
09 April 2024

Alma Mater Studiorum Università di Bologna
Archivio istituzionale della ricerca

A Sound Algorithm for Asynchronous Session Subtyping / Bravetti, Mario and Carbone, Marco and Lange,
Julien and
Yoshida, Nobuko and Zavattaro, Gianluigi. - ELETTRONICO. - (2019), pp. 38.1-38.16. (Intervento
presentato al  convegno CONCUR 2019 - Concurrency Theory, 30th International Conference tenutosi a
Amsterdam, The Netherlands nel August 26-31, 2019) [10.4230/LIPIcs.CONCUR.2019.38].

Published Version:

A Sound Algorithm for Asynchronous Session Subtyping

Published:
DOI: http://doi.org/10.4230/LIPIcs.CONCUR.2019.38

Terms of use:

(Article begins on next page)

Some rights reserved. The terms and conditions for the reuse of this version of the manuscript are
specified in the publishing policy. For all terms of use and more information see the publisher's website.

Availability:
This version is available at: https://hdl.handle.net/11585/690920 since: 2019-07-05

This is the final peer-reviewed author’s accepted manuscript (postprint) of the following publication:

This item was downloaded from IRIS Università di Bologna (https://cris.unibo.it/).
When citing, please refer to the published version.

http://doi.org/10.4230/LIPIcs.CONCUR.2019.38
https://hdl.handle.net/11585/690920


A Sound Algorithm for Asynchronous Session
Subtyping
Mario Bravetti
University of Bologna / INRIA FoCUS Team

Marco Carbone
IT University of Copenhagen

Julien Lange
University of Kent

Nobuko Yoshida
Imperial College London

Gianluigi Zavattaro
University of Bologna / INRIA FoCUS Team

Abstract
Session types, types for structuring communication between endpoints in distributed systems, are
recently being integrated into mainstream programming languages. In practice, a very important
notion for dealing with such types is that of subtyping, since it allows for typing larger classes of
system, where a program has not precisely the expected behavior but a similar one. Unfortunately,
recent work has shown that subtyping for session types in an asynchronous setting is undecidable.
To cope with this negative result, the only approaches we are aware of either restrict the syntax
of session types or limit communication (by considering forms of bounded asynchrony). Both
approaches are too restrictive in practice, hence we proceed differently by presenting an algorithm for
checking subtyping which is sound, but not complete (in some cases it terminates without returning
a decisive verdict). The algorithm is based on a tree representation of the coinductive definition of
asynchronous subtyping; this tree could be infinite, and the algorithm checks for the presence of
finite witnesses of infinite successful subtrees. Furthermore, we provide a tool that implements our
algorithm and we apply it to many examples that cannot be managed with the previous approaches.

2012 ACM Subject Classification Theory of computation → Concurrency

Keywords and phrases Session types, Concurrency, Subtyping, Algorithm.

Digital Object Identifier 10.4230/LIPIcs.CONCUR.2019.34

Related Version A full version of this paper is available at https://arxiv.org/abs/1907.00421.

Funding H2020-MSCA-RISE Project 778233 (BEHAPI); EPSRC EP/K034413/1, EP/K011715/1,
EP/L00058X/1, EP/N027833/1, and EP/N028201/1.

1 Introduction

Session types are behavioural types that specify the structure of communication between
the endpoints of a distributed system or the processes of a concurrent program. In recent
years, session types have been integrated into several mainstream programming languages
(see, e.g., [4, 19, 25, 28–30, 32]) where they specify the pattern of interactions that each
endpoint must follow, i.e., a communication protocol. The notion of duality is at the core of
theories based on session types, where it guarantees that each send (resp. receive) action is
matched by a corresponding receive (resp. send) action, and thus rules out deadlocks and
orphan messages. A two-party communication protocol specified as a pair of session types
is “correct” (deadlock free, etc) when these types are dual of each other. Unfortunately, in

© Mario Bravetti, Marco Carbone, Julien Lange, Nobuko Yoshida, Gianluigi Zavattaro;
licensed under Creative Commons License CC-BY

30th International Conference on Concurrency Theory (CONCUR 2019).
Editors: Wan Fokkink and Rob van Glabbeek; Article No. 34; pp. 34:1–34:16

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://orcid.org/0000-0001-5193-2914
https://orcid.org/0000-0001-9479-2632
https://orcid.org/0000-0001-9697-1378
https://orcid.org/0000-0002-3925-8557
https://orcid.org/0000-0003-3313-6409
https://doi.org/10.4230/LIPIcs.CONCUR.2019.34
https://arxiv.org/abs/1907.00421
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de


34:2 A Sound Algorithm for Asynchronous Session Subtyping

q1

q2 q3

!hq?ok

?ko

!lq q1

q2

!hq !lq ?ok?ko

q1

q2

?hq ?lq !ok!ko

MR MC = MS MS

Figure 1 Video streaming example. MR is the (refined) session type of the client, MC is a
supertype of MR, and MS is the session type of the server.

practice, duality is a too strict prerequisite, since it does not provide programmers with
the flexibility necessary to build practical implementations of a given protocol. A natural
solution for relaxing this rigid constraint is to adopt a notion of (session) subtyping which
lets programmers implement refinements of the specification (given as a session type). In
particular, an endpoint implemented as program P2 with type M2 can always be safely
replaced by another program P1 with type M1 whenever M1 is a subtype of M2 (written
M1 4M2 in this paper).

The two main known notions of subtyping for session types differ in the type of commu-
nication they support: either synchronous (rendez-vous) or asynchronous (over unbounded
FIFO channels). Synchronous session subtyping only allows for a subtype to implement fewer
internal choices (sends), and more external choices (receives), than its supertype. Hence
checking whether two types are related can be done efficiently (quadratic time wrt. the size of
the types [23]). Synchronous session subtyping is of limited interest in modern programming
languages such as Go and Rust, which provide asynchronous communication over channels.
Indeed, in an asynchronous setting, the programmer needs to be able to make the best of the
flexibility given by non-blocking send actions. This is precisely what the asynchronous session
subtyping offers: it widens the synchronous subtyping relation by allowing the subtype to
anticipate send actions, when this does not affect its communication partner. We illustrate
the salient points of the asynchronous session subtyping with Figure 1, which depicts the
hypothetical session types of the client and server endpoints of a video streaming service,
represented as communicating machines — an equivalent formalism [6, 13]. Machine MS

(right) is a server which can deal with two types of requests: it can receive either a message
lq (low-quality) or a message hq (high-quality). After receiving a message of either type,
the server replies with ok or ko, indicating whether the request can be fulfilled, then it
returns to its starting state. Machine MC (middle) represents the type of the client. It is
the dual of the server MS (written MS), as required in standard two-party session types
without subtyping. A programmer may want to implement a slightly improved program
which behaves as Machine MR (left). This version requests high-quality (hq) streaming first,
and falls back to low-quality (lq) if the request is denied (it received ko). In fact, machine
MR is an (asynchronous) subtype of machine MC . Indeed, MR is able to receive the same
set of messages as MC , each of the sent messages are also allowed by MC , and the system
consisting of the parallel composition of machines MR and MS is free from deadlocks and
orphan messages. We will use this example in the rest of the paper to illustrate our theory.

Recently, we have proven that checking whether two types are in the asynchronous
subtyping relation is, unfortunately, undecidable [7, 8, 24]. In order to mitigate this negative
result, some theoretical algorithms have been proposed for restricted subclasses of session
types. These restrictions can be divided into two main categories: syntactical restrictions,
i.e., allowing only one type of non-unary branching (internal or external), or adding bounds
to the size of the FIFO communication channels. Both types of restrictions are problematic



M. Bravetti, M. Carbone, J. Lange, N. Yoshida, G. Zavattaro 34:3

in practice. Syntactic restrictions disallow protocols featuring both types of internal/external
choices, e.g., the machines MC and MS in Figure 1 contain (non-unary) external and internal
choices. On the other hand, applying a bound to the subtyping relation is generally difficult
because (i) it may be undecidable whether such a bound exists, (ii) the channel bounds used
in the implementation (if any) might not be known at compile time, and (iii) very simple
systems, such as the one in Figure 1, require unbounded communication channels.

In this paper, we give an algorithm that can soundly deal with a much larger class
of session types. Rather than imposing syntactical restrictions or bounds, we describe
an algorithm whose termination condition is based on a well-quasi order between pairs of
candidate subtypes. This condition allows us to construct a finite tree representation of the
coinductive definition of asynchronous subtyping, which we use to synthesise intermediate
automata. Finally, we give a sufficient condition for asynchronous subtyping based on a
compatibility relation between these intermediate automata. This compatibility check is
similar to that of subtyping for recursive types [3,16,21,23]. We provide a full implementation
of our algorithm and show that it performs well on examples taken from the literature.

2 Communicating Machines and Asynchronous Subtyping

In this section, we recall the definition of two-party communicating machines, that commu-
nicate over unbounded FIFO channels (§ 2.1), and define asynchronous subtyping for session
types [10,11], which we adapt to communicating machines, following [8] (§ 2.2).

2.1 Communicating Machines
Let A be a (finite) alphabet, ranged over by a, b, etc. We let ω, ω′, etc. range over words in
A∗. The set of send (resp. receive) actions is Act ! = {!}×A, (resp. Act? = {?}×A). The set
of actions is Act = Act ! ∪Act?, ranged over by `, where send action !a puts message a on an
(unbounded) buffer, while receive action ?a represents the consumption of a from a buffer.
We define dir(!a) def= ! and dir(?a) def= ? and let ψ and ϕ range over Act∗. We write · for the
concatenation operator on words.

In this work, we only consider communicating machines which correspond to (two-party)
session types. Hence, we focus on deterministic (communicating) finite-state machines,
without mixed states (i.e., states that can fire both send and receive actions) as in [13,14].

I Definition 1 (Communicating Machine). A communicating machine M is a tuple (Q, q0, δ)
where Q is the (finite) set of states, q0 ∈ Q is the initial state, and δ ∈ Q × Act × Q

is a transition relation such that ∀q, q′, q′′ ∈ Q. ∀`, `′ ∈ Act : (1) (q, `, q′), (q, `′, q′′) ∈ δ

implies dir(`) = dir(`′), and (2) (q, `, q′), (q, `, q′′) ∈ δ implies q′ = q′′. We write q `−→ q′ for
(q, `, q′) ∈ δ, omit unnecessary labels, and write −→∗ for the reflexive transitive closure of −→.

Condition (1) enforces directed states, while Condition (2) enforces determinism.
Given M = (Q, q0, δ), we say that q ∈ Q is final, written q 9, iff ∀q′ ∈ Q. ∀` ∈

Act. (q, `, q′) /∈ δ. A state q ∈ Q is sending (resp. receiving) iff q is not final and ∀q′ ∈ Q. ∀` ∈
Act. (q, `, q′) ∈ δ. dir(`) = ! (resp. dir(`) = ?). We write δ(q, `) for q′ iff (q, `, q′) ∈ δ.

We write q0
`1···`k−−−−→ qk iff there are q1, . . . , qk−1 ∈ Q such that qi−1

`i−→ qi for 1 ≤ i ≤ k.
Given a list of messages ω = a1 · · · ak (k ≥ 0), we write ?ω for the list ?a1 · · ·?ak and !ω for
!a1 · · ·!ak. We write q !−→∗ q′ iff ∃ω ∈ A. q !ω−→ q′ and q ?−→∗ q′ iff ∃ω ∈ A. q ?ω−→ q′ (note that ω
may be empty, in which case q = q′). Given ψ ∈ Act∗ we write snd(ψ) (resp. rcv(ψ)) for the
largest sub-sequence of ψ which consists only of the messages of send (resp. receive) actions.

CONCUR 2019



34:4 A Sound Algorithm for Asynchronous Session Subtyping

2.2 Asynchronous Session Subtyping
Input trees and contexts In order to formalise the subtyping relation, we use syntactic
constructs used to record the input actions that have been anticipated by a candidate
supertype, e.g., machine M2 in Definition 5, as well as the local states it may reach.

I Definition 2 (Input Tree). An input tree is a term of the grammar: T ::= q | 〈ai : Ti〉i∈I .

In the sequel, we use TQ to denote the input trees over states q ∈ Q. An input context is an
input tree with a “hole” in the place of a sub-term.

I Definition 3 (Input Context). An input context is a term of A ::= [ ]j | 〈ai : Ai〉i∈I ,
where all indices j, denoted by I(A), are distinct and are associated to holes.

For input trees and contexts of the form 〈ai : Ti〉i∈I and 〈ai : Ai〉i∈I , we assume that I 6= ∅,
∀i 6= j ∈ I. ai 6= aj , and that the order of the sub-terms is irrelevant. When convenient, we
use set-builder notation to construct input trees or contexts, e.g., 〈ai : Ti | i ∈ I〉.

Given an input context A and an input context Ai for each i in I(A), we write A[Ai]i∈I(A)

for the input context obtained by replacing each hole [ ]i in A by the input context Ai. We
write A[Ti]i∈I(A) for the input tree where holes are replaced by input trees.

Auxiliary functions In the rest of the paper we use the following auxiliary functions on
communicating machines. Given a machine M = (Q, q0, δ) and a state q ∈ Q, we define:

cycle(?, q) ⇐⇒ ∃ω ∈ A∗, ω′ ∈ A+, q′ ∈ Q. q ?ω−−→ q′
?ω′

−−→ q′ (with ? ∈ {!, ?}),
in(q) = {a | ∃q′.q ?a−→ q′} and out(q) = {a | ∃q′.q !a−→ q′},
let the partial function inTree(·) be defined as:

inTree(q) =


⊥ if cycle(?, q)
q if in(q) = ∅
〈ai : inTree(δ(q, ?ai))〉i∈I if in(q) = {ai | i ∈ I} 6= ∅

Predicate cycle(?, q) says that, from q, we can reach a cycle with only sends (resp. receives),
depending on whether ? =! or ? =?. The function in(q) (resp. out(q)) returns the messages
that can be received (resp. sent) in q. When defined, inTree(q) returns the tree containing all
sequences of messages which can be received from q until a final or sending state is reached.
Intuitively, inTree(q) is undefined when cycle(?, q) as it would return an infinite tree.

I Example 4. GivenMC (Figure 1), we have inTree(q1)=q1 and inTree(q2)=〈ok : q1, ko : q1〉.

Asynchronous subtyping We present our definition of asynchronous subtyping (following the
orphan-message-free version from [11]). Our definition is a simple adaptation1 of [8, Definition
2.4] (given on syntactical session types) to the setting of communicating machines.

I Definition 5 (Asynchronous Subtyping). Let Mi = (Qi, q0i , δi) for i ∈ {1, 2}. R is an
asynchronous subtyping relation on Q1 × TQ2 such that (p, T ) ∈ R implies what follows:
1. if p9 then T = q such that q 9;
2. if p is a receiving state then

1 In definitions for syntactical session types, e.g., [26], input contexts are used to accumulate inputs that
precede anticipated outputs; here, having no specific syntax for inputs, we use input trees instead.



M. Bravetti, M. Carbone, J. Lange, N. Yoshida, G. Zavattaro 34:5

a. if T = q then q is receiving and ∀q′ ∈ Q2 s.t. q
?a−→ q′. ∃p′ s.t. p ?a−→ p′ ∧ (p′, q′) ∈ R;

b. if T = 〈ai : Ti〉i∈I then ∀i ∈ I. ∃p′ s.t. p ?ai−−→ p′ ∧ (p′, Ti) ∈ R;
3. if p is a sending state then

a. if T = q then q is sending and ∀p′ ∈ Q1 s.t. p
!a−→ p′. ∃q′ s.t. q !a−→ q′ ∧ (p′, q′) ∈ R;

b. if T = A[qi]i∈I then let Ai[qi,h]h∈Hi = inTree(qi) and if p !a−→ p′ then
∀i ∈ I.∀h ∈ Hi. ∃q′j,h. qi,h

!a−→ q′i,h∧(p′,A[Ai[q′i,h]h∈Hi ]i∈I) ∈ R and, if A[Ai[ ]h∈Hi ]i∈I
is not a single hole, then ¬cycle(!, p).

M1 is an asynchronous subtype ofM2, writtenM1 4M2, if there is an asynchronous subtyping
relation R such that (q01 , q02) ∈ R.

The relationM1 4M2 checks thatM1 is a subtype ofM2 by executingM1 and simulating
its execution with M2. M1 may fire send actions earlier than M2, in which case M2 is allowed
to fire these actions even if it needs to fire some receive actions first. These receive actions are
accumulated in an input context and are expected to be subsequently matched by M1. Due
to the presence of such an input context, the states reached by M2 during the computation
are represented as input trees. The definition first differentiates the type of state p:
Final. In (1), if M1 is in a final state, then M2 is in a final state with an empty input context.
Receiving. Case (2) says that if M1 is in a receiving state, then either (2a) the input context

is empty (T = q) and M1 must be able to receive all messages that M2 can receive; or,
(2b) M1 must be able to consume all the messages at the root of the input tree.

Sending. Case (3) says that if M1 is a sending state then either: (3a) the input context is
empty (T = q) and M2 must be able to send all messages that M1 can send; or, (3b) M2
must be able to send every a thatM1 can send, possibly after some receive actions recorded
in each Ai[qi,h]h∈Hi . Note that whichever receiving path M1 chooses in the continuation,
M2 must be able to simulate it, hence the send action !a should be available at the end of
each receiving path. Moreover, whenever there are accumulated inputs, we require that
cycle(!, p) does not hold, guaranteeing that subtyping preserves orphan-message freedom,
i.e., such accumulated receive actions will be eventually executed.

Observe that Case (2) enforces a form of contra-variance for receive actions, while Case (3)
enforces a form of covariance for send actions. In Figure 1, we have MR4MC (see § 3).

3 A Sound Algorithm for Asynchronous Subtyping

Our subtyping algorithm takes two machinesM1 andM2 and produces three possible outputs:
true, false, or unknown, which respectively indicate that M1 4M2, M1 64M2, or that the
algorithm was unable to prove one of these two results. The algorithm is in three stages. (1)
It builds the simulation tree of M1 and M2 (see Definition 7) that represents sequences of
checks between M1 and M2, corresponding to the checks in the definition of asynchronous
subtyping. Simulation trees may be infinite, but the function terminates whenever: it reaches
a node that cannot be expanded, it visits a node whose label has been seen along the path
from the root, or it expands a node whose ancestors validate a termination condition that
we formalise in Theorem 13. The resulting tree satisfies one of the following conditions: (i)
it contains a leaf that could not be expanded because the node represents an unsuccessful
check between M1 and M2 (in which case the algorithm returns false), (ii) all leaves are
successful final configurations, see Condition (1) of Definition 5, in which case the algorithm
replies true, or (iii) for each leaf n it is possible to identify a corresponding ancestor anc(n).
In this last case the tree and the identified ancestors are passed onto the next stage. (2)
The algorithm divides the finite tree into several subtrees rooted at those ancestors that do

CONCUR 2019



34:6 A Sound Algorithm for Asynchronous Session Subtyping

not have other ancestors above them (see the strategy that we outline on page 10). (3) The
final stage analyses whether each subtree is of one of the two following kinds. (i) All the
leaves in the subtree have the same label as their ancestors: in this case the subtree contains
all the needed subtyping checks. (ii) The subtree is a witness subtree (see Definition 20),
meaning that all the checks that may be considered in continuations of the finite subtree are
guaranteed to be successful as well. If all the identified subtrees are of one of the these two
kinds, the algorithm replies true. Otherwise, it replies unknown.

3.1 Generating Asynchronous Simulation Trees
We first define labelled trees, of which our simulation trees are instances; then, we give the
operational rules for generating a simulation tree from a pair of communicating machines.

I Definition 6 (Labelled Tree). A labelled tree is a tree2 (N,n0, ↪−→,L,Σ,Γ), consisting of
nodes N , root n0 ∈ N , edges ↪−→ ⊆ N × Σ×N , and node labelling function L : N 7−−→ Γ.

Hereafter, we write n σ
↪−→ n′ when (n, σ, n′) ∈↪−→ and write n1

σ1···σk
↪−−−−→ nk+1 when there are

n1, . . . , nk+1, such that ni
σi
↪−→ ni+1 for all 1 ≤ i ≤ k. We write n ↪−→ n′ when n σ

↪−→ n′ for
some σ and the label is not relevant. As usual, we write ↪−→∗ for the reflexive and transitive
closure of ↪−→, and ↪−→+ for its transitive closure. Given an edge label σ ∈ Σ and two node
labels α, β ∈ Γ, we use α σ

↪−→ β as a shorthand for ∀n. L(n) = α⇒ ∃n′. L(n′) = β ∧ n σ
↪−→ n′.

Moreover, we reason up-to tree isomorphism, i.e., two labelled trees are equivalent if there
exists a bijective node renaming that preserves both node labelling and labelled transitions.

We can then define simulation trees, labelled trees representing all possible configurations
reachable by the asynchronous subtyping simulation game.

I Definition 7 (Simulation Tree). Let M1 = (P, p0, δ1) and M2 = (Q, q0, δ2) be two commu-
nicating machines. Their simulation tree, written simtree(M1,M2), is the minimal labelled
tree (N,n0, ↪−→,L,Act, P × TQ), with L(n0) = p0 4 q0, generated by the following rules:

p
?a−→ p′ q

?a−→ q′ in(p) ⊇ in(q)

p4 q
?a
↪−→ p′4 q′

(In)
p

!a−→ p′ q
!a−→ q′ out(p) ⊆ out(q)

p4 q
!a
↪−→ p′4 q′

(Out)

p
?ak−−→ p′ k ∈ I in(p) ⊇ {ai | i ∈ I }

p4〈ai : Ai[qi,j ]j∈Ji〉i∈I
?ak
↪−−→ p′4Ak[qk,j ]j∈Jk

(InCtx)

p
!a−→ p′ ¬cycle(!, p)

∀j ∈ J.
(
inTree(qj)=Aj [qj,h]h∈Hj ∧ ∀h ∈ Hj .(out(p) ⊆ out(qj,h) ∧ qj,h

!a−→ q′j,h)
)

p4A[qj ]j∈J
!a
↪−→ p′4A[Aj [q′j,h]h∈Hj ]j∈J

(OutAcc)

Given machines M1 and M2, Definition 7 generates a tree whose nodes are labelled by
terms of the form p4A[qi]i∈I where p represents the state of M1, A represents the receive
actions accumulated by M2, and each qi represents the state of machine M2 after each path
of accumulated receive actions from the root of A to the ith hole. Note that we overload the
symbol 4 used for asynchronous subtyping (Definition 5), however the actual meaning is
always made clear by the context. We comment each rule in detail below.

2 A tree is a connected directed graph without cycles: ∀n ∈ N. n0 ↪−→∗ n ∧ ∀n, n′ ∈ N. n ↪−→+ n′. n 6= n′.



M. Bravetti, M. Carbone, J. Lange, N. Yoshida, G. Zavattaro 34:7

q1 4 q1

q2 4 q2 q1 4 q1q3 4 q1

q1 4 q2 ok
q2

ko
q2

4q2

q1 4 q2

q3 4 q2

ok
q2

ko
q2

4q1

ok
ok
q2

ko
q2

ko
ok
q2

ko
q2

4q2 ok
q2

ko
q2

4q3

ok
q2

ko
q2

4q1

ok
ok
q2

ko
q2

ko
ok
q2

ko
q2

4q1

ok
ok

ok
q2

ko
q2

ko
ok
q2

ko
q2

ko
ok

ok
q2

ko
q2

ko
ok
q2

ko
q2

4q2

ok
ok
q2

ko
q2

ko
ok
q2

ko
q2

4q1
ok

ok
q2

ko
q2

ko
ok
q2

ko
q2

4q3

ok
ok

ok
q2

ko
q2

ko
ok
q2

ko
q2

ko
ok

ok
q2

ko
q2

ko
ok
q2

ko
q2

4q1

!hq
?ok?ko

!lq
!hq

?ok

?ko

!lq

!hq

?ko

?ok

!lq

!hq

?ok
?ko

!lq

n0

n1 n2n3

n4

n5

n6

n7

n8

n9
n10

n11

n12
n13

n14n15
n16

Figure 2 Part of the simulation tree (solid edges only) and candidate tree forMR 4MC (Figure 1).
The root is circled in thicker line. The node identities are shown at the bottom left of each label.

Rules (In) and (Out) enforce contra-variance of inputs and covariance of outputs, respect-
ively, when no accumulated receive actions are recorded, i.e., A is a single hole. Rule (In)
corresponds to Case (2a) of Definition 5, while rule (Out) corresponds to Case (3a).
Rule (InCtx) is applicable when the input tree A is non-empty and the state p (of M1) is
able to perform a receive action corresponding to any message located at the root of the input
tree (contra-variance of receive actions). This rule corresponds to Case (2b) of Definition 5.
Rule (OutAcc) allows M2 to execute some receive actions before matching a send action
executed by M1. This rule corresponds to Case (3b) of Definition 5. Intuitively, each send
action outgoing from state p must also be eventually executable from each of the states qj
(in M2) which occur in the input tree A[qj ]j∈J . The possible combinations of receive actions
executable from each qj before executing !a is recorded in Aj , using inTree(qj). We assume
that the premises of this rule only hold when all invocations of inTree(·) are defined. Each
tree of accumulated receive actions is appended to its respective branch of the input context
A, using the notation A[Aj [q′j,h]h∈Hj ]j∈J . The premise out(p) ⊆ out(qj,h) ∧ qj,h

!a−→ q′j,h
guarantees that each qj,h can perform the send actions available from p (covariance of send
actions). The additional premise ¬cycle(!, p) corresponds to that of Case (3b) of Definition 5.

I Example 8. Figure 2 gives a graphical view of the initial part of the simulation tree
simtree(MR,MC). Consider the solid edges only for now. Observe that all branches of the
simulation tree are infinite; some traverse nodes with infinitely many different labels, due to
the unbounded growth of the input trees (e.g., the one repeatedly performing transitions
!hq·?ko·!lq); while others traverse nodes with finitely many distinct labels (e.g., the one
performing first transitions !hq·?ko·!lq and then repeatedly performing !hq·?ok).

We adapt the terminology of [20] and say that a node n of simtree(M1,M2) is a leaf if it
has no successors. A leaf n is successful iff L(n) = p4 q, with p and q final; all other leaves
are unsuccessful. A branch (a full path through the tree) is successful iff it is infinite or
finishes with a successful leaf; otherwise it is unsuccessful. Using this terminology, we relate
asynchronous subtyping (Definition 5) with simulation trees (Definition 7) in Theorem 9.

I Theorem 9. Let M1 = (P, p0, δ1) and M2 = (Q, q0, δ2) be two communicating machines.
All branches in simtree(M1,M2) are successful if and only if M1 4M2.

CONCUR 2019



34:8 A Sound Algorithm for Asynchronous Session Subtyping

3.2 A Simulation Tree-Based Algorithm

Checking whether all branches in simtree(M1,M2) are successful is undecidable. This is a
consequence of the undecidability of asynchronous session subtyping [7, 8, 24]. The problem
follows from the presence of infinite branches that cannot be algorithmically identified. Our
approach is to characterise finite subtrees (called witness subtrees) such that all the branches
that traverse such finite subtrees are guaranteed to be infinite.

The presentation of our algorithm is in three parts. In Part (1), we give the definition
of the kind of finite subtree (of a simulation tree) we are interested in (called candidate
subtrees). In Part (2), we give an algorithm to extract candidate subtrees from a simulation
tree simtree(M1,M2). In Part (3) we show how to check whether a candidate subtree (which
is finite) is a witness of infinite branches (hence successful) in the simulation tree.

Part 1. Characterising finite and candidate sub-trees We define the candidate subtrees
of a simulation tree, which are finite subtrees accompanied by an ancestor function mapping
each boundary node n to a node located on the path from the root of the tree to n.

I Definition 10 (Finite Subtree). A finite subtree (r,B) of a labelled tree S = (N,n0, ↪−→,
L,Σ,Γ), with r being the subtree root and B the finite set of its leaves (boundary nodes), is
the subgraph of S such that: (1) ∀n∈B. r ↪−→∗ n; (2) ∀n∈B. 6 ∃n′∈B. n ↪−→+ n′; and (3)
∀n ∈ N. r ↪−→∗ n =⇒ ∃n′ ∈ B. n ↪−→∗ n′ ∨n′ ↪−→∗ n. We use nodes(S, r,B) = {n ∈ N | ∃n′ ∈
B. r ↪−→∗ n ↪−→∗ n′} to denote the (finite) set of nodes of the finite subtree (r,B). Notice that
r ∈ nodes(S, r,B) and B ⊆ nodes(S, r,B).

Condition (1) requires that each boundary node can be reached from the root of the subtree.
Condition (2) guarantees that the boundary nodes are not connected, i.e., they are on
different paths from the root. Condition (3) enforces that each branch of the tree passing
through the root r contains a boundary node.

I Definition 11 (Candidate Subtree). Let M1 = (P, p0, δ1) and M2 = (Q, q0, δ2) be two
communicating machines with simtree(M1,M2) = (N,n0, ↪−→,L,Act, P × TQ). A candidate
subtree of simtree(M1,M2) is a finite subtree (r,B) paired with a function anc : B 7−−→
nodes(simtree(M1,M2), r, B)\B such that, for all n ∈ B, we have: anc(n) ↪−→+ n and there
are p,A,A′, I, J, {qj | j ∈ J} and {qi | i ∈ I} such that

L(n) = p4A[qi]i∈I ∧ L(anc(n)) = p4A′[qj ]j∈J ∧ {qi | i ∈ I} ⊆ {qj | j ∈ J}

A candidate subtree is a finite subtree accompanied by a total function on its boundary nodes.
The purpose of function anc is to map each boundary node n to a “similar” ancestor n′ such
that: n′ is a node (different from n) on the path from the root r to n (recall that we have
r /∈ B) such that the two labels of n′ and n share the same state p ofM1, and the states ofM2
(that populate the holes in the leaves of the input context of the boundary node) are a subset
of those considered for the ancestor. We write img(anc) for {n | ∃n′ ∈ B. anc(n′) = n}, i.e.,
img(anc) is the set of ancestors of a given candidate subtree.

I Example 12. Figure 2 depicts a finite subtree of simtree(MR,MC). The anc function is
represented by the dashed edges from boundary nodes to ancestors. We can distinguish
distinct candidate subtrees in Figure 2, for instance one rooted at n0 and with boundary
{n2, n6, n11, n14, n16}, another one rooted at n8 and with boundary {n11, n14, n16}.



M. Bravetti, M. Carbone, J. Lange, N. Yoshida, G. Zavattaro 34:9

Part 2. Identifying candidate subtrees We now describe how to generate a finite subtree
of the simulation tree, from which we extract candidate subtrees. Since simulation trees are
potentially infinite, we need to identify termination conditions (i.e., conditions on nodes that
become the boundary of the generated finite subtree).

We first need to define the auxiliary function extract(A, ω), which checks the presence of
a sequence of messages ω in an input context A, and extracts the residual input context.

extract(A, ω) =


A if ω = ε

extract(Ai, ω′) if ω = ai · ω′,A = 〈aj : Aj〉j∈J , and i ∈ J
⊥ otherwise

Our termination condition is formalised in Theorem 13 below. This result follows from
an argument based on the finiteness of the states of M1 and of the sets of states from M2
(which populate the holes of the input contexts in the labels of the nodes in the simulation
tree). We write minHeight(A) for the smallest heighti(A), with i ∈ I(A), where heighti(A) is
the length of the path from the root of the input context A to the ith hole.

I Theorem 13. Let M1 = (P, p0, δ1) and M2 = (Q, q0, δ2) be two communicating machines
with simtree(M1,M2) = (N,n0, ↪−→,L,Act, P × TQ). For each infinite path n0 ↪−→ n1 ↪−→
n2 · · · ↪−→ ni ↪−→ · · · there exist i < j < k, with

L(ni) = p4Ai[qh]h∈Hi L(nj) = p4Aj [q′h]h∈Hj L(nk) = p4Ak[q′′h]h∈Hk

s.t. {q′h | h ∈ Hj} ⊆ {qh | h ∈ Hi} and {q′′h | h ∈ Hk} ⊆ {qh | h ∈ Hi}; and, for ni
ψ
↪−→ nj:

i) rcv(ψ) = ω1 · ω2 with ω1 s.t. ∃t, z. extract(Ai, ω1) = [ ]t ∧ extract(Ak, ω1) = [ ]z, or
ii) minHeight(extract(Ai, rcv(ψ))) ≤ minHeight(extract(Ak, rcv(ψ))).
Intuitively, the theorem above says that for each infinite branch in the simulation tree, we
can find special nodes ni, nj and nk such that the set of states in Aj (resp. Ak) is included
in that of Ai and the receive actions in the path from ni to nj are such that: either (i) only
a precise prefix of such actions will be taken from the receive actions accumulated in ni and
nk or (ii) all of them will be taken from the receive actions in which case nk must have
accumulated more receive actions than ni. Case (i) deals with infinite branches with only
finite labels (hence finite accumulation) while case (ii) considers those cases in which there
is unbounded accumulation along the infinite branch.
Based on Theorem 13, the following algorithm generates a finite subtree of simtree(M1,M2):

Compute, initially starting from the root, the branches3 of simtree(M1,M2) stopping
when one of the following types of node is encountered: a leaf, or a node n with a label
already seen along the path from the root to n, or a node nk (with the corresponding
node ni) as those described by the above Theorem 13.

I Example 14. Consider the finite subtree in Figure 2. It is precisely the finite subtree
identified as described above: we stop generating the simulation tree at nodes n2, n6, n11,
and n14 (because their labels have been already seen at the corresponding ancestors n0,
n4, n8, and n12) and n16 (because of the ancestors n8 and n12 such that n8, n12 and n16
correspond to the nodes ni, nj and nk of Theorem 13).

3 The order nodes are generated is not important (our implementation uses a DFS approach, cf. §4).

CONCUR 2019



34:10 A Sound Algorithm for Asynchronous Session Subtyping

When the computed finite subtree contains an unsuccessful leaf, we can immediately conclude
that the considered communicating machines are not related. Otherwise, we extract smaller
finite subtrees (from the subtree) that are potential candidates to be subsequently checked.

We define the anc function as follows: for boundary nodes n with an ancestor n′
such that L(n) = L(n′) we define anc(n) = n′; for boundary nodes nk (with the
corresponding node ni) as those described by in Theorem 13 we define anc(nk) = ni.
The extraction of the finite subtrees is done by characterising their roots (and taking
as boundary the reachable boundary nodes): let P = {n ∈ img(anc) | ∃n′. anc(n′) =
n ∧ L(n) 6= L(n′)}, the set of such roots is R = {n ∈ P | 6 ∃n′ ∈ P. n′ ↪−→+ n}.

Intuitively, to extract subtrees, we restrict our attention to the set P of ancestors with a
label different from their corresponding boundary node (corresponding to branches that can
generate unbounded accumulation). We then consider the forest of subtrees rooted in nodes
in P without an ancestor in P . Notice that for successful leaves we do not define anc; hence,
only extracted subtrees without successful nodes have a completely defined anc function.
These are candidate subtrees that will be checked as described in the next step.

I Example 15. Consider the finite subtree in Figure 2. Following the strategy above we ex-
tract from it the candidate subtree rooted at n8 (white nodes), with boundary {n11, n14, n16}.
Note that each ancestor node above n8 has a label identical to its boundary node.

Part 3. Checking whether the candidate subtrees are witnesses of infinite branches The
final step of our algorithm consists in verifying a property on the identified candidate subtrees
which guarantees that all branches traversing the root of the candidate subtree are infinite,
hence successful. A candidate subtree satisfies this property when it is also a witness subtree,
which is the key notion (Definition 20) presented in this third part.

In order for a subtree to be a witness, we require that any behaviour in the simulation tree
going beyond the subtree is the infinite repetition of the behaviour already observed in the
considered finite subtree. This infinite repetition is only possible if whatever receive actions
are accumulated in the input context A (using Rule (OutAcc)) are eventually executed by the
candidate subtype M1 in Rule (InCtx). The compatibility check between what receive actions
can be accumulated and what is eventually executed is done by first synthesising a pair
of intermediate automata from a candidate subtree, that represent the possible (repeated)
accumulation of the candidate supertype M2 and the possible (repeated) receive actions
of the candidate subtype M1, and then by checking that these automata are compatible.
For convenience, we define these intermediate automata as a system of (possibly) mutually
recursive equations, which we call a system of input tree equations.

I Definition 16 (Input Tree Equations). Given a set of variables V, ranged over by X, an
input tree definition is a term of the grammar E ::= X | 〈ai : Ei〉i∈I | 〈Ei〉i∈I
A system of input tree equations is a tuple G = (V, X0,E) consisting of a set of variables V,
an initial variable X0 ∈ V, and with E consisting of exactly one input tree definition X def= E,
with E ∈ TV , for each X ∈ V, where TV denotes the input tree definitions on variables V.

Given an input tree definition of the form 〈ai : Ei〉i∈I or 〈Ei〉i∈I , we assume that I 6= ∅,
∀i 6= j ∈ I. ai 6= aj , and that the order of the sub-terms is irrelevant. Whenever convenient,
we use set-builder notation to construct an input tree definition, e.g., 〈Ei | i ∈ I〉. In an
input tree equation, the construct 〈ai : Ei〉i∈I represents the capability of accumulating (or
actually executing) the receive actions on each message ai then behaving as in Ei. The
construct 〈Ei〉i∈I represents a silent choice between the different capabilities Ei.



M. Bravetti, M. Carbone, J. Lange, N. Yoshida, G. Zavattaro 34:11

X2,n8

X2,n9X2,n10

X2,n12

X2,n13 X2,n15

X0
?ko
?ok

?ok?ko
?ko ?ok

?ko ?ok
?ok?ko

Yn8

Yn9

Yn10Yn12

Yn13

Yn15

?ok

?ko?ok

?ko

G G′

Figure 3 Graphical view of the input tree equations for MR 4MC (Figure 1). The starting
variables are X0 and Yn8 . Silent choices are diamond-shaped nodes, other nodes are rectangles.

I Definition 17 (Input Tree Compatibility). Given two systems of input tree equations
G = (V, X0,E) and G′ = (V ′, X ′0,E′), such that V ∩V ′ = ∅, we say that G is compatible with
G′, written G v G′, if there exists a relation R ⊆ TV × T ′V s.t. (X0, X

′
0) ∈ R and:

if (X,E) ∈ R then (E′, E) ∈ R with X def= E′;

if (E,X) ∈ R then (E,E′) ∈ R with X def= E′;
if (〈Ei〉i∈I , E) ∈ R then ∀i ∈ I. (Ei, E) ∈ R;
if (E, 〈Ei〉i∈I) ∈ R then ∀i ∈ I. (E,Ei) ∈ R;
if (〈ai : Ei〉i∈I , 〈aj : E′j〉j∈J) ∈ R then I ⊆ J and ∀i ∈ I. (Ei, E′i) ∈ R.

Intuitively, G v G′ verifies the compatibility between G, which represents the receive actions
that can be accumulated in the context A, and G′, which represents the receive actions that
can be actually executed. The first two items of Definition 17 let a variable be replaced by
its definition. The next two items explore all the successors of silent choices. The last item
guarantees that all the receive actions accumulated in G, cf. Rule (OutAcc), can be actually
matched by receive actions in G′, cf. Rule (InCtx).

I Example 18. A graphical representations of two systems of input tree equations is in
Figure 3. We have G v G′ since all non-silent choices have the same outgoing transitions.

Before giving the definition of witness subtree, we introduce a few auxiliary functions on
which it relies. Given ω ∈ A∗, and a state q ∈ Q, we define accTree(q, ω) as follows:

accTree(q, ω) =


[q]k with k fresh if ω = ε

A[accTree(q′i, ω′)]i∈I if ω = a · ω′,A[qi]i∈I = inTree(q),∀i∈I. qi
!a−→ q′i

⊥ otherwise

Function accTree(q, ω) is a key ingredient of the witness subtree definition as it allows for
the construction of the accumulation of receive actions (represented as an input tree) that is
generated from a state q mimicking the sequence of send actions sending the messages in ω.

We use the auxiliary function minAcc(n, q, ψ) below to ensure that the effect of performing
the transitions from an ancestor to a boundary node is that of increasing (possibly non-
strictly) the accumulated receive actions. Here, n represents a known lower bound for the
length of a sequence of receive actions accumulated in an input context A, i.e., the length of
a path from the root of A to one of its holes. Assuming that this hole contains the state q,
the function returns a lower bound for the length of such a sequence of accumulated receive
actions after the transitions in ψ have been executed. Formally, given a natural number n, a

CONCUR 2019



34:12 A Sound Algorithm for Asynchronous Session Subtyping

sequence of action ψ ∈ Act∗, and a state q ∈ Q we define this function as follows:

minAcc(n, q, ψ)=


n if ψ = ε

minAcc(n− 1, q, ψ′) if ψ = ?a · ψ′ ∧ n > 0
mini∈IminAcc(n+heighti(A), qi, ψ′) if ψ=!a·ψ′∧accTree(q, a)=A[qi]i∈I

⊥ otherwise

I Example 19. Consider the transitions from node n7 to n9 in Figure 2. There are two
send actions !lq and !hq that cannot be directly fired from state q2 which is a receiving
state; the effect is to accumulate receive actions. Such an accumulation is computed by
accTree(q2, lq · hq) = 〈ko : 〈ko : q2, ok : q2〉, ok : 〈ko : q2, ok : q2〉〉. For this sequence
of transitions, the effect on the (minimal) length of the accumulated receive actions can
be computed by minAcc(0, q2, !lq·!hq) = 2; meaning that before executing the sequence of
transitions !lq·!hq state q2 has not accumulated receive actions in front, while at the end an
input context with minimal depth 2 is generated as accumulation.

We finally give the definition of witness subtree.

I Definition 20 (Witness Subtree). Let M1 = (P, p0, δ1) and M2 = (Q, q0, δ2) be two
communicating machines with simtree(M1,M2) = (N,n0, ↪−→,L,Act, P × TQ). A candidate
subtree of simtree(M1,M2) with root r and boundary B is a witness if the following holds:
1. For all n ∈ B, given ψ such that anc(n)

ψ
↪−→ n, we have |rcv(ψ)| > 0.

2. For all n ∈ img(anc) and n′ ∈ img(anc) ∪B such that n
ψ
↪−→ n′, L(n) = p4A[qi]i∈I , and

L(n′) = p′4A′[qj ]j∈J , we have that ∀i ∈ I:
a. {qh | h ∈ H s.t. accTree(qi, snd(ψ)) = A′′[qh]h∈H} ⊆ {qj | j ∈ J};
b. if n′ ∈ B then minAcc(minHeight(A), qi, ψ) ≥ minHeight(A).

3. G v G′ where
a. G = ({X0} ∪ {Xq,n | q ∈ Q,n ∈ nodes(S, r,B)\B}, X0,E) with E defined as follows:

i. X0
def= T{Xq,r/q | q ∈ Q}, with L(r) = p4T

ii. Xq,n
def={

〈Xq,tr(n′) | ∃a.n
?a
↪−→ n′〉 if ∃a.n ?a

↪−→
〈A[Xq′

i
,tr(n′)]i∈I | ∃a.n

!a
↪−→ n′ ∧ inTree(q)=A[qi]i∈I∧ ∀i∈I.qi

!a−→ q′i〉 otherwise
b. G′ = ({Yn | n ∈ nodes(S, r,B)\B}, Yr,E′) with E′ defined as follows:

Yn
def=

{
〈Ytr(n′) | n

!a
↪−→ n′〉 if ∃n′.n

!a
↪−→ n′

〈a : Ytr(n′) | n
?a
↪−→ n′〉 if ∃n′.n

?a
↪−→ n′

with tr(n) = n, if n 6∈ B;
tr(n) = anc(n), otherwise.

Condition (1) requires the existence of a receive transition between an ancestor and
a boundary node. This implies that if the behaviour beyond the witness subtree is the
repetition of behaviour already observed in the subtree, then there cannot be send-only
cycles. Condition (2a) requires that the transitions from ancestors to boundary nodes (or to
other ancestors) are such that they include those behaviour that can be computed by the
accTree function. We assume that this condition does not hold if accTree(qi, snd(ψ)) = ⊥ for
any i ∈ I; hence the states qi of M2 in an ancestor are able to mimic all the send actions
performed by M1 along the sequences of transitions in the witness subtree starting from the
considered ancestor. Condition (2b) ensures that by repeating transitions from ancestors
to boundary nodes, the accumulation of receive actions is, overall, increasing. In other
words, the rate at which accumulation is taking place is higher than the rate at which the
context is reduced by Rule (InCtx). Condition (3) checks that the receive actions that can be



M. Bravetti, M. Carbone, J. Lange, N. Yoshida, G. Zavattaro 34:13

accumulated by M2(represented by G) and those that are expected to be actually executed
by M1 (represented by G′) are compatible. In G, there is an equation for the root node and
for each pair consisting of a local state in M2 and a node n in the witness subtree. The
equation for the root node is given in (3(a)i), where we simply transform an input context
into an input tree definition. The other equations are given in (3(a)ii), where we use the
partial function inTree(q). Each equation represents what can be accumulated by starting
from node n (focusing on local state q). In G′, there is an equation for each node n in the
witness subtree, as defined in (3b) There are two types of equations depending on type of
transitions outgoing from node n. A send transition leads to silent choices, while receive
transitions generate corresponding receive choices.

I Example 21. The candidate subtree rooted at n8 in Figure 2 satisfies Definition 2. (1)
Each path from an ancestor to a boundary node includes at least one receive action. (2a)
For each sequence of transitions from an ancestor to a boundary node (or another ancestor)
the behaviour of the states of M2, as computed by the accTree function, has already been
observed. (2b) For each sequence of transitions from an ancestor to a boundary node, the
rate at which receive actions are accumulated is higher than or equal to the rate at which
they are removed from the accumulation. (3) The systems of input tree equations G (3a)
and G′ (3b) are given in Figure 3, and are compatible, see Example 18.

We conclude by stating our main result; given a simulation tree with a witness subtree
with root r, all the branches in the simulation tree traversing r are infinite (hence successful).

I Theorem 22. Let M1 = (P, p0, δ1) and M2 = (Q, q0, δ2) be two communicating machines
with simtree(M1,M2) = (N,n0, ↪−→,L,Act, P ×TQ). If simtree(M1,M2) has a witness subtree
with root r then for every node n ∈ N such that r ↪−→∗ n there exists n′ such that n ↪−→ n′.

Hence, we can conclude that if the candidate subtrees of simtree(M1,M2) identified
following the strategy explained in Part (2) are also witness subtrees, then we have M1 4M2.
I Remark 23. When our algorithm finds a successful leaf, a previously seen label, or a witness
subtree in each branch then the machines are in the subtyping relation. If an unsuccessful
leaf is found (while generating the initial finite subtree as described in Part (2)), then the
machines are not in the subtyping relation. In all other cases, the algorithm is unable to
give a decisive verdict (i.e., the result is unknown). There are two possible causes for an
unknown result: either (i) it is impossible to extract a forest of candidate subtrees (i.e., there
are successful leaves below some ancestor) or (ii) some candidate subtree is not a witness.

4 Evaluation, Related Work, and Conclusions

Evaluation To evaluate the cost and applicability of our algorithm, we have produced a
faithful implementation of it, which constructs the simulation tree in a depth-first search
manner, while recording the nodes visited in different branches to avoid re-computing several
times the same subtrees. We have run our tool on 174 tests which were either taken from
the literature on asynchronous subtyping [10, 24], or handcrafted to test the limits of our
approach. All of these tests terminate under a second. Out of these tests, 92 are negative (the
types are not in the subtyping relation) and our tool gives the expected result (false) for all
of them. The other 82 tests are positive (the types are in the subtyping relation) and our tool
gives the expected result (true) for all but 8 tests, for which it returns unknown. All of these
8 examples feature complex accumulation patterns that our theory cannot recognise, e.g.,
Example 24. The implementation and our test data are available on our GitHub repository [5].

CONCUR 2019



34:14 A Sound Algorithm for Asynchronous Session Subtyping

The implementation includes an additional optimisation which performs a check for M2 4M1
(relying on a previous result showing that M1 4M2 ⇐⇒ M2 4M1 [7, 24]) when the result
of checking M1 4M2 is unknown.

I Example 24. Given the machines below, simtree(M1,M2) contains infinitely many nodes
with labels of the form: q1 4〈a : 〈a : 〈a : 〈· · ·〉, b : q3〉, b : q3〉, b : q3〉.

M1: q1q2 q5

q4q3

?a

!x

?b

!x !x
!x M2: q1q2 q3

?a

!x

?b
!x

Each of these nodes has two successors, one where ?a is fired (the machines stay in the larger
loop), and one where ?b is fired (the machines move to their smaller loop). The machines
can always enter this send-only cycle, hence Condition (1) of Definition 20 never applies.

Related work Gay and Hole [16, 17] introduced (synchronous) subtyping for session types
and show it is decidable. Mostrous et al. [27] adapted the notion of session subtyping to
asynchronous communication, by introducing delayed inputs. Later, Chen et al. [10, 11]
provided an alternative definition prohibiting orphan messages, we used this definition in
this work. Recently, asynchronous subtyping was shown to be undecidable by encoding it as
an equivalent question in the setting of Turing machines [24] and queue machines [7]. Recent
work [7, 8, 24] investigated restrictions to achieve decidability, these restrictions are either on
the size of the FIFO channels or syntactical. In the latter case, we recall the single-out and
single-in restrictions, i.e., where all output (respectively input) choices are singletons.

The relationship between communicating machines and (multiparty asynchronous) session
types has been studied in [13,14]. Communicating machines are Turing-complete, hence most
of their properties are undecidable [6]. Many variations have been introduced in order to
recover decidability, e.g., using (existential or universal) bounds [18], restricting to different
types of topologies [22, 31], or using bag or lossy channels instead of FIFO queues [1, 2, 9, 12].

Conclusions and future work We have proposed a sound algorithm for checking asynchron-
ous session subtyping, showing that it is still possible to decide whether two types are related
for many nontrivial examples. Our algorithm is based on a (potentially infinite) tree repres-
entation of the coinductive definition of asynchronous subtyping; it checks for the presence
of finite witnesses of infinite successful subtrees. We have provided an implementation and
applied it to examples that cannot be recognised by previous approaches. Although the
(worst-case) complexity of our algorithm is rather high (the termination condition expects to
encounter a set of states already encountered, of which there may be exponentially many),
our implementation shows that it actually terminates under a second for machines of size
comparable to typical communication protocols used in real programs, e.g., Go programs
feature between three and four communication primitives per channel and whose branching
construct feature two branches, on average [15].

As future work, we plan to enrich our algorithm to recognise subtypes featuring more
complex accumulation patterns, e.g., Example 24. Moreover, due to the tight correspondence
with safety of communicating machines [24], we plan to investigate the possibility of using
our approach to characterise a novel decidable subclass of communicating machines.



M. Bravetti, M. Carbone, J. Lange, N. Yoshida, G. Zavattaro 34:15

References
1 Parosh Aziz Abdulla, Ahmed Bouajjani, and Bengt Jonsson. On-the-fly analysis of systems

with unbounded, lossy FIFO channels. In CAV 1998, pages 305–318, 1998. URL: https:
//doi.org/10.1007/BFb0028754, doi:10.1007/BFb0028754.

2 Parosh Aziz Abdulla and Bengt Jonsson. Verifying programs with unreliable channels.
In (LICS 1993), pages 160–170, 1993. URL: https://doi.org/10.1109/LICS.1993.287591,
doi:10.1109/LICS.1993.287591.

3 Roberto M. Amadio and Luca Cardelli. Subtyping recursive types. ACM Trans. Program.
Lang. Syst., 15(4):575–631, 1993. URL: http://doi.acm.org/10.1145/155183.155231, doi:
10.1145/155183.155231.

4 Davide Ancona, Viviana Bono, Mario Bravetti, Joana Campos, Giuseppe Castagna, Pierre-
Malo Deniélou, Simon J. Gay, Nils Gesbert, Elena Giachino, Raymond Hu, Einar Broch
Johnsen, Francisco Martins, Viviana Mascardi, Fabrizio Montesi, Rumyana Neykova, Nicholas
Ng, Luca Padovani, Vasco T. Vasconcelos, and Nobuko Yoshida. Behavioral types in program-
ming languages. Foundations and Trends in Programming Languages, 3(2-3):95–230, 2016.
doi:10.1561/2500000031.

5 The Authors. A sound algorithm for asynchronous session subtyping. https://github.com/
julien-lange/asynchronous-subtyping, 2019.

6 Daniel Brand and Pitro Zafiropulo. On communicating finite-state machines. J. ACM, 30(2):323–
342, 1983. URL: http://doi.acm.org/10.1145/322374.322380, doi:10.1145/322374.322380.

7 Mario Bravetti, Marco Carbone, and Gianluigi Zavattaro. Undecidability of asynchronous
session subtyping. Inf. Comput., 256:300–320, 2017.

8 Mario Bravetti, Marco Carbone, and Gianluigi Zavattaro. On the boundary between decidab-
ility and undecidability of asynchronous session subtyping. Theor. Comput. Sci., 722:19–51,
2018. URL: https://doi.org/10.1016/j.tcs.2018.02.010, doi:10.1016/j.tcs.2018.02.010.

9 Gérard Cécé, Alain Finkel, and S. Purushothaman Iyer. Unreliable channels are easier to
verify than perfect channels. Inf. Comput., 124(1):20–31, 1996. URL: https://doi.org/10.1006/
inco.1996.0003, doi:10.1006/inco.1996.0003.

10 Tzu-Chun Chen, Mariangiola Dezani-Ciancaglini, Alceste Scalas, and Nobuko Yoshida. On the
preciseness of subtyping in session types. Logical Methods in Computer Science, 13(2), 2017.
URL: https://doi.org/10.23638/LMCS-13(2:12)2017, doi:10.23638/LMCS-13(2:12)2017.

11 Tzu-Chun Chen, Mariangiola Dezani-Ciancaglini, and Nobuko Yoshida. On the preciseness of
subtyping in session types. In PPDP 2014, pages 146–135. ACM Press, 2014.

12 Lorenzo Clemente, Frédéric Herbreteau, and Grégoire Sutre. Decidable topologies for commu-
nicating automata with FIFO and bag channels. In CONCUR 2014, pages 281–296, 2014. URL:
https://doi.org/10.1007/978-3-662-44584-6_20, doi:10.1007/978-3-662-44584-6\_20.

13 Pierre-Malo Deniélou and Nobuko Yoshida. Multiparty session types meet communicating
automata. In ESOP 2012, pages 194–213, 2012. doi:10.1007/978-3-642-28869-2_10.

14 Pierre-Malo Deniélou and Nobuko Yoshida. Multiparty compatibility in communicat-
ing automata: Characterisation and synthesis of global session types. In ICALP 2013,
pages 174–186, 2013. URL: http://dx.doi.org/10.1007/978-3-642-39212-2_18, doi:10.1007/
978-3-642-39212-2_18.

15 N. Dilley and J. Lange. An empirical study of messaging passing concurrency in Go projects. In
2019 IEEE 26th International Conference on Software Analysis, Evolution and Reengineering
(SANER), pages 377–387, Feb 2019. doi:10.1109/SANER.2019.8668036.

16 Simon J. Gay and Malcolm Hole. Types and subtypes for client-server interactions. In
ESOP 1999, pages 74–90, 1999. URL: http://dx.doi.org/10.1007/3-540-49099-X_6, doi:
10.1007/3-540-49099-X_6.

17 Simon J. Gay and Malcolm Hole. Subtyping for session types in the pi calculus. Acta Inf.,
42(2-3):191–225, 2005. URL: http://dx.doi.org/10.1007/s00236-005-0177-z, doi:10.1007/
s00236-005-0177-z.

CONCUR 2019

https://doi.org/10.1007/BFb0028754
https://doi.org/10.1007/BFb0028754
http://dx.doi.org/10.1007/BFb0028754
https://doi.org/10.1109/LICS.1993.287591
http://dx.doi.org/10.1109/LICS.1993.287591
http://doi.acm.org/10.1145/155183.155231
http://dx.doi.org/10.1145/155183.155231
http://dx.doi.org/10.1145/155183.155231
http://dx.doi.org/10.1561/2500000031
https://github.com/julien-lange/asynchronous-subtyping
https://github.com/julien-lange/asynchronous-subtyping
http://doi.acm.org/10.1145/322374.322380
http://dx.doi.org/10.1145/322374.322380
https://doi.org/10.1016/j.tcs.2018.02.010
http://dx.doi.org/10.1016/j.tcs.2018.02.010
https://doi.org/10.1006/inco.1996.0003
https://doi.org/10.1006/inco.1996.0003
http://dx.doi.org/10.1006/inco.1996.0003
https://doi.org/10.23638/LMCS-13(2:12)2017
http://dx.doi.org/10.23638/LMCS-13(2:12)2017
https://doi.org/10.1007/978-3-662-44584-6_20
http://dx.doi.org/10.1007/978-3-662-44584-6_20
http://dx.doi.org/10.1007/978-3-642-28869-2_10
http://dx.doi.org/10.1007/978-3-642-39212-2_18
http://dx.doi.org/10.1007/978-3-642-39212-2_18
http://dx.doi.org/10.1007/978-3-642-39212-2_18
http://dx.doi.org/10.1109/SANER.2019.8668036
http://dx.doi.org/10.1007/3-540-49099-X_6
http://dx.doi.org/10.1007/3-540-49099-X_6
http://dx.doi.org/10.1007/3-540-49099-X_6
http://dx.doi.org/10.1007/s00236-005-0177-z
http://dx.doi.org/10.1007/s00236-005-0177-z
http://dx.doi.org/10.1007/s00236-005-0177-z


34:16 A Sound Algorithm for Asynchronous Session Subtyping

18 Blaise Genest, Dietrich Kuske, and Anca Muscholl. On communicating automata with bounded
channels. Fundam. Inform., 80(1-3):147–167, 2007. URL: http://content.iospress.com/articles/
fundamenta-informaticae/fi80-1-3-09.

19 Raymond Hu and Nobuko Yoshida. Hybrid session verification through endpoint API genera-
tion. In FASE 2016, pages 401–418, 2016. doi:10.1007/978-3-662-49665-7_24.

20 Petr Jancar and Faron Moller. Techniques for decidability and undecidability of bisimilarity.
In CONCUR 1999, pages 30–45, 1999. URL: http://dx.doi.org/10.1007/3-540-48320-9_5,
doi:10.1007/3-540-48320-9_5.

21 Dexter Kozen, Jens Palsberg, and Michael I. Schwartzbach. Efficient recursive subtyping.
Mathematical Structures in Computer Science, 5(1):113–125, 1995. URL: http://dx.doi.org/10.
1017/S0960129500000657, doi:10.1017/S0960129500000657.

22 Salvatore La Torre, P. Madhusudan, and Gennaro Parlato. Context-bounded analysis of
concurrent queue systems. In TACAS 2008, pages 299–314, 2008. URL: https://doi.org/10.
1007/978-3-540-78800-3_21, doi:10.1007/978-3-540-78800-3\_21.

23 Julien Lange and Nobuko Yoshida. Characteristic formulae for session types. In TACAS,
volume 9636 of Lecture Notes in Computer Science, pages 833–850. Springer, 2016.

24 Julien Lange and Nobuko Yoshida. On the undecidability of asynchronous session subtyping.
In FoSSaCS, volume 10203 of Lecture Notes in Computer Science, pages 441–457, 2017.

25 Sam Lindley and J. Garrett Morris. Embedding session types in Haskell. In Haskell 2016, pages
133–145, 2016. URL: http://doi.acm.org/10.1145/2976002.2976018, doi:10.1145/2976002.
2976018.

26 Dimitris Mostrous and Nobuko Yoshida. Session typing and asynchronous subtyping for the
higher-order π-calculus. Inf. Comput., 241:227–263, 2015. URL: http://dx.doi.org/10.1016/j.
ic.2015.02.002, doi:10.1016/j.ic.2015.02.002.

27 Dimitris Mostrous, Nobuko Yoshida, and Kohei Honda. Global principal typing in partially
commutative asynchronous sessions. In ESOP 2009, pages 316–332, 2009. URL: http:
//dx.doi.org/10.1007/978-3-642-00590-9_23, doi:10.1007/978-3-642-00590-9_23.

28 Rumyana Neykova, Raymond Hu, Nobuko Yoshida, and Fahd Abdeljallal. A Session Type
Provider: Compile-time API Generation for Distributed Protocols with Interaction Refinements
in F]. In CC 2018. ACM, 2018.

29 Dominic A. Orchard and Nobuko Yoshida. Effects as sessions, sessions as effects. In POPL
2016, pages 568–581, 2016. URL: http://doi.acm.org/10.1145/2837614.2837634, doi:10.1145/
2837614.2837634.

30 Luca Padovani. A simple library implementation of binary sessions. J. Funct. Program., 27:e4,
2017. URL: https://doi.org/10.1017/S0956796816000289, doi:10.1017/S0956796816000289.

31 Wuxu Peng and S. Purushothaman. Analysis of a class of communicating finite state machines.
Acta Inf., 29(6/7):499–522, 1992. URL: https://doi.org/10.1007/BF01185558, doi:10.1007/
BF01185558.

32 Alceste Scalas and Nobuko Yoshida. Lightweight session programming in scala. In ECOOP
2016, pages 21:1–21:28, 2016. URL: https://doi.org/10.4230/LIPIcs.ECOOP.2016.21, doi:
10.4230/LIPIcs.ECOOP.2016.21.

http://content.iospress.com/articles/fundamenta-informaticae/fi80-1-3-09
http://content.iospress.com/articles/fundamenta-informaticae/fi80-1-3-09
http://dx.doi.org/10.1007/978-3-662-49665-7_24
http://dx.doi.org/10.1007/3-540-48320-9_5
http://dx.doi.org/10.1007/3-540-48320-9_5
http://dx.doi.org/10.1017/S0960129500000657
http://dx.doi.org/10.1017/S0960129500000657
http://dx.doi.org/10.1017/S0960129500000657
https://doi.org/10.1007/978-3-540-78800-3_21
https://doi.org/10.1007/978-3-540-78800-3_21
http://dx.doi.org/10.1007/978-3-540-78800-3_21
http://doi.acm.org/10.1145/2976002.2976018
http://dx.doi.org/10.1145/2976002.2976018
http://dx.doi.org/10.1145/2976002.2976018
http://dx.doi.org/10.1016/j.ic.2015.02.002
http://dx.doi.org/10.1016/j.ic.2015.02.002
http://dx.doi.org/10.1016/j.ic.2015.02.002
http://dx.doi.org/10.1007/978-3-642-00590-9_23
http://dx.doi.org/10.1007/978-3-642-00590-9_23
http://dx.doi.org/10.1007/978-3-642-00590-9_23
http://doi.acm.org/10.1145/2837614.2837634
http://dx.doi.org/10.1145/2837614.2837634
http://dx.doi.org/10.1145/2837614.2837634
https://doi.org/10.1017/S0956796816000289
http://dx.doi.org/10.1017/S0956796816000289
https://doi.org/10.1007/BF01185558
http://dx.doi.org/10.1007/BF01185558
http://dx.doi.org/10.1007/BF01185558
https://doi.org/10.4230/LIPIcs.ECOOP.2016.21
http://dx.doi.org/10.4230/LIPIcs.ECOOP.2016.21
http://dx.doi.org/10.4230/LIPIcs.ECOOP.2016.21

	Introduction
	Communicating Machines and Asynchronous Subtyping
	Communicating Machines
	Asynchronous Session Subtyping

	A Sound Algorithm for Asynchronous Subtyping
	Generating Asynchronous Simulation Trees
	A Simulation Tree-Based Algorithm 

	Evaluation, Related Work, and Conclusions

