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Abstract

The feasibility of liver transplantation from old healthy donors suggests that this organ is able to 

preserve its functionality during aging. To explore the biological basis of this phenomenon, we 

characterized the epigenetic profile of liver biopsies collected from 45 healthy liver donors ranging 

from 13 to 90 years old using the Infinium HumanMethylation450 BeadChip. The analysis indicates 

that a large remodeling in DNA methylation patterns occurs, with 8823 age-associated differentially 

methylated CpG probes. Notably, these age-associated changes tended to level off after the age of 60,  

as confirmed by Horvath’s clock. Using stringent selection criteria we further identified a DNA 

methylation signature of aging liver including 75 genomic regions. We demonstrated that this 

signature is specific for liver compared to other tissues and that it is able to detect biological age- 

acceleration effects associated with obesity. Finally we combined DNA methylation measurements 

with available expression data. Although the intersection between the two omic characterizations was 

low, both approaches suggested a previously unappreciated role of epithelial-mesenchymal transition 

and Wnt signaling pathways in the aging of human liver.
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Introduction

The liver is a highly sophisticated metabolic factory. It performs a vast array of biochemical 

functions necessary to maintain whole-body homeostasis and it is pivotal in integrating and 

elaborating signals that originate from peripheral tissues. Still, details on how and to what extent 

liver physiology is affected during aging is an open question in basic biological research. Compared 

to other organs, liver has long been known to be unique in terms of extended functionality. Despite 

some age-related changes in morphology and function, liver appears to preserve its functionality at 

older ages much better than other tissues 1, with important implications in translations research, 

including the selection of donors in liver transplants. Indeed, available data suggest that transplants 

from older donors have duration and success rates comparable to those from young donors 2,3. 

Collectively, these evidences suggest that liver aging rate is decelerated compared to other organs.

In this frame, we recently reported that the proteasomes’ function and the microRNA expression in 

liver biopsies from healthy liver donors ranging from 12 to 92 years are largely preserved at least 

until the age of 60 4,5.

To deepen and complement these findings, and on the basis of recent literature 6–8, we here 

investigate genome-wide DNA methylation in liver biopsies from 45 healthy donors with age 

ranging from 13 to 90 years. In fact, DNA methylation is the epigenetic change that received most 

attention in the study of human aging, due to the large remodeling that it undergoes in lifespan 9 and 

to its ability to detect acceleration/deceleration effects in the biological age of an individual 10,11. 

Finally, to get further insight into the molecular pathways altered during liver aging, we 

corroborated the epigenetic analysis with the matched characterization of gene expression changes.
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Methods
Samples
Liver biopsies were selected from 45 heart-beating and brain dead donors (age range 13-90 years), 

as described in Capri et al. 2016 4, following approval of the local ethical committee (code: 

44/2008/Tess) and obtainment of written informed consent. No donor organs were obtained from 

executed prisoners or other institutionalized persons. Donors’ death causes are described in Capri et 

al. 2016 4; no significant differences in bilirubin, alanine aminotransferase, aspartate 

aminotransferase, and gamma-glutamyl transferase between donors younger than 70 years and older 

than 70 years were observed.

Human hepatocytes were derived from an independent set of 22 patients undergoing either partial  

or total hepatectomy and from 10 organ donors (Supplementary Table 1). Cells were isolated as 

reported in 12, centrifuged at 80g for 6 minutes and frozen as dry cell pellets for long-term storage at

-80° C.

DNA methylation datasets used to investigate DNA methylation in healthy tissues other than liver 

are reported in Supplementary Data (Supplementary Table 2). Two datasets (GSE61256 and 

GSE48325) were used to assess the effects of obesity on age-dependent DNA methylation changes. 

GSE61256 includes 79 liver samples from patients undergoing liver biopsy for assessment of liver 

histology or for suspected non-alcoholic fatty liver disease and from normal controls to exclude 

liver malignancy during oncological surgery 13. GSE48325 14 includes 85 liver samples from 62 

patients (17 normal controls, 17 healthy obese, 3 obese without clinical characterization, 10 with 

non-alcoholic fatty liver disease and 15 patients with non-alcoholic steatohepatitis). Liver biopsies 

follow-up available for 23 individuals were discarded from our analysis.

Genome-wide DNA methylation analysis.

Genomic DNA was extracted from 45 liver biopsies (27 males and 18 females, age range 13-90 

years) using the Qiagen kit QiAmp mini Kit®, following manufacturer’s instructions. DNA was 

bisulfite-converted using the EZDNA Methylation-Gold Kit (Zymo Research) and analysed on the 

Infinium HumanMethylation450 BeadChip (Illumina) following manufacturer's instructions. Arrays
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were scanned by HiScan (Illumina). Data processing and analysis are described in Supplementary 

Data. DNA methylation data discussed in this publication have been deposited in NCBI's Gene 

Expression Omnibus and are accessible through GEO Series accession number GSE107039 

(https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE107039), which includes also 

expression data (see below).

Gene-targeted DNA methylation analysis

DNA was extracted using the AllPrep Mini Kit (Illumina) following manufacturer’s instructions. 

Site specific DNA methylation analysis was performed by the EpiTYPER Assay. Briefly, 500 ng 

DNA were converted via bisulphite treatment using EZ-96 DNA Methylation Kit (Zymo Research 

Corporation). Ten ng bisulphite-converted DNA wereamplified using bisulphite-specific primers for 

ELOVL2, ZIC1, ZIC1_Shore, MACROD1, CCNJ and CYP1B1 (Supplementary Table 3) using a 

step-down amplification routine as indicated in 15 (Supplementary Table 4). Methylation data 

analysis was performed using the R stats package.

Gene expression analysis

Total RNA (including microRNAs) was extracted from 33 liver biopsies belonging to the same 

collection analysed for genome-wide DNA methylation 4 (11 females and 22 males, age range 13-

90 years) using the mirVana microRNA Isolation Kit (Ambion), following manufacturer’s 

instructions. Of these 33 biopsies, 26 had also been analysed for DNA methylation profiles. The 

HG-U133 plus 2.0 GeneChip (Affymetrix) platform was used to evaluate gene-expression, as 

already described 4. Analysis of gene expression data is described in Supplementary Data.

http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE107039)


Downloaded from https://academic.oup.com/biomedgerontology/advance-article-abstract/doi/10.1093/gerona/gly048/4937953 
by guest
on 30 March 2018

Results
Identification of age-associated changes in liver DNA methylation
We used the Illumina Infinium 450k microarray to characterize DNA methylation of liver tissues 

collected from 45 individuals ranging from 13 to 90 years of age.

We run two types of analyses (See Methods Section). The first identified 8823 differentially 

methylated positions (DMPs, Figure 1A and Supplementary File 1). Most of these probes (5772) 

were positively associated with age. The overlap between our results and those recently published 8 

(3518/8823 probes) is reported in Supplementary File 1 and commented in Supplementary Data. 

The analysis of the chromatin states of the genomic regions harbouring age-DMPs (Supplementary 

Data and Supplementary Figure 1) showed an enrichment of hyper-age-DMPs in bivalent chromatin 

domains, consistently with previous reports on other tissues 16.

Multidimensional scaling (MDS) on the list of 8823 differentially methylated positions (age-DMPs) 

showed a clear separation of the samples along the first dimension (Figure 1B), linearly correlated 

with chronological age until 60 years of age, while a trend to a plateau was observed at older ages 

(Figure 1C). The same trend was confirmed when we estimated DNA methylation age (DNAmAge) 

of our samples using Horvath’s epigenetic clock 17 (Figure 1D), suggesting a slower epigenetic 

aging rate of liver after 60 years of age.

As a second type of analysis, we focused on the regions in which multiple adjacent CpG sites show 

age-dependent changes (age-dependent differentially methylated regions, age-DMRs; see Materials 

and Methods) owing to their more interpretable biological meaning compared to DMPs 18. We 

identified a signature of 75 age-DMRs, including 687 probes mapping on 89 genes, all positively 

associated with aging (Figure 2A, Supplementary Files 2 and 3). Unsurprisingly, the top-ranking 

differentially methylated region mapped in the CpG island of gene ELOVL2, already well 

documented and known to undergo age-associated hypermethylation in several tissues 19,20. MDS 

analysis on the 75 age-DMRs signature gave results similar to those achieved using the list of age- 

DMPs, with a clear association of MDS1 with chronological age until 60 years and a levelling off 

after this threshold (Supplementary Figure 2).
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Validation of the DNA methylation signature on isolated hepatocytes

Although hepatocytes are the predominant cell types in human liver, we cannot exclude a priori  

that the observed epigenetic alterations in aging liver are in fact related to changes in cell types 

abundances in the tissue. Therefore, we evaluated age-dependent DNA methylation of 6 randomly 

selected age-DMRs (ELOVL2 island, ZIC1 island, ZIC1 Shore, MACROD1 island, CCNJ island and 

CYP1B1 island) in a existing collection of hepatocytes isolated from liver tissues in an independent 

cohort of 32 subjects (age range: 0-82 years). Pearson correlation between DNA methylation and 

age was significant (p-value <0.05) for multiple CpG sites within each of the 6 regions analysed 

(Figure 2B, Supplementary Files 4 and 5) indicating that, at least for these DMRs, the observed 

epigenetic changes occur in hepatocytes.

Tissue-specificity of the DNA methylation signature

Subsequently, we investigated whether the signature identified in liver could show similar age- 

dependent trends in other human tissues. We used 14 publicly available datasets where DNA 

methylation is measured in healthy tissues (Supplementary Data) from subjects of different ages. 

An independent liver dataset [GSE61258, considering only subjects with a body mass index 

(BMI)<25] was included in this analysis in order to verify the reproducibility of the age-DMRs 

identified in our study. For each of the 687 probes included in the 75 age-DMRs, we considered the 

slope values of the linear regression between DNA methylation and age in each tissue. Hierarchical 

clustering using these tissue-specific slope values (Supplementary Data) showed that the two liver 

datasets form a distinct group compared to the other tissues, suggesting that the age-dependent 

DNA methylation signature that we identified is liver-specific (Figure 3A).
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A deeper analysis (Figure 3B; Supplementary Files 6 and 7) indicates that although in some regions 

trends in age-association are similar between liver and several tissues (for example, ELOVL2 island 

or OTUD7A island), other regions harbour a completely liver-specific age-association (for example, 

SRCIN1 or MAP6D1 islands). In particular, we observed that for some regions liver and 

mesenchymal stem cells display opposite trends in age-associations. In most of the cases (MIB2, 

MACROD1 and FAM18A islands) the same CpG probes were positively (liver) and negatively 

(mesenchymal stem cells) associated with age, while in the B3GALT4 island the 5’ CpG probes 

showed positive age-association in liver and no association in mesenchymal stem cells, while the 3’ 

CpG were negatively associated with age in mesenchymal stem cells but not age-associate in liver.

Validation of the liver aging signature in obese subjects

To assess the ability of our physiological aging signature to capture pathological conditions of the 

liver we revisited the liver Infinium 450k datasets used by Horvath (GSE61258 and GSE48325, see 

Materials and Methods) where the authors demonstrated that human livers from obese subjects have 

higher DNAmAge values than livers from non-obese subjects 13. We therefore evaluated whether 

the DNA methylation status of our shortlist of age-DMRs was also affected by BMI using the same 

liver Infinium 450k datasets used by Horvath (GSE61256 and GSE48325, see Materials and 

Methods). For each CpG probe in the 75 age-DMRs signature, we calculated the association with 

BMI, correcting for age. Eighty probes, mapping in 25 DMRs, resulted significantly associated with 

BMI in both datasets (p-value <0.01; Supplementary File 8, Supplementary File 9 and Figure 4) and 

in all cases lean subjects (BMI<25) tended to have lower DNA methylation levels, for the same age, 

compared to obese subjects. Given that all the 75 DMRs are hypermethylated with age, this result 

indicates that the liver aging signature that we identified is able to detect acceleration effects in the 

epigenetic age of liver from obese subjects.
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Identification of age-associated changes in liver mRNA expression
To gain insight into the molecular activities altered over liver aging we selected a different and 

more appropriate type of omic technology and associated analysis, i.e. transcriptomics and 

functional analysis. Pearson correlation between expression signal and age was computed for each 

probe along with p-values corrected for multiple hypothesis testing (Supplementary File 10), 

leading to 56 probes significantly differentially expressed (age-DE; adjusted p-value < 0.001), with 

a high prevalence of probes positively associated with the age of the donor (47 out 56; Figure 5A). 

MDS was computed on the expression values of the selected 56 age-DE probes, returning well 

separated groups along the first component (Figure 5B) which, differently from DNA methylation 

data, presented an almost linear association with chronological age (Figure 5C).

Gene Set Enrichment Analysis was performed on gene expression data to gain insight into the 

biological processes involved in aging liver. We identified several gene sets significantly enriched at a 

False Discovery Rate of 0.05 (Supplementary Table 5). Genes with a positive correlation with age were 

enriched in allograft rejection, interferon gamma response, inflammatory response, epithelial 

mesenchymal transition (EMT) and myogenesis, while genes with a negative correlation with age were 

enriched in metabolic processes.

Multi-omic analysis

As it is now well recognized, the joint analysis of multiple omics allows the identification of 

properties of a system that are not visible when exploring single layers 21 and this has specifically 

been shown for the exploration of phenomena as diverse as cellular transdifferentiation and 

response to vaccination 21. In this context, we searched for the genes that displayed age-associated 

changes in both DNA methylation (using the list of 8823 age-DMPs) and mRNA expression (using 

the list of 56 age-DE genes) and identified 11 genes: FZD2, ICMT, KCNIP4, LGALS4, PTGDS, 

SDK1, SORCS2, TDRD10, TSPYL5, VASH1, ZIC1. For each of these genes, we calculated Pearson 

correlation between DNA methylation values of the probes in the age-DMPs list and gene
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expression values of the probes in the list of age-DE (Supplementary File 11). Pearson correlation 

was significant (nominal p-value <0.01) for 3 genes: ZIC1, TSPYL5 and FZD2. The vast majority of 

the age-DMPs probes mapping on gene ZIC1 were positively correlated with the signal from the 3 

age-DE Affymetrix probes mapping on the same gene. For gene TSPYL5, a negative correlation 

between Affymetrix probe 213122_at and both Infinium cg04917181 and cg00032205 probes, 

located on a CpG island could be identified; for gene FZD2, a positive correlation was found 

between Affymetrix probe 210220_at and Infinium probe cg01684881, located on a CpG island.

Discussion

In the present study, we explored the genome-wide epigenomic and transcriptional molecular 

changes that accompany aging in human liver.

Our data highlight for the first time that age-associated epigenetic changes level off after 60 years  

of age in human liver. This trend is confirmed, although less strikingly, when the DNAmAge is 

calculated using Horvath’s epigenetic clock. This is expected as Horvath’s clock is optimized to be 

a multi-tissue predictor of age, while our analysis is specifically focused on liver and therefore it is 

more likely to detect the specific epigenetic remodelling that occurs in this tissue during aging. 

Although quantified for the first time, our finding is in agreement with experimental evidences 

showing that healthy liver undergoes a successful aging, preserving liver’s functionality at older 

ages 1,4,5. The integration of DNA methylation data with results from further studies on cell 

morphology, cellular functions, proteomic and enzymatic profiles will provide a more complete 

picture of the biological basis of successful aging in liver.

The decrease in the epigenetic aging rate after 60 years is evident using both the list of 8823 age- 

DMPs and the shorter list including 687 probes mapping on 75 age-DMRs. In addition to the 

robustness emerging from confirming the results with two different approaches, the latter signature 

is defined using a region-centric approach 18, more likely to guarantee biologically interpretable
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results compared to a single-probe analysis. We demonstrated that the 75 age-DMRs list is: i) 

validated in hepatocytes, ii) liver specific and iii) able to detect epigenetic age acceleration effects 

associated with obesity.

With respect to the first feature, the signature on hepatocytes was confirmed on 6 regions tested by 

gene-targeted analysis of DNA methylation in a collection of hepatocytes isolated from subjects at 

different ages.

The second feature was assessed by testing and confirming the 75 age-DMRs signature in an 

independent liver dataset including tissues from non-obese subjects (GSE61256). In the same 

analysis, we demonstrated that the signature is liver-specific compared to other tissues, suggesting 

that the peculiar aging process characteristic of this tissue has a specific epigenetic landscape. This 

refines on the work of Steve Horvath who has shown how methylation changes are a ubiquitous 

phenomenon in human tissues 17, with however limited emphasis on the tissue specificity of 

epigenetic remodelling during aging. Bysani et al. demonstrated that a large fraction of age- 

associated DNA methylation changes in liver were reflected also in blood, while the overlap with 

age-associated changes in pancreatic islets and adipose tissue was smaller 8. Our work complements 

these findings, as we were able to identify a liver-specific epigenetic signature of aging, in line with 

the apparently lower aging rate of liver compared to other body districts.

We then evaluated the effect of BMI on our epigenetic signature of aging liver. Eighty probes, 

mapping in 25 age-DMRs analysed, were hypermethylated, for the same age, in overweight or 

obese subjects compared to lean subjects in two independent datasets. This result indicates that, 

similarly to Horvath’s epigenetic clock, specific components of our signature are able to capture the 

already known age acceleration effects in liver from obese subjects. Furthermore, literature search 

indicates that several of the genes we identified are hypermethylated in hepatocellular carcinoma 

(ZIC1, FOXD3) 22,23 or in other cancer types (NEFM, KCNG3, PRDM14, FOXD3, CELSR3, HEYL)

24–30, suggesting a role of these genes in liver homeostasis.
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Finally, we investigated gene expression changes in our cohort and correlated them with DNA 

methylation variations. Differently from the epigenetic signature of liver aging, we observed a linear 

change in gene expression from young to old subjects. This confirms the different nature and 

informativity of omic screens, and emphasizes the necessity to integrate them to achieve higher levels 

of understanding of the underlying molecular events. In particular, although transcriptomics cannot 

capture the aging deceleration typical of liver, it allows to explore functional alterations thanks to the 

ample and well validated number of tools designed for enrichment analysis. Accordingly, Gene Set 

Enrichment Analysis highlighted several biological processes associated to liver aging. Genes up- 

regulated with aging are enriched in inflammatory response and in EMT. While alterations in immune 

and inflammatory responses have been described also in murine models of aging liver 31 and are in 

accordance with the accrual of chronic inflammation during aging (inflammaging) 32, a possible role of 

EMT in liver aging has not been investigated so far, probably because the contribution of hepatocytes 

to EMT in liver fibrosis is still a controversial issue 33. The role of EMT in kidney fibrosis is increasingly 

accepted 34 and it is noteworthy that caloric restriction alleviates age-related EMT in kidneys from 

aged mice 35.

We noted that a number of genes in the 75 age-DMRs signature is involved in the Wnt pathway 

(ZIC1, NEFM, FOXD3, MIR155HG, CELS3, HEYL) 25,36–39 and in the regulation of the epithelial- 

to-mesenchymal transition (PRDM14) 39. A role of Wnt signalling in aging has been recently 

proposed, prompted from the observation that it is downregulated in cellular senescence40. Age- 

dependent variations in the expression of Wnt pathway genes could affect tissue homeostasis and 

fibrosis 41. Although the results from our DNA methylation analysis are not conclusive, as they do 

not allow to clearly infer an activation/reduction of Wnt signalling in the aging of human liver, they 

sustain previous evidences and, to the best of our knowledge, for the first time suggest an epigenetic 

regulation of this pathway in aging. Further experiments should investigate EMT-related changes in 

expression and epigenetic profiles during liver aging.
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The integration of the two levels of information (DNA methylation and expression) highlighted 3 

genes sharing differential methylation and expression: ZIC1, TSPYL5 and FZD2.

ZIC1, which is also part of the 75 age-DMRs list and which is one of the genes affected by obesity, 

encodes for a transcription factor belonging to the family of the C2H2-type zinc finger proteins. 

ZIC1 plays an important role during development, in particular during neurogenesis 42, and is has 

been implicated in liver regeneration 43. ZIC1 has been shown to be hypermethylation with aging in 

peripheral blood mononucleated cells and naïve CD4+ cells 44. It is interesting to note that in a 

recent report Slieker et al. demonstrated that ZIC1 methylation encounters an increase in inter- 

individual variability with aging in whole blood, and that this is associated to a higher variability in 

the expression of the gene 45. On the basis of this results and on our observation that ZIC1 is 

hypermethylated in liver tissues from obese subjects, it would be interesting to investigate whether 

ZIC1 methylation and/or expression are associated with health status and, more in general, with 

aging quality.

TSPYL5 was encodes for the testis-specific Y-like protein 5 and is frequently hypermethylated and 

silenced in different cancer types, including HCC 46,47. Furthermore, its methylation is increased in 

foetal cortex of Down Syndrome, a disease which shows a profound remodeling of DNA 

methylation patterns 19,48.

The protein encoded by FZD2, Frizzled2, is a Wnt receptor overexpressed in tumors and correlates 

with markers of EMT 49. Down-regulation of FZD2 expression through a short-hairpin RNA suppresses 

the proliferation of HCC and gastric cancer cells 50. Although also in this case it is not easy to infer the 

role of DNA methylation and expression changes of FZD2 during aging, it is intriguing that the gene is 

involved in Wnt signaling pathway and EMT.

A possible limitation of our study is that the liver biopsies were collected from brain-dead, heart- 

beating donors (death by accidents and exclusion of major chronic disease). We cannot exclude that 

intensive care unit stay could have had an impact on liver transcription, while methylation patterns 

are likely to be more stable. This observation could also explain, at least in part, the poor correlation
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between transcription and methylation that we observed. In any case, the use of livers considered 

suitable for organ transplantation from brain-dead, heart-beating donors, allowed us to investigate a 

unique collections of livers from donors of different ages, ranging from very young to very old 

subjects, that would be otherwise impossible owing to the strict clinical and ethical limitations on 

biopsies from healthy, non-obese subjects.

In conclusion, in this study we characterized the epigenomic and transcriptomic remodelling that 

occurs in healthy liver tissues during aging. Epigenomic data indicate a levelling off in the epigenetic 

aging rate of liver after 60 years, supporting the clinical and molecular observations that liver can 

preserve its functionality also at older ages. Functional studies are needed to characterize the 

contribution of the genes that we identified in DNA methylation and expression analysis to verify 

whether the observed changes are associated with the balance between age-related decline and 

maintenance of functionality. We suggest that in particular the regulation of EMT and Wnt signalling 

pathways can play a yet unappreciated role in liver aging.
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Figure legends

Figure 1. Identification of age-DMPs (differentially methylated positions) in human liver. (A) Volcano 

plot of age-DMPs. The difference between mean DNA methylation values in older (age 71-90 years) 

and younger individuals (age 13-30 years) is plotted on the x axis, while the nominal p-value for the 

regression between DNA methylation and age, corrected for sex and batch, is on the y axis (−1 × log10 

scale). The dotted line corresponds to a BH-corrected p-value of 0.001. Probes with a mean  

differential methylation of at least 0.15 and 0.30 are highlighted respectively in blue and yellow. (B) 

MDS plot of methylation values of the 8823 significant age-DMPs. (C) Scatter plot of the first  

dimension of the MDS against chronological age of the subjects. The blue line corresponds to the 

LOWESS regression between MDS1 and age. (D) Scatter plot between chronological age (x axis) and 

DNAmAge (DNA methylation age) (y axis). The cyan line corresponds to the regression between age 

and DNAmAge in subjects younger than 60 years of age. The blue line corresponds to the LOWESS 

regression between DNAmAge and age, considering the whole cohort.

Figure 2. Human liver age-DMRs (differentially methylated regions). (A) DNA methylation 

profiles of the CpG islands located in ZIC1 and MACROD1 genes according to Illumina Infinium 

450k measurements. The dotted grey lines indicate the regions assessed by EpiTYPER. Mean 

methylation values and standard deviations are reported for four age classes (0-30 years old; 31-50 

years old; 51-70 years old; 71-90 years old). (B) Pearson correlations between age and DNA 

methylation, measured by EpiTYPER, in the CpG islands located in ZIC1 and MACROD1 genes.

Figure 3. Identification of age-DMRs (differentially methylated regions) in human liver (A) 

Heatmap of the slope values of the regressions between DNA methylation of each CpG probe 

within the 75 age-DMRs and age in the analysed tissues. CpG probes are ordered according to their 

genomic localization. (B) For the CpG probes within the 6 regions in ELOVL2, OTUD7A, SRCIN1,
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MAP6D1, MIB2 and B3GALT4 genes, the plots report the slope values of the regression between 

DNA methylation and age in the analysed tissues. For the sake of clarity, the names of the CpG 

probes are not reported in the figure, but can be found in Supplementary File 10.

Figure 4. Methylation of cg23449696 within the N-Shore of ZIC1 in lean and overweight/obese 

subjects. Black and red lines represent the linear regression between methylation and age in lean 

and overweight/obese subjects respectively.

Figure 5. Identification of age-DE (differentially expressed) in human liver. (A) Pearson correlation 

between expression and age for the Affymetrix HG-U133_Plus_2 array probes, plotted according to 

their chromosomal position. (B) MDS (multidimensional scaling) plot of expression values of the 56 

significant age-DE. (C) Scatter plot of the first dimension of the MDS against chronological age of the 

subjects. The blue line corresponds to the LOWESS regression between MDS1 and age.
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