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ABSTRACT
�is work introduces an ultra-low-power visual sensor node cou-
pling event-based binary acquisition with Binarized Neural Net-
works (BNNs) to deal with the stringent power requirements of
always-on vision systems for IoT applications. By exploiting in-
sensor mixed-signal processing, an ultra-low-power imager gener-
ates a sparse visual signal of binary spatial-gradient features. �e
sensor output, packed as a stream of events corresponding to the
asserted gradient binary values, is transferred to a 4-core processor
when the amount of data detected a�er frame di�erence surpasses a
given threshold. �en, a BNN trained with binary gradients as input
runs on the parallel processor if a meaningful activity is detected in
a pre-processing stage. During the BNN computation, the proposed
Event-based Binarized Neural Network model achieves a system
energy saving of 17.8% with respect to a baseline system including
a low-power RGB imager and a Binarized Neural Network, while
paying a classi�cation performance drop of only 3% for a real-life
3-classes classi�cation scenario. �e energy reduction increases up
to 8x when considering a long-term always-on monitoring scenario,
thanks to the event-driven behavior of the processing sub-system.
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1 INTRODUCTION
Convolutional neural networks achieve state-of-the-art performance
on several recognition tasks, such as image classi�cation, object
detection and voice recognition. Despite the promising capabilities,
the high computational cost is preventing their deployment on
resource-constrained and ultra-low power devices. Recently, Bina-
rized Neural Networks (BNNs) have emerged as a potential solution
for pushing deep networks into ba�ery-powered systems [5, 17].
�e extreme 1-bit quantization of both the weights and activation
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layers reduces the memory requirement by 32x while still leading
to a nearly state-of-the-art accuracy on several public dataset [5].
By reducing the internal precision to a single bit, the convolution
operation, which is the most demanding kernel of a CNN inference
algorithm, transforms into a bit-wise logic XNOR followed by a
bit counting operation. �is has enabled the deployment of deep
networks into low-power programmable processors featuring 32bit
bit-wise operations, also thanks to their �exibility and easy pro-
gramming legacy [15]. However, due to the stringent requirement
of always-ON sensors, a BNN inference engine needs to be coupled
with power-optimized smart sensing devices to further reduce the
system power consumption.

In the context of camera-based system design, the event-based
sensing paradigm has shown signi�cant bene�ts from an energy
viewpoint by keeping the system in a low-power mode unless a
notable amount of information, in the form of events, is detected
on the sensor die [21]. In this paper, we present an Event-Based
Binarized Neural Network that combines a BNN implementation
on a so�ware-programmable 4-core processor with an event-based
binary acquisition scheme, aiming at enhancing the detection ca-
pabilities and, at the same time, matching the energy requirement
of a low power visual sensor front-end. As opposed to previously
presented BNN approaches, where RGB pixels are produced by a
traditional camera and then binarized on the processing platform,
we leverage in-pixel hardware processing circuits to produce the bi-
nary data to feed into the neural network. Every pixel is generated
by thresholding the gradient computed over a three-pixel spatial
mask [8]. �is process naturally re�ects the operation of a bina-
rized pixel-wise convolution and can be seen as embedding the �rst
convolutional layer within the image sensor die. Moreover, mixed-
signal in-sensor processing allows to lower the power consumption
of the imagers by more than 10× with respect to power-optimized
o�-the-shelf components [2] thanks to the reduced amount of data
crossing the costly analog-to-digital border [13].

�e main contributions of the paper are:

(1) �e speci�cation of an Event-Based Binarized Neural Net-
work model, which �ts the energy requirements and re-
source constraints of a deeply-embedded always-on visual
sensing front-end.

(2) An optimized implementation of a BNN on a 4-core em-
bedded processor.

(3) �e energy evaluation of the proposed solution and the
comparison with a baseline BNN model with RGB data
input.
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To assess the performance of our Event-Based Binarized Neural
Network solution, we collect real-world images belonging to three
di�erent classes and train a binarized neural network. �e BNN
inference model is implemented on a 4-core RISC processor opti-
mized for energy-e�ciency [19]. As an outcome, we demonstrate
that during the classi�cation task, the proposed solution reduces
the system energy by 17.8% in reference to a frame-based baseline
system that includes a low-power RGB imager and a traditional
BNN approach, while paying only a 3% reduction of classi�cation
performance on a 3-classes scenario. Moreover, when consider-
ing a long-term monitoring application, the system leverages the
event-based sensing scheme to reduce the start-up activity of the
processor and to trigger a classi�cation run upon the detection of a
relevant event. �is leads to an energy reduction of up to 8x with
respect to the frame-based system featuring an RGB camera.

2 RELATEDWORK
Recent work on Convolutional Neural Networks (CNNs) has inves-
tigated the bit quantization to reduce the storage and computational
costs of the inference task. As an extreme case, Binarized Neural
Networks (BNNs) reduce the precision of both weights and acti-
vation neurons to a single-bit [5, 17]. As a distinctive feature, the
binary quantization is not only applied during the forward pass, but
also during the backward pass of the gradient descent algorithm,
and acts as a sort of regularizer [16]. Hardware accelerators for
highly-quantized NNs have been presented on FPGA [23], ASIC
[3, 10] and neuromorphic brain-inspired chips such as Truenorth
[6], trading the �exibility of general-purpose processors with high-
est performance and energy e�ciency of specialized hardware. To
lower the computational complexity of BNNs, a hardware-oriented
kernel decomposition strategy is presented in [10], using clock-
gating to reduce the energy cost of redundant convolutions. �is is
clearly e�ective but less prone to be implemented in so�ware be-
cause it is weight-dependent and does not bene�t from data spatial
contiguity, which is exploited in this work to reduce the computa-
tion latency. Indeed, we target a low-power so�ware-programmable
platform as a digital processing unit for running the BNN classi�er,
also due to the lower development time with respect to application
speci�c circuits and recon�gurable logic. A �rst so�ware-based im-
plementation of a binary network on resource-constrained devices
is presented in [15] and it is based on an Arduino platform. Starting
from this work, we optimize the implementation and extend it to a
parallel ultra-low-power processor.

To address energy issues in the context of smart visual sensors,
moving part of the computation to the sensor die results e�ective
since it allows to lower the sensor-to-processor data �ow and the
workload of the digital signal processing [18]. �e sensor front-end
described in [12] leads to a maximum 64x reduction of ADC con-
versions by integrating a matrix-multiply-and-accumulate analog
circuit before digitization. Pushing further the early-processing
approach, the design of an analog convolutional image sensor is
presented in [13]. Simulation results show a reduction of energy
up to 84% when the �rst layers of the CNN are computed in the
analog domain, together with the energy reduction on the digital
processor. With respect to these solutions, the imager used in this
work [8] still features in-sensor processing capabilities. Further-
more it provides a binarized output, which naturally re�ects the
behavior of a binarized convolutional layer.

Figure 1: Comparison between a traditional BNN �ow
and the proposed Event-based BNN scheme, which exploits
focal-plane processing for in-sensor binarization

A �rst study of applying deep learning approaches on the gradient-
based data generated by the imager is presented in [9]. Authors
focused on greyscale image reconstruction from gradient-based
data while not targeting implementation on resource-constrained
systems. More in details, we evaluate the combination of a BNN
for classi�cation purpose with an Event-Based sensing scheme,
which has been demonstrated to be extremely e�cient for contin-
uous sensing thanks to the event-driven activation of the digital
processor depending on the external context activity [21].

3 EVENT-BASED BNN
�e Event-based Binarized Neural Network scheme is depicted in
Fig. 1. �e presented approach combines the paradigm of event-
based sensing with the concept of Binarized Neural Networks. If
compared with traditional BNN architectures that operates on 3-
channels RGB images, the Event-Based BNN is fed by sensor data
that has been pre-processed and binarized on the image sensor
die. �is la�er exploits a pixel-wise hardwired spatial �ltering op-
eration: a per-pixel mixed-signal circuit computes the weighted
gradient across a neighboring pixel mask. Following this, gradient
values are binarized by thresholding. We refer to any of the asserted
pixel, i.e. the ones with a gradient value greater than the thresh-
old, as an event. �e event-based paradigm allows to drastically
reduce the sensor-to-processor bandwidth and memory footprint
on the processor-side if compared to the baseline that transfers and
processes RGB sensor data. �e BNN is implemented on the digital
signal processor and refers to the model presented by Courbariaux
et al. [5]. �anks to the input and weight binarization, any convolu-
tion reduces to a logic XNOR and a bit counting operation, resulting
suitable to be implemented on ultra-low-power processors based
on RISC architectures.

In this work, we refer to the imager prototype presented in [8] to
investigate the Event-Based Binarized Neural Networks. �e hard-
ware in-sensor processing stands as the �rst stage of the inference
pipeline. For any pixel location PO, the local gradient is computed
with respect to the neighboring pixels, PN and PE, as illustrated in
�gure 2a. Assuming PO and PN to be respectively the more and the
less exposed pixels to light, the gradient will be proportional to the
voltage di�erence between PO and PN (�g. 2b). Figure 2c illustrates
the circuit that implements this pixel-wise functionality. �e out-
put of the contrast block is binarized by means of the comparator
comp2, considering a tunable level Vth . In the adopted prototype,
this threshold is generally set close to 0V, to gain a higher sensitivity.
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�e sensor dispatches out only the asserted pixels, i.e. the ones with
a positive value a�er thresholding. �e data output is forma�ed as a
stream of (x,y) coordinates, corresponding to the generated events.
According to the event-based paradigm, the amount of transferred
data is varying depending on the context activity.

A preliminary experiment to assess the capability of the approach
is conducted by benchmarking against the CIFAR-10 dataset [11].
To simulate the in-sensor processing of our imager, we use a basic
sensor model to convert RGB images of the dataset into the binary
representation space. As a �rst approximation, the gradient contrast
VEDGE is computed as:

VEDGE =
max( |pE − pO |, |pN − pO |)

max(pE ,pO ,pN )
(1)

where pX is the greyscale value of the correspondent RGB pixel
value. �e binarization is formulated as:

VO = siдn(VEDGE −Vth ) (2)
Figure 3 illustrates the qualitative result when transforming an

RGB image into the representation space of our imager. �e images
labeled with (a) and (c) are captured respectively with an RGB image
sensor and with our sensor, while �gure (b) is obtained by applying
the transformation of equations (1)-(2) on the RGB image.

A VGG-like [22] BNN model is trained either with the original
RGB data of the CIFAR dataset and with binarized data obtained
from the transformation (1)-(2) of the original data space. �e model
is composed of 12 convolutional layers and 2 fully-connected lay-
ers and is trained following the approach of [5]. Table 1 lists the
accuracy on the test set composed of 10k samples picked from the
CIFAR-10 dataset. �e evaluation also includes a baseline �oating
point CNN model with the same VGG topology, trained with RGB
and binarized data. �e results show that the speci�c kind of imager
binarization leads to an 18.8% performance drop with respect to the
baseline, while the additional binarization of the model leads to a

Figure 2: (a) In-sensor pixel mask to compute the binary gra-
dient (b) Gradient extraction approach (c) Mixed-signal cir-
cuit for contrast extraction that is placed at every pixel loca-
tion.

Figure 3: Image of a car taken with a RGB sensor (a) and
with our imager (c). Image (b) is obtained by applying the
transformation of eq.1-2 on the le� RGB image to simulate
the in-sensor processing.

Table 1: Accuracy on CIFAR10 dataset
Model Accuracy
CNN with RGB input 91.36%
BNN with RGB input 86.78%
CNN with binarized input 72.50%
Event-Based BNN 68.94%

further 3.5% reduction. Despite the not-negligible accuracy degra-
dation, the training process actually leads to model convergence
and hence can be exploited for training event-based binarized neu-
ral networks for an application-speci�c scenario. We demonstrate
in Section 5 that the accuracy degradation signi�cantly a�enuates
by considering a reduced-complexity classi�cation scenario, which
is a more typical use-case for an always-ON sensing front-end.

4 BNN ON A PARALLEL EMBEDDED
PROCESSOR

In this section, we describe our so�ware implementation of a Bina-
rized Neural Network (BNN) on a parallel 4-core processor.

4.1 BNN Model
�e BNN model is structured as a sequence of convolutions and
fully-connected layers, where synaptic weights and neuron values
are stored with 1-bit precision. When looking at the inference task,
the convolution operation is expressed as:

φ (x ,y) =
∑
d,i, j

w (d, i, j ) ∗ I (d, i, j,x ,y) (3)

where φ (x ,y) is the output neuron’s value at location (x,y) of one
of the output channel, w and I are the weights and inputs banks, d
is the input channel index and i , j are the spatial dimension indexes
within the convolution �lter. Because of I ,w ∈ {0, 1}, equation (3)
can be reduced to:

φ (x ,y) = popcount(w xnor I) (4)

where w, I are binary arrays that store the binary �lter weights and
inputs and popcount(·) returns the numbers of asserted bits of the
argument. Note that the convolution output φ (x ,y) is an integer
value. As presented by [5], the output is binarized a�er a batch
normalization layer. We refer to the deterministic binarization that
is de�ned as:

obin (x ,y) = sign(φ (x ,y) + b − µ
σ

· γ + β ) (5)

where b is the convolution bias and µ, γ , σ and β are parameters
learned by the batch normalization layer. �ese parameters are
�oating point but thanks to the siдn(·) and the integer input φ (x ,y)
the expression can be reduced to:

obin (x ,y) =



φ (x ,y) ≥ bµ − b − β · σ/γ c if γ > 0
φ (x ,y) ≤ dµ − b − β · σ/γ e if γ < 0

(6)

therefore only an integer threshold and a single bit sign(γ ) have to
be stored for binarizing any output layer.

As shown by equations (4) and (6), a binarized convolution opera-
tion is then expressed as a couple of instructions, requiring bit-wise
and popcount operations, along with an integer comparison.
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Figure 4: Average execution time to run a 3x3 convolution
kernel for several optimization steps and their relative gains.
�e average number of clock cycles is reported in white on
the bars.

4.2 So�ware implementation and Memory
Management

Our so�ware implementation is based on the code architecture pre-
sented in [15]. Several optimizations have been performed on the
original code version to accelerate the computation and, at the same
time, minimize the memory footprint. As major improvements, (a)
the binary weights needed to produce an output layer are stored
contiguously in memory to minimize the memory requirement,
(b) the XNOR operation is performed on 32-bit data registers, to
fully exploit the datapath length and (C) thanks to the convolution
formulation expressed by eq.(6), our implementation does not re-
quire any �oating-point operation, with the exception of the last
fully-connected layer, whose workload is however negligible in
reference to the rest of the network inference task.

An ultra-low power parallel platform is employed for running
the BNN inference [20]. �e processor features a 4-core cluster
with an extended OpenRISC instruction set. �e cluster includes
a 32KB tightly-coupled scratchpad memory, acting as L1 memory,
while a 64KB L2 memory is placed on the o�-cluster region. �e
architecture is implemented in 28nm FD-SOI technology. Power
consumption measurement reported in the paper was measured on
the silicon prototype of the SoC.

�e BNN weight parameters are permanently stored in the L2
memory, besides the code region and the data input memory space.
L1 memory serves for temporary storing of input and output data
from the network layers. To this aim, two memory regions are sized
as the maximum layer output capacity in the network, which is
2KB in case of the BNN topology of Tab. 2. At run-time, each core
transfers a weight bank needed to produce a single output layer
to a private L1 memory bu�er, which has a size of 72 Bytes in this
case.
4.3 Code Optimization and Parallelization
To optimize the BNN computation, we measure the execution time
of the BNN model described in Tab. 2 by running the code on
the instruction-accurate simulator of the parallel platform. Note
that, in the proposed work, the BNN input is also binary, hence
requiring only 1KB for transfer and storage, as opposed to the 12KB
required by the system based on a RGB camera. When running on
a single core, the baseline implementation spends the 96% of the
computation on the convolution kernels of eq.(4), suggesting that
this is the part that can bene�t more from intensive optimization.
For any output pixels, the mentioned operation consists of loading
dx3x3 binary input pixels and compress them in 32-bit registers,
to be xnored with the correspondent weights before the popcount.

Figure 5: Optimized binary convolution kernel applied on
every image plane. �ree binary image rows are loaded
and aligned with a battery of 3x3 convolution kernels. �e
masked popcount of the xored inputs resulting from any
kernel position is accumulated and then the input is shi�ed
to account all the possible input-�lter alignment.

Fig. 4 illustrates the performance gain achieved by performing the
optimization steps described below. �e plot reports the average
time to perform a 3x3 convolution, normalized with respect to the
baseline. A �rst 18% cycles reduction is reached by padding every
input layer before the convolution, hence avoiding to check border
conditions in the inner loop. As a side e�ect, the L1 storage bu�er
has to be re-sized to contain the padded input (+13% memory for
our network topology). An additional 27% reduction is achieved
by exploiting loop unrolling. Doing this implies coding separately
convolutional layers with di�erent kernel size. For VGG-like mod-
els, which makes use only of 3x3 kernels, this is however not an
issue. Others topologies featuring layers with di�erent kernel sizes
will pay an increased memory code footprint.

Going further, the implicit bit-level parallelism of data can be ex-
ploited by reading multiple input bits with a single load instruction.
�anks to this approach, any convolution of equation (4) requires
only dx3 readings, because a 3-bit row can be loaded by using a
single load operation. �is allows to save an additional 18% of the
computation time. Moreover, to fully exploit bit-level parallelism,
the convolution operator can be applied to separate image input
channels. �e popcount results are accumulated along all the input
channels before the binarization. Each image plane is tiled and
scanned along the vertical direction. We exploit the spatial data
order to load and analyze in parallel 32 binary pixels that belong
to the same row. A ba�ery of 9 identical binary �lters is aligned
to the loaded rows and xored. Figure 5 illustrates the process. For
any of the �lter masks, the popcount result is accumulated and the
input is shi�ed. A�er this, the row pointers are increased by 1 up
to reach the bo�om line. �e process repeats on the next vertical
tiles for every input channel. A signi�cant 69% cycles reduction
is achieved thanks to this strategy. From a memory viewpoint, an
accumulation L1 memory space is required, sized as the maximum
input spatial layer dimension (64x64 in this case). Finally, we paral-
lelize the BNN over the 4-cores by dividing the workload along the
output feature dimension. �is contributes to speed-up the code
execution by 3.88x, which is close to theoretical maximum 4x.

5 EXPERIMENTAL RESULTS
5.1 Classi�cation accuracy
�e Event-Based BNN is evaluated with a real-life dataset, tailoring
an always-on monitoring application for visual systems. A dual-
camera setup, which includes a commercial RGB camera and our
imager, is used for collecting 64x64 images, each one belonging to
one of the three following categories: cars, cyclists and pedestrians.
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Table 2: VGG-like BNN Model

Model Topology 1

Conv3x3(#ich, 16) + MaxPool2x2
Conv3x3(16, 32) + MaxPool2x2
Conv3x3(32, 48) + MaxPool2x2
Conv3x3(48, 64) + MaxPool2x2
Conv3x3(64, 96) + MaxPool2x2

FC(384, 64)
FC(64,3)

�e acquisition system synchronizes the data capture of the two
sensors, which are physically aligned to match their �elds of view.
We collected two datasets for testing purpose, one with RGB images
and one with binary gradient images, containing 100 samples per
class each (see Fig. 2 for a sample image).

A binarized VGG-like model is trained to classify the acquired
images. �e network is composed of 5 convolutional layers and 2
fully-connected layers (for a total of 23Mop/img). Tab. 2 reports
the network parameters layer by layer. A pooling layer is placed
a�er every convolution. �e presented topology is de�ned to �t
the memory requirements of our architecture. In total, the memory
footprint required by this model is less than 20KB. As a baseline for
our event-based BNN, a binarized neural network with the same
topology is trained and tested on 8-bit RGB data.

Both the BNN models are trained using Torch [4] for 100 epochs
using the adaMax shi�-based version proposed by [5] and a batch
size of 128. Learning rate is set to 0.01 and divided by 10 every
15 epochs. To increase the generalization of the training process,
the training and validation datasets are built by combining labeled
patches from the KITTI [7] and MIO-TCD [1] datasets. Training
data is augmented with random rotation to increase the number of
training samples up to about 60k. �e validation set is composed of
900 unique samples. When training the event-based BNN, training
and validation data are binarized with equations (1)-(2). Trained
models with the highest accuracy on the validation dataset report
an accuracy on the real-life testing data of 84.6% and 81.6%, for RGB
and gradient binarized input scenario, respectively. �erefore, the
event-based BNN architecture presents a contained performance
drop of 3% over the 3-classes application scenario.
5.2 Energy Evaluation
To assess the energy e�ciency of the event-based BNN, we eval-
uate the energy consumption of the proposed visual node, which
includes a smart image sensor [8] and a parallel processing unit
running the BNN classi�er (as described in Section 4). �e proposed
event-based binary visual node is benchmarked against a baseline
system featuring a state-of-the-art low-power RGB imager [2] and
the same processing unit, which runs a BNN with 8-bit 3 channels
data inputs.

Table 3 reports the energy comparison between the event-based
BNN and the baseline system for image acquisition and classi�ca-
tion. It includes the contribution of the imager, sensor-to-processor
data transfer and the 4-core processor that runs the binarized net-
work. �e active power of the processing unit is measured as
8.9mW when operating at 168MHz with a voltage supply of 0.7V.

1Conv3x3(x,y) is a convolutional layer with 3x3 weight �lter size, x input layers and y
output layers, FC(x, y) is a fully connected layer with x input neurons and y output
neurons, #ich=3 for RGB input and #ich=1 for binary input

Table 3: Event Based BNN Energy Evaluation
Scenario BNN with Event-based

RGB input BNN
Image Sensor Power Consumption 1.1mW @30fps 100µW @50fps
Image Size 324×244 (617kbits) 2 128×64 (8kbits)
Image Sensor Energy for frame capture 66.7 µJ 2 µJ
Transfer Time (4bit SPI @50MHz) 3.1 msec 0.04 msec
Transfer Energy (8.9mW @0.7V) 28 µJ 2 µJ
BNN Execution Time (168MHz) 81.3 msec 75.3 msec
BNN Energy consumption (8.9mW @0.7V) 725 µJ 671 µJ
Total System Energy for Classi�cation 820 µJ 674 µJ

Table 4: Event-Based vs Frame-based
Statistics per frame Frame-Based Event-based
Idle (no motion)
Sensor Power 1.1mW (grey) 20µW
Avg Sensor Data 19764 Bytes -
Transfer Time 790µsec -
Processing Time 3.02 msec -
Avg Processor Power 1.45mW 0.3mW (sleep)
Detection
Sensor Power 1.1mW (grey) 60µW
Avg Sensor Data 19764 Bytes ∼536 Bytes
Transfer Time 790µsec 21.4µsec
Processing Time 3.47 msec 187.6µsec
Avg Processor Power 1.57mW 0.511mW
Classi�cation
Sensor Power 2mW (RGB) 60µW
Avg Sensor Data 79056 Bytes 1024 Bytes
Transfer Time 3.16 msec 41µsec
Processing Time 81.3 msec 75.3 msec
Processor Energy 760 µJ 677 µJ

�e platform is kept in active state during data transfer and BNN
computation. Because of the higher amount of input data (a total of
324×244 8-bit pixels [2] instead of a single 128x64 binary channel
[8]), the baseline scenario features a 77.2x higher data transfer time.
Furthermore, the event-based BNN shows a smaller BNN compu-
tation time by 7.4% thanks again to the reduced amount of input
data. Given all these contributions, the event-based BNN scenario
reports a system-level energy reduction of 17.8% with respect to
the baseline.
5.3 Continuous Sensing Evaluation
When dealing with always-on monitoring applications, we lever-
age the event based sensing paradigm to trigger the classi�cation
algorithm upon the detection of relevant events. On the contrary,
when the sensor detects only a low number of events because of the
reduced context activity, the system is kept in a low-power state.
As a case-study of an always-on application, we focus on a parking
entrance monitoring scenario, where an alert signal is triggered
when a moving object (a car) enters the parking gate. To this aim, a
detection and tracking algorithm is applied on the detected events
to track the moving cars. An alert is generated whenever the object
crosses a virtual gate corresponding to the parking entrance. �is
event triggers the execution of the binarized neural network used
for object classi�cation.

In the analyzed case-study, the sensing activity is driven by
moving cars passing in front of the camera. Any of them generates
2.7 seconds of data recording. Tab. 4 reports the average statistics
to acquire and elaborate the signals on both the event-based and
the frame-based scenario, along with the di�erent energy costs for
2�e imager features a 324×244 resolution with Bayer color �lter map, which roughly
corresponds to a 3-channel QQVGA resolution
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any of the following phases: idle, when no motion is detected by
the mixed-signal image processing because of a static background,
detection, aiming at generating alert signals, and classi�cation upon
detection, which implies transferring data and running the BNN
classi�er. Concerning the idle and detection phases, the energy
cost is expressed in terms of average power consumption. We
consider a frame rate of 30fps and the usage of duty cycling to
reduce the energy consumption of the digital processor. When in
sleep state, the processing unit consumes 0.3mW @0.7V, due to
the memory region that cannot be power-gated because of data-
retention. �e energy contribution for the classi�cation is derived
from the analysis conducted in Section 5.2.

�e event-based system keeps the digital platform in sleep state
during the idle phase, due to the low amount of changed binary gra-
dient pixels. Within the detection phase, a higher sensor datarate
causes the processor to wake up for data processing. �e power
costs are still contained because of the limited number of pixels to
be transferred and elaborated. Once a relevant event is detected
through event-driven processing [14], the classi�cation task is trig-
gered. On the contrary, within the frame-based scenario, the sensor
always transfers image data to the processor to determine the pres-
ence of relevant objects either on the idle or the detection phase.
Hence, these phases are characterized by a similar power cost. �e
data analytic �ow includes the background subtraction, morpho-
logical �ltering and the extraction of the connected components.
During the detection phase, the workload slightly increases due
to the additional Kalman �ltering and triggering process. As data
source, the sensor provides QQVGA greyscale 8-bit data at a power
cost of 1.1mW [2].

Fig. 6 shows the average power consumption for a varying num-
ber of moving objects per hour accessing to the parking gate. On
the frame-based system the power is weakly dependent on the
event frequency, while the event based system presents an increas-
ing power cost due to the increased activation rate of the digital
processor at a higher event rate. When the number of event per
hour increases, the event-based visual system presents an energy
saving of 4x, which can raise up to 8x at a reduced event activity.

6 CONCLUSION
�e paper presented a combination of event-based sensing and
binarized neural network to reduce the energy consumption of
smart visual nodes. We demonstrated that combining an ultra low
power imager with in-sensor hardwired capabilities and a so�ware-
programmable parallel processor reduces the system energy of

Figure 6: Average power consumption of event-based (in red)
and frame-based (green) visual nodes with respect to a vary-
ing external event rate within an always-on monitoring ap-
plication.

17.8% if compared to a baseline systems running a BNN classier,
while paying only a 3% performance drop. Moreover, if considering
a long-term monitoring application, the energy saving raises up to
8x thanks to the opportunistic event-based computing paradigm and
the power-optimized hardware-so�ware co-design of the system.
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[4] R. Collobert, S. Bengio, and J. Mariéthoz. 2002. Torch: a modular machine learning
so�ware library. Technical Report. Idiap.

[5] M. Courbariaux, I. Hubara, D. Soudry, R. El-Yaniv, and Y. Bengio. 2016. Binarized
neural networks: Training deep neural networks with weights and activations
constrained to+ 1 or-1. arXiv preprint arXiv:1602.02830 (2016).

[6] S. K Esser, P. A Merolla, J. Arthur, A. Cassidy, R. Appuswamy, A. Andreopoulos,
D. J Berg, Je�rey L McKinstry, Timothy Melano, Davis R Barch, et al. 2016.
Convolutional networks for fast, energy-e�cient neuromorphic computing. Proc
of the National Academy of Sciences (2016), 201604850.

[7] A. Geiger, P. Lenz, and R. Urtasun. 2012. Are we ready for Autonomous Driving?
�e KITTI Vision Benchmark Suite. In Conf. on Computer Vision and Pa�ern
Recognition (CVPR).

[8] M. Go�ardi, N. Massari, and Syed A. Jawed. 2009. A 100µW 128x64 Pixels
Contrast-Based Asynchronous Binary Vision Sensor for Sensor Networks Appli-
cations. IEEE J. of Solid-State Circuits 44, 5 (2009), 1582–1592.

[9] S. Jayasuriya, O. Gallo, J. Gu, and J. Kautz. 2016. Deep Learning with Energy-
e�cient Binary Gradient Cameras. arXiv preprint arXiv:1612.00986 (2016).

[10] H. Kim, J. Sim, Y. Choi, and L. Kim. 2017. A Kernel Decomposition Architecture
for Binary-weight Convolutional Neural Networks. In Proc. of the 54th Annual
Design Automation Conf. 2017. ACM, 60.

[11] A. Krizhevsky and G. Hinton. 2009. Learning multiple layers of features from
tiny images. (2009).

[12] E. Lee and S Wong. 2016. A 2.5 GHz 7.7 TOPS/W switched-capacitor matrix
multiplier with co-designed local memory in 40nm. In Solid-State Circuits Conf.
(ISSCC), 2016 IEEE Int. IEEE, 418–419.

[13] R. LiKamWa, Y. Hou, J. Gao, M. Polansky, and L. Zhong. 2016. RedEye: analog
ConvNet image sensor architecture for continuous mobile vision. In Proc. of the
43rd Intl. Symposium on Computer Architecture. IEEE Press, 255–266.

[14] M Litzenberger, C Posch, D Bauer, AN Belbachir, P Schon, B Kohn, and H
Garn. 2006. Embedded vision system for real-time object tracking using an
asynchronous transient vision sensor. In Digital Signal Processing Workshop,
12th-Signal Processing Education Workshop, 4th. IEEE, 173–178.

[15] B. McDanel, S. Teerapi�ayanon, and H. Kung. 2017. Embedded Binarized Neural
Networks. Proc. of 2017 Int Conf Embedded Wireless Systems and Networks (2017).

[16] P. Merolla, R. Appuswamy, J. Arthur, S. Esser, and D. Modha. 2016. Deep neural
networks are robust to weight binarization and other non-linear distortions.
arXiv preprint arXiv:1606.01981 (2016).

[17] M. Rastegari, V. Ordonez, J. Redmon, and A. Farhadi. 2016. Xnor-net: Imagenet
classi�cation using binary convolutional neural networks. In European Conf. on
Computer Vision. Springer, 525–542.
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