ϕf is defined by the
ratio of pixels representing fractures to total pixels.
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4.3. Governing Equations and Boundary Conditions

Based on the basic assumptions of the SFN model and ignoring gas adsorption, the continuity
equation of gas flow in the coal seam can be expressed as

∇·

(
ρgV

)
= 0

V = −K
µ∇P

ρg =
MgP
RT

(11)

where ρg is the gas density; V is the gas velocity; µ is the dynamic viscosity of gas; P is the gas pressure;
Mg is molar mass of gas [kg/mol]; R is the gas constant [J/(mol·K)]; and T is the temperature of the coal
seam.

By substituting Equations (7) and (10) into Equation (11), the gas flow equation can be derived as:

∇·


MgP
RT

−
Km

(
ϕ f b2

12Km
− 1

)
im(x, y) + Km

µ
∇P


 = 0 (12)

The geometry of the fracture network and boundary conditions are shown in Figure 4. This
geometry was imported from the processed image, with dimensions along the X and Y axes being both
15 m. The gas flow is pressure driven with a constant pressure gradient maintained from the inlet to
the outlet.
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Figure 4. The representative computational geometries used for the numerical study. All dimensions
are in meters.

4.4. Numerical Simulation Results

Based on the boundary conditions (Figure 4), combined with the parameters in Table 2, the
distribution features of gas pressure and velocity in the SFN were obtained through steady flow
computation in COMSOL, as shown in Figure 5. The gas pressure was seen to gradually decrease from
the inlet to the outlet, and the gas velocity in the fractures was much greater than that in the matrix.
Subsequently, the average value of the gas velocity at the outlet of the fracture network was able to be
obtained by integral and averaging (Figure 5b).
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Table 2. Parameters used for simulation.

Parameter Value

Gas dynamic viscosity (µ) 11.067 [Pa.s]
Matrix permeability (km) 0.02 [mD]

Matrix porosity (ϕm) 0.01
Gas pressure of inlet (P1) 1 [MPa]

Gas pressure of outlet (P2) 0 [MPa]
Coal seam temperature (T) 310 [K]
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5. Parametric Study

In this section, the purpose was to compare the permeability of different fracture networks without
obtaining their values. According to Darcy’s law of gas seepage in porous media (Equation (14)), the
permeability (K) is proportional to gas velocity (V) when all the other parameters are fixed. Hence, the
permeability was able to be compared by the variation of mean gas velocities obtained from velocity
curves like Figure 5b.

K =
2QPαµL

A(P2
1 − P2

2)
=

2VPαµL

P2
1 − P2

2

(13)
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where Pα is the standard atmospheric pressure and L represents the distance between the gas inlet and
the outlet in the direction of the gas pressure gradient.

To investigate the influences of FGPs on the permeability of the coal seam, a parametric study
was performed by varying every parameter and calculating the corresponding mean gas velocity at
the outlet of the SFN. The reference values of the FGPs are listed in Table 3. In this part, several groups
of SFN images are described in each subsection and the influences of fracture density, length, aperture,
and orientation on the permeability of the SFN are discussed respectively on the basis of making all
the FGPs subject to normal distribution. Additionally, impacts caused by the distribution of FGPs and
the combination of differently scaled fractures are studied. Every group of SFNs contains three SFN
images generated with all the same FGPs, and the average value of three simulation outcomes is taken
as a reference quantity.

Table 3. Reference values of fracture geometric parameters (FGPs).

Density (m−2)
Orientation (◦) Length (m) Aperture (m)

Mean Standard
Deviation Mean Standard

Deviation Mean Standard
Deviation

3.2 10/100 3◦ 2.3 0.1 0.03 0.002

5.1. Influence of Fracture Density on CBM Flow

To find out the influence of fracture density on the permeability of the coal seam, other FGPs
have been kept the same as in Table 3. The mean gas velocity at the outlet of the SFNs generated
with different densities has been compared (Figure 6). It is easy to see that the connected region
increased obviously with the rising of the fracture density, which is more conducive to the flow of
gas. The increasing gas velocity indicates that the permeability of the coal seam increased with greater
fracture density.
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Figure 6. Relationship between the density of fractures and the mean velocity of gas.

5.2. Influence of Fracture Length on CBM Flow

To investigate the influence of fracture length on the permeability of the SFN, the mean velocity of
gas at the outlet of the SFNs was compared by making the fracture length vary from 1.5 m to 3 m, as
shown in Figure 7, and keeping the other FGPs the same as that in Table 3. As shown in the graph, gas
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velocity increased gradually with the rising of the fracture length, which indicates that longer fracture
length can result in the increase of a reservoir’s permeability.
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5.3. Influence of Fracture Aperture on CBM Flow

By choosing different values of fracture aperture and the same other parameters shown in Table 3,
the influence of fracture aperture on the permeability of coal seam was investigated. According to
Figure 8, gas velocity rose considerably with the increase of the fracture aperture. This result from a side
illustrates that the permeability of the coal seam will increase as the fracture aperture becomes larger.
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As Figures 7 and 8 depict, gas velocity rose by approximately 5 × 10−6 m/s as the fracture length
increased from 1.5 m to 3 m. However, gas velocity rose by almost 7 × 10−6 m/s as the fracture aperture
increased from 0.01 m to 0.09 m. Thus, it can be concluded that the fracture aperture has a more
obvious effect on permeability than fracture length.
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5.4. Influence of Fracture Orientation on CBM Flow

Considering the symmetry of the SFN surface, it was feasible to choose fracture direction angles
of 10◦, 30◦, 50◦, 70◦, and 90◦ for the investigation. By making FGPs the same as that in Table 3 except
for the orientation, the mean velocity of gas at the outlet of SFNs with different fracture orientations
was compared (Figure 9).
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Figure 9. Relationship between fracture orientation and the mean velocity of methane at the outlet.

The change of fracture orientation can be seen to not affect the flow capacity of the fracture
network, but it does change the direction of the gas flow. In the context of the present work, the
fracture orientation means the angle between the gas flow direction and the pressure gradient. As
shown in Figure 9, gas velocity decreased gradually with the increase in fracture direction angle, which
illustrates that the permeability of SFN became smaller.

5.5. Influence of Fracture Size on CBM Flow

According to long-term field and laboratory measurements and statistics of a newly exposed coal
face and collected coal samples, Fu et al. [44] proposed a comprehensive classification method of coal
seam fractures through statistical analysis of the fractures’ morphological characteristics. Fracture
size is divided into four grades: large fractures, middle fractures, small fractures, and micro fracture
(Table 4).

Table 4. Classification of coal fracture size.

Fracture Size Fracture Aperture (mm) Length (m) Density (m−1)

Large (L) >100 >10 1~10
Middle (M) 10~100 1~10 10~100

Small (S) 5~15 0.01~1 10~200
Micro (Mi) <10 0.01~0.1 20~500

In this work, seven groups of SFNs with different combinations of differently scaled fractures
have been researched. The fracture densities of the SFNs were all 1.6 m−2 and the other FGPs were
determined according to Table 4. Through numerical computation, gas velocities of each group SFN
were obtained (Figure 10). It is clearly shown that the larger proportion of larger scale fractures in
the SFN corresponded to greater gas flow velocity, which indicates that large scale fractures make a
dominating contribution to the permeability of the coal seam.
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5.6. Influence of Distribution Patterns of FGPs on CBM Flow

The distribution patterns of FGPs are reflected by distribution functions. Generally, distribution
patterns of different FGPs are not the same in the real case. In this paper, uniform distribution, normal
distribution, lognormal distribution, and exponential distribution were selected to study the influence
of different distribution patterns of FGPs on the permeability of the SFN, which correspond to four
groups of SFNs, with all the FGPs being set to follow one distribution function (Figure 11). The fracture
density SFNs were all 3.2 m−2, with the other FGPs kept the same as that in Table 3.
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The gas velocity curve (Figure 11) shows that when the FGPs were exponentially distributed, the
gas velocity was the largest, with lognormal distribution followed by normal distribution, and with
gas velocity being the smallest when the value of the FGPs was uniformly distributed.

In order to illustrate this result, a comparison of four probability density plots with the same mean
and variance of fracture length is taken as an example. As shown in Figure 12, normal distribution is
symmetric around the point x = µ, which is at the same time the mean of the distribution. Lognormal
distribution is a positive skew distribution with its peak shifted to the left and a long tail to the right
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side of the mean. When the standard deviation is small, lognormal distribution is shown to be very
close to normal distribution in the short term; however, lognormal distribution has more values of
fracture length distributed upward in the long run. For uniform distribution, the probability density
is constant within two boundaries and the value range of the fracture length is smaller compared
with the normal distribution. Relatively speaking, the probability density change of the exponentially
distributed fracture length is small, and the variable values are more widely distributed than that in
the lognormal distribution. Therefore, combined with the conclusion of the previous subsection, the
result of Figure 11 can be well supported.
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6. CBM Extraction Simulation Based on SFN Modeling

In order to test the application in solving practical engineering problems through the proposed
approach, an SFN image with four scales of fractures was generated to represent the coal seam
(Figure 13a). Based on Section 4, a CBM extraction numerical simulation with consideration of gas
adsorption and desorption was carried out in this part. Boundary conditions and initial conditions
adopted in the simulation are shown in Figure 13b.
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Table 5. FGPs for coalbed reconstruction. 

Fractures Density 
(m−2) 

Orientation (°) Length (m) Aperture (m) 
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Deviation 

Mean Standard 
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Small 30 45 - 0.4 0.05 0.005 0 
Micro 100 45 - 0.06 0.01 0.001 0 

Figure 13. (a) The SFN generated for the gas extraction simulation; (b) the same image which has
been imported into COMSOL and for which a mesh containing 28,676 elements has been generated in
the computational domain. Boundary conditions and initial conditions have also been indicated in
the figure.
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In practical engineering applications, the data of FGPs are collected by field and laboratory
measurements and then the probability density functions are determined according to the fitting of
the data. For the sake of simplicity, we determined that the fracture lengths all obey a lognormal
distribution; the direction angles of the large and middle fractures obey a lognormal distribution;
the direction angles of the small and micro fractures obey an exponential distribution; and fracture
apertures at all scales follow a normal distribution. The specific values of the FGPs are shown in
Table 5. The numerical simulation parameters in COMSOL have been derived from Table 6.

Table 5. FGPs for coalbed reconstruction.

Fractures
Density

(m−2)

Orientation (◦) Length (m) Aperture (m)

Mean Standard
Deviation Mean Standard

Deviation Mean Standard
Deviation

Large 0.03 45/135 3 11 0.5 0.11 0.01
Middle 1 45/135 3 2.3 0.1 0.03 0.002
Small 30 45 - 0.4 0.05 0.005 0
Micro 100 45 - 0.06 0.01 0.001 0

Table 6. Computational parameters in simulation.

Parameter Value

Gas density under standard conditions (ρgs) 0.716 [kg/m3]
Langmuir pressure constant (PL) 3.034 [MPa]
Langmuir volume constant (VL) 0.036 [m3/kg]

Density of coal skeleton (ρs) 1370 [kg/ m3]

6.1. Governing Equations and Parameters

CBM content in the reservoir consisted of absorbed gas and free gas, which is defined as [45]

mg =
MgP
RT

ϕ f + ρgsρs
VLP

PL + P
(14)

where ρgs is the density of the gas under standard conditions; ρs is the coal skeleton density; VL is the
Langmuir volume constant; and PL is the Langmuir pressure constant.

Under the influence of the gas concentration and pressure gradient, the gas in the matrix is shown
to migrate into fractures. On the basis of mass conservation, Equation (15) is able to be obtained, i.e.,

∂mg

∂t
+∇ ·

(
ρgV

)
= 0 (15)

Substituting Equations (7), (10), and (14) into Equation (15), the gas migration equation in the coal
seam can be written as

∂
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(16)

6.2. Simulation Results Analysis

Figure 14 gives information about the spatial and temporal distributions of gas pressure in the
coal seam at four points at the times 0, 10, 20, and 30 h. It is apparent that the gas pressure around
the borehole gradually decreased with time. The pressure decreased quickly near the borehole and
the decrease became slower as it moved away from the borehole. This phenomenon resulted in the
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pressure drop funnel forming around the borehole, which can also be observed in the line graph.
Figure 15 illustrates the gas velocity distribution in the coalbed at different times. It is noticeable
that the gas velocity in fractures was much larger than that in matrix. Gas velocity increased from
T = 0 h to T = 10 h and then decreased with the gas pressure becoming small. Additionally, the area
where the gas velocity changed obviously got larger first and then became smaller. The simulation
results show the characteristics of CBM flow during the process of gas extraction, which indicates that
SFN images combined with finite element analysis have great potential in the application of tackling
engineering problems.Materials 2019, 12, x FOR PEER REVIEW 16 of 19 
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Figure 15. Gas velocity distribution around the borehole at different times.

7. Conclusions

Traditionally, pore-fracture scale simulations are conducted using the lattice Boltzmann method.
However, in this work a relatively simple technique to show CBM migration through finite element
analysis, which is based on 2D SFN modeling and image function, has been proposed, in which the
dual-porosity medium coalbed is represented by an SFN image which can be generated by a self-built
program in MATLAB. Influences of different FGPs and their distributions on the permeability of SFN
were analyzed and a CBM extraction simulation in COMSOL was carried out. Although some limits,
such as generating SFNs without taking other FGPs like tortuosity and roughness into consideration,
difficulty in combining large scale fractures with nanoscale pores, and the absence of multi-field
coupling effects analysis, still exist, the proposed method provides an efficient way to research CBM
flow properties in the coal seam, which has great potential not only for gas-induced hazard prevention
but also CBM industry development. According to the present study, the following conclusions can
be drawn:

(1) Based on the Monte Carlo method, SFNs with different FGPs were able to be generated, with
the simulation results showing that the permeability of SFN increases with larger values of density,
length, and aperture, and smaller values of the angle between the fractures and gas pressure gradient.
The fracture aperture has a larger influence on permeability than fracture length according to the
variation range of gas velocity and the value of FGPs (Figures 7 and 8).

(2) The contribution order of different scales of fractures to the coal reservoir permeability from
large to small is: large-size fractures, middle-size fractures, small-size fractures, and micro fractures,
which also confirms the first conclusion because larger fracture size is shown to correspond to larger
trace length and aperture.

(3) The impacts on reservoir permeability of FGP distribution were examined. On the condition
that the values of all FGPs are kept the same, permeability ranking of SFNs from large to small is SFN
with exponentially distributed FGPs, with lognormally distributed FGPs, with normally distributed
FGPs, and with uniformly distributed FGPs.

(4) The gas extraction simulation can reflect CBM flow properties at each stage of the entire
extraction process, including the temporal and spatial variations of gas velocity and pressure, the
differences of gas velocity and pressure between fractures and coal matrix, and the gradually formed
gas pressure drop cone.
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