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Limits on Sparse Data Acquisition: RIC Analysis of
Finite Gaussian Matrices

Ahmed Elzanaty, Student Member, IEEE, Andrea Giorgetti, Senior Member, IEEE, and

Marco Chiani, Fellow, IEEE

Abstract—One of the key issues in the acquisition of sparse
data by means of compressed sensing (CS) is the design of
the measurement matrix. Gaussian matrices have been proven
to be information-theoretically optimal in terms of minimizing
the required number of measurements for sparse recovery. In
this paper we provide a new approach for the analysis of the
restricted isometry constant (RIC) of finite dimensional Gaussian
measurement matrices. The proposed method relies on the exact
distributions of the extreme eigenvalues for Wishart matrices.
First, we derive the probability that the restricted isometry
property is satisfied for a given sufficient recovery condition on
the RIC, and propose a probabilistic framework to study both the
symmetric and asymmetric RICs. Then, we analyze the recovery
of compressible signals in noise through the statistical charac-
terization of stability and robustness. The presented framework
determines limits on various sparse recovery algorithms for finite
size problems. In particular, it provides a tight lower bound
on the maximum sparsity order of the acquired data allowing
signal recovery with a given target probability. Also, we derive
simple approximations for the RICs based on the Tracy-Widom
distribution.

Index Terms—Data acquisition, compressed sensing, restricted
isometry property, Wishart matrices, Gaussian measurement
matrices, sparse reconstruction, robust recovery.

I. INTRODUCTION

Compressed sensing (CS) is an acquisition technique for
efficiently recovering a signal from a small set of linear
measurements, provided that the sensed data is sparse, i.e.,
the number of its non-zero elements, s, is much less than its
dimension n. If properly chosen, the number of measurements,
m, can be much smaller than the signal dimension [1]–[7].

CS based techniques have been exploited to provide effi-
cient solutions for several problems in signal processing and
communication, e.g., source and channel coding, cryptography,
random access, radar, channel estimation, and sub-Nyquist
data acquisition [8]–[16]. The usability of such applications
depends on the maximum sparsity order s such that recovery
is guaranteed with high probability for given m and n.

The three main possible approaches to find the maximum
sparsity order s guaranteeing recovery of all sparse vectors
are based on the restricted isometry property (RIP) analysis,
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geometric methods, and coherence analysis. The RIP tells how
well a linear transformation preserves distances between sparse
vectors, and is quantified by the so-called restricted isometry
constant (RIC) [1]. In general, the smaller the RIC, the closer
the transformation to an isometry (a precise definition of the
RIC is given later). Geometric based methods are useful for the
recovery analysis of exactly sparse signals via ℓ1-minimization
in the noiseless case [17]–[20]. Sparse reconstruction can
also be studied looking at the coherence of the measurement
matrix. However, the resulting bounds are too pessimistic
compared to RIP-based bounds [21, eq. (6.9) and eq. (6.14)].
This significant gap justifies preferring the RIP based analysis,
whenever bounding the RIC is feasible. Furthermore, non-
uniform recovery guarantees, like those based on Gaussian
widths, provide tight bounds for the reconstruction of a fixed
sparse vector, in contrast to the RIP method, which considers
the recovery of all sparse vectors (uniform recovery) [21], [22].

Moreover, the RIP theory is more general compared to
the geometric approach, as it also considers the stability
for compressible signals and the robustness to noise, under
different measurement matrices, for a wider range of sparse
recovery algorithms. In fact, sufficient conditions for exact
recovery have been obtained for several algorithms in terms
of the RIC (see, e.g., [1], [23]–[28] for ℓ1-minimization, [29],
[30] for iterative hard thresholding (IHT), and [31]–[34] for
greedy algorithms).

It has been shown by using information-theoretic methods
that Gaussian random matrices with independent, identically
distributed (i.i.d.) entries are optimal in terms of minimizing
the number of measurements required for recovery [35].
Hence, precisely analyzing the RIP of such matrices is im-
portant. In fact, Gaussian matrices have been proved to satisfy
the RIP with overwhelming probability [1], [3]. The two main
tools adopted for the proof are the concentration of measure
inequality for the distribution of the extreme eigenvalues of a
Wishart matrix, and the union bound which accounts for all
possible signal supports. However, if the aim is to quantify
the maximal allowable sparsity order s for a given number
of measurements, the use of the concentration inequalities
leads to overly pessimistic results. In this regard, in [36]–
[38] an improved analysis was presented, by bounding the
asymptotic behavior of the distributions given in [39] for
the extreme eigenvalues of a Wishart matrix instead of the
concentration inequalities. Explicit bounds for the RIC have
been obtained in some specific asymptotic regions [38], but
no bounds are known in the general non-asymptotic setting. In
fact, for finite measurement matrices the asymptotic analysis
of the eigenvalues in [36]–[38] gives approximations of the
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true distributions; therefore, they cannot provide guaranteed
bounds for a particular problem dimension (s,m, n).

This paper provides an accurate statistical analysis of the
RIC for finite dimensional Gaussian measurement matrices,
supporting the design of real CS applications (involving al-
ways finite size problems), with guaranteed recovery probabil-
ity. In particular, we calculate the tightest, to our knowledge,
lower bound on the probability of satisfying the RIP for
an arbitrary condition on the RIC. For a specified number
of measurements, the maximal sparsity order can then be
found such that perfect recovery is feasible for all s-sparse
vectors, i.e., the matrix satisfies the RIP, considering, on a
random draw of the measurement matrix, a target probability
1 − ϵ of successful recovery. Differently, the usually adopted
asymptotic setting considers that this probability tends to 1
(overwhelming probability).

To get better estimates on the maximal sparsity order,
tight lower bounds on the cumulative distribution functions
(CDFs) of the asymmetric RICs (ARICs) are derived, based
on the exact probability that the extreme singular values of a
Gaussian submatrix are within a range. Hence, starting from
the derived CDFs, we can find thresholds, below which the
ARICs lie with a predefined probability. These percentiles
allow to calculate a lower bound on the maximal recoverable
signal sparsity order, using several reconstruction methods,
such as ℓ1-minimization, greedy, and IHT algorithms. The new
analysis is used in conjunction with the recovery conditions
relaxed to asymmetric boundaries, as suggested in [36], to
prove exact recovery for signals with larger sparsity orders.
In this regard, we relax the symmetric RIC based condition
in [28] to a weaker asymmetric one. Additionally, we provide
approximations for the RIC CDFs based on the Tracy-Widom
(TW) distribution, along with convergence investigation. In
comparison with previous literature, the proposed analysis
gives, for finite dimensional problems, a better estimation of
the signal sparsity allowing guaranteed recovery.

The contributions of this paper can be summarized as
follows:

• Accurate symmetric and asymmetric RIC analysis for
finite dimensional problems, accounting for the exact
distribution of finite Gaussian matrices (differently from
previous methods based on asymptotic behavior of the
distributions or loose concentration of measure bounds).

• Limits on compressive data acquisition in terms of the
maximum achievable sparsity order guaranteeing arbi-
trary target reconstruction probability (instead of the
common overwhelming probability approach) via various
recovery algorithms.

• Accurate study for stable and robust recovery of com-
pressible signals with tight bounds on the reconstruction
error.

• Simple approximations for the RICs based on the TW
laws.

Throughout this paper, we indicate with det(·) the determi-
nant of a matrix, with card(·) the cardinality of a set, with

∥ · ∥q = (
∑n

i=1 |xi|q)
1
q the ℓq norm of an n-dimensional

vector, with ∥ · ∥ the ℓ2 norm, with Γ(·) the gamma function,

with γ (a;x, y) =
∫ y
x ta−1e−tdt the generalized incomplete

gamma function, with P (a, x) = 1
Γ(a)γ(a; 0, x) the regular-

ized lower incomplete gamma function, with P (a;x, y) =
1

Γ(a)

∫ y
x ta−1e−tdt = P (a, y)− P (a, x) the generalized regu-

larized incomplete gamma function, with N(µ,σ2) the Gaus-
sian distribution with mean µ and variance σ2.

II. MATHEMATICAL BACKGROUND

Compressed sensing allows recovering a signal from a small
number of linear measurements, under some constraints on
both the sensed signal and the sensing system. More precisely,
assume that we have

y = Ax (1)

where y ∈ Rm and A ∈ Rm×n are known, the number of
equations is m < n, and x ∈ Rn is the unknown. Since
m < n, we can think of y as a compressed version of x.
Without other constraints, the system is underdetermined, and
there are infinitely many distinct solutions of (1). If we assume
that at most s < m elements of x are non-zero (i.e., the vector
is s-sparse), then there is a unique solution (the right one) to
(1), provided that all possible submatrices consisting of 2s
columns of A are maximum rank. The solution can be found
by solving the following ℓ0-minimization [1]

x̂ = argmin ∥x∥0 subject to y = Ax (2)

where ∥x∥0 is the number of the non-zero elements of x.
However, even when the maximum rank condition is satis-
fied, the solution of (2) is computationally prohibitive for
dimensions of practical interest. A much easier problem is
to find the ℓ1-minimization solution. It is proved in [1], under
some conditions on A, that the solution provided by the ℓ1-
minimization

x̂ = argmin ∥x∥1 subject to y = Ax (3)

is the same as that of (2). The conditions on A are given in
term of the RIC.

Definition 1 (The RIC [1]). The RIC of order s of A,
δs(A), is the smallest constant, larger than zero, such that
the inequalities

1− δs(A) ≤
∥AS c∥2

∥c∥2
≤ 1 + δs(A) (4)

are simultaneously satisfied for every c ∈ Rs and every m×s
submatrix AS of A with columns indexed by S ⊂ Ω !

{1, 2, ..., n} with card(S) = s. Under this condition, the
matrix A is said to satisfy the RIP of order s with constant
δs(A).

Specifically, the importance of the RIP in CS comes
from the possibility to use the computationally feasible ℓ1-
minimization instead of the impractical ℓ0 one, under some
constraints on the RIC. For example, it was shown that the ℓ1
and the ℓ0 solutions are coincident for every s-sparse vectors
x if δs(A) < δ with δ = 1/3 [28].

The next question is how to design a matrix A with a
prescribed RIC. One possible way to design A consists simply
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in randomly generating its entries according to some statistical
distribution. In this case, for a given n, s and δ, the target
is to find a way to generate A such that the probability
P {δs(A) < δ} is close to one. An optimal choice is to build
the measurement matrix A with i.i.d. entries ai,j ∼ N(0, 1/m)
[1], [35]. Then, in order to find the number of measurements
m needed, we start by using the Rayleigh quotient inequality
for a fixed S

λmin(W) ≤
∥AS c∥2

∥c∥2
≤ λmax(W) (5)

where W = AT
SAS , and λmin(W) and λmax(W) are its

minimum and maximum eigenvalues, respectively. Consider-
ing that the inequalities in (4) should be satisfied for all the
s-column submatrices of A, the RIC constant can be written
as

δs(A)=max

⎧
⎨

⎩
1−min

S⊂Ω
card(S)=s

λmin(W), max
S⊂Ω

card(S)=s

λmax(W)−1

⎫
⎬

⎭
. (6)

Hence, the probability that the measurement matrix satis-
fies the RIP with a RIC at most δ, denoted as β(δ) !

P {δs(A) ≤ δ}, is represented by

β(δ)=P

⎧
⎨

⎩
min
S⊂Ω

card(S)=s

λmin(W)≥1−δ,max
S⊂Ω

card(S)=s

λmax(W)≤1+δ

⎫
⎬

⎭
. (7)

The union bound gives a lower bound for the probability of
satisfying the RIP as

β(δ) ≥ 1−
(
n

s

)[
1− Psw(δ)

]
(8)

where
(n
s

)
is the binomial coefficient and Psw(δ) is the

probability that AS is well conditioned defined as:

Psw(δ) ! P {1− δ ≤ λmin(W),λmax(W) ≤ 1 + δ} . (9)

The probability Psw(δ) is of fundamental importance, since
it determines the performance of CS. In the next section, an
approach for exactly calculating (9) for Gaussian matrices is
proposed.

III. EIGENVALUES STATISTICS

In this section, we start by recalling the known concentration
inequality based bound on 1−Psw(δ), which is the approach
used in [1], [2]. Then, an alternative method to find Psw(δ) for
Gaussian measurement matrices are provided. The proposed
technique relies on the exact probability that the eigenvalues
of W are within a predefined interval.

A. Eigenvalues Statistics Based on the Concentration Inequal-

ity

Deviation bounds for the largest and the smallest eigen-
values of the Wishart matrix W are obtained using the
concentration of measure inequality [1], [2], as

P

{√
λmax(W) ≥ 1 +

√
s/m+ o(1) + t

}
≤ e−mt2/2 (10)

and

P

{√
λmin(W) ≤ 1−

√
s/m+ o(1)− t

}
≤ e−mt2/2 (11)

where t > 0 and o(1) is a small term tending to zero as m
increases, which will be neglected in the following. Using the
inequality P {AcBc} ≥ 1 − P {A} − P {B} where A,B are
arbitrary events, and Ac, Bc are their complements, i.e., the
union bound, we get

Psw(δ) ≥ 1− e
− 1

2
m

[

(−1−
√

s/m+
√
1+δ)

+
]2

− e
− 1

2
m

[

(1−
√

s/m−
√
1−δ)

+
]2

(12)

where (x)+ = max{0, x}. We will see later that this bound,
which we use as a benchmark, is far from the exact probability.

B. Exact Eigenvalues Statistics

We propose a method to compute exactly the probability
that a Wishart matrix is well conditioned, i.e, its eigenvalues
are within a predefined limit. The method is based on the
following recent result [40].

Theorem 1. The probability that all non-zero eigenvalues of

the real Wishart matrix M = GT
SGS , where GS is m × s

matrix with entries gi,j ∼ N(0, 1), are within the interval

[a, b] ⊂ [0,∞) is

ψms(a, b) = P {a ≤ λmin(M),λmax(M) ≤ b}
= K ′

√
det (Q(a, b)) (13)

with the constant

K ′ =
πs2/2

2sm/2Γs(m/2)Γs(s/2)
2αs+s(s+1)/2

s∏

ℓ=1

Γ (α+ ℓ)

where Γs(a) ! πs(s−1)/4
∏s

i=1 Γ(a − (i − 1)/2), and α =
m−s−1

2 . In (13), when s is even the elements of the s × s
skew-symmetric matrix Q(a, b) are

qi,j =

[
P

(
αj ,

b

2

)
+ P

(
αj ,

a

2

)]
P

(
αi;

a

2
,
b

2

)

−
2

Γ(αi)

∫ b/2

a/2
xα+i−1e−xP (αj , x) dx (14)

for i, j = 1, . . . , s, where αℓ = α + ℓ. When s is odd, the

elements of the (s+1)×(s+1) skew-symmetric matrix Q(a, b)
are as in (14), with the additional elements

qi,s+1 = P

(
αi;

a

2
,
b

2

)
i = 1, . . . , s

qs+1,j = −qj,s+1 j = 1, . . . , s (15)

qs+1,s+1 = 0 .

Moreover, the elements qi,j can be computed iteratively,

without numerical integration or series expansion [40, Algo-

rithm 1].
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Fig. 1. The asymmetric extreme eigenvalues thresholds of the Wishart matrix
W as a function of s/m, for η = 10−10. The lower threshold λ∗

min
(m, s, η)

and the upper threshold λ∗

max(m, s, η) are represented by dashed and solid
lines, respectively.

Considering that in our case the entries of AS are distributed
as N(0, 1/m), the exact probability that AS is well condi-
tioned is calculated from Theorem 1 as

Psw(δ) = P {λmin(W) ≥ 1− δ,λmax(W) ≤ 1 + δ}
= ψms

(
m[1− δ],m[1 + δ]

)
(16)

where ψms(a, b) can now be computed exactly. The exact
expression (16) is computationally easy for moderate matrix
dimensions (we used it up to m = 1 · 105 and s = 150).

C. Asymmetric Nature of the Extreme Eigenvalues

Clearly, the RIC in (6) depends on the deviation of the
extreme eigenvalues from unity. It has been shown that
the smallest and the largest eigenvalues of Wishart matrices
asymptotically deviate from 1 [36]. Hence, the symmetric RIC
can not efficiently describe the RIP of Gaussian matrices. Now,
it is essential to illustrate whether such asymmetric behavior
is still valid for finite measurement matrices. In this regard,
we proposed to find the two percentiles λ∗min(m, s, η) and
λ∗max(m, s, η) for the extreme eigenvalues of W, such that

P {λmin(W) ≤ λ∗min(m, s, η)}
= P {λmax(W) ≥ λ∗max(m, s, η)} = η .

In fact, such percentiles can be calculated form the exact
eigenvalues distribution in Theorem 1 as

λ∗min(m, s, η) = ψ−1
min(1− η), λ∗max(m, s, η) = ψ−1

max(1− η)
(17)

where ψ−1
min(y) and ψ−1

max(y) are the inverse of ψms(mx,∞)
and ψms(0,mx), respectively.

In Fig. 1 we report the thresholds λ∗min(m, s, η) and
λ∗max(m, s, η) as a function of s/m, for some finite values
of m and a fixed exceeding probability η = 10−10. We can
see that they asymmetrically deviate from unity, as already
observed for asymptotic large matrices in [36]. Additionally,

since for small values of m the deviation of the extreme
eigenvalues from unity is more significant, i.e., the RIC should
be larger, the asymptotic tail behavior of the eigenvalues
distributions in [36]–[38] cannot be used for upper bounding
the RICs in the finite case.

Definition 2 (ARIC [24], [36]). The lower RIC (LRIC) of
order s of A, δs(A), is defined as the smallest constant larger
than zero that satisfies

1−δs(A)≤
∥AS c∥2

∥c∥2
∀ c ∈ R

s,∀S ⊂ Ω :card(S)=s (18)

and the upper RIC (URIC) of order s of A, δs(A), is defined
as the smallest constant larger than zero that satisfies

∥AS c∥2

∥c∥2
≤1+δs(A) ∀ c ∈ R

s,∀S ⊂ Ω :card(S)=s. (19)

Clearly, the relation with the symmetric RIC is δs(A) =
max{δs(A), δs(A)}. Moreover, from Definition 2 and (5), we
can represent the ARICs as

δs(A) = 1− min
S⊂Ω

card(S)=s

λmin(W) (20)

δs(A) = max
S⊂Ω

card(S)=s

λmax(W)− 1. (21)

IV. SYMMETRIC AND ASYMMETRIC RICS

The symmetric and asymmetric RICs of a Gaussian matrix
can be seen as functions of the extreme eigenvalues of Wishart
matrices as in (20) and (21), and hence are themselves random
variables (r.v.s). In this section, we derive at first lower bounds
on the probability of satisfying RIP for finite dimensional
Gaussian random matrices using the exact eigenvalues dis-
tribution, and then a lower bound on the RIC. Additionally,
the CDFs of the ARICs are lower bounded using the CDFs
of the extreme eigenvalues. Finally, thresholds for ARICs that
are not exceeded with a target probability are deduced.

In the following, the analysis derived starting from the
exact eigenvalues statistic (16) will be referred as the exact
eigenvalues distribution (EED) based approach.

A. RIP Analysis for Gaussian Matrices

A Gaussian matrix is said to satisfy the RIP of order s if its
RIC, δs(A), is less than a constant δ with high probability on
a random draw of A. In other words, if a sufficient condition
for perfect reconstruction using a sparse recovery algorithm is
satisfied with high probability. This probability can be lower
bounded from (8) and (16) as

β(δ,m, n, s)≥ 1−
(
n

s

)[
1− ψms

(
m[1−δ],m[1+δ]

)]
. (22)

The expression (22) gives, to the best of our knowledge,
the tightest lower bound on the probability of satisfying the
RIP, β(δ), for finite dimensional Gaussian matrices. This is
attributed to employing the exact joint distribution of the
extreme eigenvalues of Wishart matrices, providing a quantita-
tively sharper estimates compared to the concentration bound
and the asymptotic approaches.
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When applying CS, it is important to estimate the RIC to
assess the recovery property of the measurement matrix. Let
us define δ∗s,min(m,n, ϵ) as the RIC which is exceeded with
probability ϵ, such that

P{δs(A) ≤ δ∗s,min(m,n, ϵ)} = 1− ϵ . (23)

Using (22) we can upper bound this value as

δ∗s,min(m,n, ϵ) ≤ δ∗s (m,n, ϵ) ! ψ−1
ms

(
1− ϵ/

(
n

s

))
(24)

where ψ−1
ms(y) is the inverse of ψms

(
m(1− x),m[1 + x]

)
. In

the following we will refer to δ∗s (m,n, ϵ) in (24) as the RIC
threshold (RICt), where from (23) and (24) we have

P{δs(A) ≤ δ∗s (m,n, ϵ)} ≥ 1− ϵ . (25)

B. Asymmetric RIP Analysis for Gaussian Matrices

Let δs(A) be the LRIC as defined in (20). The CDF of the
LRIC, FℓRIC(x), is lower bounded as

P {δs(A) ≤ x} ≥ 1−
(
n

s

)[
1− ψms

(
m[1− x],∞

)]
(26)

In fact, from (20) the CDF of the LRIC δs(A) is

FℓRIC(x) = P

⎧
⎨

⎩
1− min

S⊂Ω
card(S)=s

λmin(W) ≤ x

⎫
⎬

⎭

≥ 1−
(
n

s

)
P {λmin(W) ≤ 1− x} (27)

= 1−
(
n

s

)[
1− ψms

(
m [1− x],∞

)]
.

Let us define δ∗s,min(m,n, ϵ) as the LRIC which is exceeded
with probability ϵ, such that

P{δs(A) ≤ δ∗s,min(m,n, ϵ)} = 1− ϵ .

This quantity is upper bounded as follows

δ∗s,min(m,n, ϵ)≤δ∗s(m,n, ϵ)=ψ−1
ms,lower

(
1− ϵ/

(
n

s

))
(28)

where ψ−1
ms,lower(y) is the inverse of ψms

(
m[1−x],∞

)
. In the

following we will refer to δ∗s(m,n, ϵ) as the LRIC threshold
(LRICt).

Similarly, for the CDF of the URIC, FuRIC(x), we have

P
{
δs(A) ≤ x

}
≥ 1−

(
n

s

)
P {λmax(W) ≥ 1 + x} (29)

= 1−
(
n

s

)[
1− ψms

(
0,m [1 + x]

)]
.

Then, we can compute a threshold such that
P{δs(A) ≤ δ

∗
s,min(m,n, ϵ)} = 1− ϵ, which leads to

δ
∗
s,min(m,n, ϵ) ≤ δ

∗
s(m,n, ϵ)=ψ−1

ms,upper

(

1−
ϵ(
n
s

)

)

(30)

where ψ−1
ms,upper(y) is the inverse of ψms

(
0,m[1 + x]

)
. In the

following we will refer to δ
∗
s(m,n, ϵ) as the URIC threshold

(URICt).
Note that, while previously known approaches refer to

infinite dimensional matrices, our analysis accounts for the
(always finite) true dimensions of the problem.

V. CONDITIONS FOR PERFECT RECOVERY

In this section, the estimated thresholds for the RICs (both
symmetric and asymmetric) of finite matrices are used to quan-
tify the maximum allowed signal sparsity order for various
recovery algorithms.

Definition 3 (The maximum sparsity order). Let A be a
random m × n measurement matrix, s be the signal sparsity
order, and 0 < ϵ < 1 be an arbitrary constant. The maximum
sparsity order, s∗, is the value such that every s-sparse vector
with s < s∗ can be recovered perfectly with probability PPR

at least 1 − ϵ on a random draw of A. Then the maximum
oversampling ratio, a finite regime version of the asymptotic
phase transition function, is defined as s∗/m.

The maximum sparsity order is used to compare the per-
formance of different recovery algorithms and their associated
sufficient conditions. As mentioned before, the perfect recon-
struction conditions for many sparse recovery algorithms are
stated in terms of the RICs [1], [23], [25]–[34]. We now exploit
these conditions to provide a probabilistic framework for the
recovery problem.

A. Symmetric RIC Based Sparse Recovery

About the symmetric RIC, the sufficient condition for per-
fect signal recovery via ℓ1-minimization can be represented in
a generic form as δks(A) < δ, where k is a positive integer and
δ is a constant. As a consequence, the probability of perfect
recovery can be bounded as

PPR ≥ P {δks(A) < δ} = β(δ,m, n, ks) (31)

with the proposed (22). Sufficient recovery condition of this
class are, e.g., δs(A) < 1/3 [28], δ2s(A) < 0.6246 [21], etc.

The inverse problem is the calculation of the maximum
sparsity order, for a given m and a given n, such that the
PPR is at least 1− ϵ. For this target we have

s∗ = max {s : β(δ,m, n, ks) ≥ 1− ϵ} . (32)

B. Asymmetric RIC Based Sparse Recovery

Although the asymmetric RICs are less investigated, it is
known that the conditions stated in terms of them lead to
tighter bounds for the maximum sparsity order [36]. This is
attributed to the asymmetric behavior of the extreme eigenval-
ues for Wishart matrices as analyzed in section III-C.

A general class of sufficient recovery conditions based on
the ARICs has the form

µ(s,A) ! f
(
δk1s(A) , δk2s(A)

)
< 1 (33)

where k1 and k2 are arbitrary positive integers and
f
(
δk1s(A) , δk2s(A)

)
is a non-decreasing function in both

δk1s(A) and δk2s(A). In this regard, we propose a gener-
alization of the symmetric RIC based condition, δs(A) < 1

3 ,
to an asymmetric one. In particular, it is possible to prove that
if the following condition is satisfied

µECG(s,A) ! 2 δs(A) + δs(A) < 1 (34)
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then all s-sparse vectors can be recovered perfectly using ℓ1-
minimization.1 Other sufficient conditions in the form of (33)
are found in [24], [41]. For example, it is shown in [24] that
if

µFL(s,A) !
1

4

(
1 +

√
2
)(1 + δ2s(A)

1− δ2s(A)
− 1

)
< 1 (35)

and in [41] that if

µBT(s,A) !δ2s(A) +
[
δ6s(A) + δ6s(A)

]
/4 < 1

then perfect reconstruction is also guaranteed.

Therefore, for random measurement matrices, the probabil-
ity of perfect recovery by incorporating the ARICs can be
bounded as

PPR ≥ P {µ(s,A) < 1} . (36)

For the design problem of calculating the maximum sparsity
order, by exploiting the monotonicity of the function f(·, ·),
we have

P {µ(s,A)≤1}≥P

{
δk1s(A)≤δ∗k1s, δk2s(A)≤δ∗k2s

}

≥ 1− P

{
δk1s(A) ≥ δ∗k1s

}
− P

{
δk2s(A) ≥ δ

∗
k2s

}
(37)

for any δ∗k1s and δ
∗
k2s such that f

(
δ∗k1s , δ

∗
k2s

)
< 1. Equation

(37) is due to the union bound, (20), and (21). Setting the
bound (37) to 1 − η and distributing equally the probability
on the lower and upper RICs, we get

P

{
δk2s(A) ≤ δ

∗
k2s

}
= P

{
δk1s(A) ≤ δ∗k1s

}
= 1−

η

2
. (38)

Finally, the maximum sparsity order s∗ is the maximum

s compatible with f
(
δ∗k1s, δ

∗
k2s

)
< 1, where δ∗k1s , δ

∗
k2s are

calculated from (28) and (30) with ϵ = η/2 to satisfy (38).
Then, every sparse vector with s < s∗ can be perfectly
recovered with probability at least 1− η on a random draw of
A.

Although we focused on ℓ1-minimization based recovery,
the same approach can be used to estimate the maximum spar-
sity order using greedy or thresholding algorithms. For exam-
ple, sufficient conditions on the RIC for perfect recovery using
compressive sampling matching pursuit (CoSaMP), orthogonal
matching pursuit (OMP), and IHT are δ4s(A) < 0.4782 [21],
δ13s(A) < 0.1666 [21], [34], and δ3s(A) < 0.5773 [42],
respectively. Additionally, asymmetric RIC based conditions
have been obtained in [43] for CoSaMP, IHT, and subspace
pursuit (SP). For example,

µBCTT(s,A) ! 2
√
2

(
δ3s(A) + δ3s(A)

2 + δ3s(A)− δ3s(A)

)
< 1

is a sufficient condition for perfect recovery using IHT [43].

1The proof is obtained by reformulating equations (33) and (34) in [28] to
account for the asymmetric RICs.

VI. ROBUST RECOVERY OF COMPRESSIBLE SIGNALS

Up to now, we have studied the case of perfect recovery of
sparse data in noiseless setting. However, in practice signals
can also be not exactly sparse, but rather compressible, i.e.,
the data is well approximated by a sparse signal. Moreover,
noise can be present during the acquisition process.

A measure of the discrepancy between a compressible signal
and its sparse representation is the ℓ1-error of best s-term
approximation σs(x)1, defined as

σs(x)1 ! inf{∥x− xs∥1, xs ∈ R
n is s-sparse} . (39)

Hence, a signal is well approximated by an s-sparse vector
if σs(x)1 is small [21]. Besides considering compressible
signals, we can also include the measurement noise in the
model, so that the measured vector can be written as

y = Ax+ z (40)

where z is a bounded noise with ∥z∥ ≤ κ. Assuming κ is
known, we can account for the noise term by modifying the
constraint in the ℓ1-minimization problem (3) as

x̂ = argmin ∥x∥1 subject to ∥y −Ax∥ ≤ κ . (41)

This algorithm is called quadratically constrained ℓ1-
minimization [44]. There are also other algorithms for sparse
recovery in noisy cases, e.g., Dantzig selector [45], basis pur-
suit denoising [46], denoising-orthogonal approximate mes-
sage passing [47], etc.

For the model illustrated in (40), we cannot guarantee per-
fect signal recovery, but rather an approximate reconstruction
can be assured with bounded error. For example, it was shown
in [28] that if δs(A) < 1/3, the error after recovery can be
bounded by a weighted combination of κ and σs(x)1, i.e.,

∥x̂− x∥ ≤ C1κ+ C2
σs(x)1√

s
(42)

where

C1 (δs(A)) =

√
8
[
1 + δs(A)

]

1− 3 δs(A)
(43)

C2 (δs(A)) =

√
8

[
2 δs(A) +

√[
1− 3 δs(A)

]
δs(A)

]

1− 3 δs(A)
+ 2 .

(44)

The constants C1 and C2 give an insight about both the
robustness (ability to handle noise) and the stability (ability
to handle compressible signals) of the recovery algorithm,
respectively.

When A is a random matrix, both C1 and C2 are random
variables. To characterize their statistical distribution, we pro-
pose to find a bound on the threshold C∗

i,min, with i = 1, 2,
which is not exceeded with a predefined probability ϵi, i.e.,

P
{
Ci (δs(A)) ≤ C∗

i,min

}
= 1− ϵi . (45)

Noting that Ci (δs(A)) is monotonically increasing in δs(A),
we have

P {Ci (δs(A)) ≤ Ci (δ
∗
s (m,n, ϵi))}

= P {δs(A) ≤ δ∗s (m,n, ϵi)} ≥ 1− ϵi (46)
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where the RICt δ∗s (m,n, ϵi) can be calculated from (24).
Consequently, from (45) and (46) we upper bound C∗

i,min as

C∗
i,min ≤ C∗

i ! Ci (δ
∗
s (m,n, ϵi)) . (47)

The inverse problem is finding the maximum sparsity order,
for a given m and a given n, such that the r.v. Ci, with i = 1, 2,
is less than a targeted constant ci with probability at least 1−ϵi.
For this aim we have

s∗ = max {s : Ci (δ
∗
s (m,n, ϵi)) ≤ ci} .

Analogous results relating the recovery error with σs(x)1
and κ have been obtained for different algorithms under
suitable symmetric and asymmetric RIC based sufficient con-
ditions [24], [43], [48]–[50]. By following the same approach,
the proposed methodology can be applied to describe the
statistics of the stability and robustness constants also for these
cases.

VII. TRACY-WIDOM BASED RIC ANALYSIS

Although the proposed framework based on the exact dis-
tribution of the eigenvalues (16) provides tight bounds on the
RICs, it could be computationally expensive for large matrices,
for which easier approaches are preferred.

In this section, we derive approximations for the RICs of
finite matrices based on the TW distribution, much tighter than
those obtained from concentration of measure inequalities.
Also, we study the convergence rate of the distribution of
extreme eigenvalues to those based on the TW by exploiting
the small deviation analysis of the extreme eigenvalues around
their mean. In particular, we prove that TW based distributions
approximate the eigenvalues statistics of finite Gaussian ma-
trices with exponentially small error in m, leading to accurate
estimation of the RICs.

In fact, it is well known that the distribution of the smallest
and largest eigenvalues of Wishart matrices tend, under some
conditions, to a properly scaled and shifted TW distributions
[51]–[57]. Specifically, it has been shown that for the real
Wishart matrix M when m, s−→∞ and m/s−→γ ∈ (0,∞)

λmax(M)− µms

σms

D−→ TW1 (48)

where TW1 is a Tracy-Widom r.v. of order 1 with comple-

mentary CDF (CCDF) ΨTW1(t), µms = (
√
m+

√
s)

2
, and

σms =
√
µms(1/

√
s+ 1/

√
m)1/3 [53]. More precisely, from

the convergence in distribution definition and letting ρ ! s/m
we have

lim
m−→∞

P {λmax(M) ≥ µms + tσms} =

lim
m−→∞

P

{
λmax(W) ≥ (1 +

√
ρ)2 + tm− 2

3 ρ−
1
6 (1+

√
ρ)

4
3

}

= ΨTW1(t). (49)

Similarly, for the smallest eigenvalue, when m, s−→∞ and
m/s−→γ ∈ (1,∞) [56]

−
lnλmin(M)− vms

τms

D−→ TW1 (50)

with scaling and centering parameters

τms =

[
(s− 1/2)−1/2 − (m− 1/2)−1/2

]1/3
√
m− 1/2−

√
s− 1/2

vms = 2 ln
(√

m− 1/2−
√
s− 1/2

)
+

1

8
τ2ms.

Regarding the RIC analysis for finite Gaussian matrices, let
δ
∗
s(m,n, ϵ), δ∗s(m,n, ϵ), and δ∗s (m,n, ϵ) be the RIC thresholds

as defined in (30), (28), and (24), respectively. We will show
that they can be approximated as

δ
∗
s(m,n, ϵ) ≃ δ

∗
TW ! m− 2

3 ρ−
1
6 (1 +

√
ρ)

4
3 Ψ−1

TW1

(
ϵ/

(
n

s

))

+ ρ+ 2
√
ρ (51)

δ∗s(m,n, ϵ) ≃ δ∗TW ! 1−
1

m
exp

(

vms − τmsΨ
−1
TW1

(
ϵ/

(
n

s

)))

(52)

δ∗s (m,n, ϵ) ≃ δ∗
TW

! P̃−1
sw

(

1− ϵ/

(
n

s

))

(53)

for δ
∗
TW

, δ∗
TW

, and δ∗
TW

less than one, where Ψ−1
TW1(y) is the inverse

of the TW’s CCDF and P̃−1
sw (y) is the inverse of

P̃sw(x) ! 1−ΨTW1

(
vms − ln

(
m[1− x]

)

τms

)

−ΨTW1

(
m[1 + x]− µms

σms

)

. (54)

In order to prove these formulas, at first the convergence
rate of the extreme eigenvalue distributions to those based on
the TW is provided. For the URIC, it has been shown in [58,
Theorem 2] that there exists a constant c > 0, depending only
on ρ, such that

P

{
λmax(M) ≥ µms[1 + z]

}
≤ c exp

(
−
1

c
s z

3
2

)
(55)

for all m > s ≥ 1 and 0 < z ≤ 1. This small
deviation analysis provides tighter bounds compared to the
concentration inequality (10) and Edelman bound [39, Lemma
4.2] used for large m in [36]–[38]. From (55), the L.H.S.
of (49) can be tightly bounded for finite m and for

t ≤ m2/3ρ1/6
(
1 +

√
ρ
)2/3

as

P

{
λmax(W) ≥ (1 +

√
ρ)2 + tm− 2

3 ρ−
1
6 (1+

√
ρ)

4
3

}

≤ c exp
(
− c1 t

3
2

)
(56)

where c1 ! c−1 ρ3/4
(
1+

√
ρ
)−1

. Regarding the R.H.S, for
sufficiently large t we have

ΨTW1(t) ≤ c2 exp
(
−c3 t

3
2

)
(57)

where c2 > 0 and c3 > 0 are constants [59, eq. (2)], [60].
Now the error in using the TW can be bounded as
∣∣∣∣P
{
λmax(W) ≥ (1 +

√
ρ)2 + tm− 2

3 ρ−
1
6 (1+

√
ρ)

4
3

}

−ΨTW1(t)

∣∣∣∣ ≤ c4 exp
(
−c5 t

3
2

)
(58)
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where c4 = max{c, c2} and c5 = min{c1, c3}. Therefore, the
error due to approximating P {λmax(W) ≥ 1 + x} in (29) by
that of the TW can be bounded from (58) as
∣∣∣∣P {λmax(W) ≥ 1 + x}−ΨTW1

(
(x−2

√
ρ−ρ)

×m
2
3 ρ

1
6 (1+

√
ρ)−

4
3

)∣∣∣∣ ≤ c4 exp
(
−m (x− 2

√
ρ− ρ)

3
2

×c5 ρ
1
4 (1 +

√
ρ)−2

)
(59)

for x ≤ 2
(
1+

√
ρ
)2 − 1.2 Hence, the absolute error in

approximating the exact probability with that based on the
TW distribution is exponentially small in m and the URICt
can be approximated by (51).

A similar reasoning can be used to derive the thresholds for
the lower and symmetric RICs (the proof is not reported here
for the sake of conciseness).

Finally, we would like to remark that Tracy-Widom based
approaches could be used not only for Wishart ensembles, but
also for a wider class of matrices like those drawn from some
sub-Gaussian distributions, e.g., Rademacher and Bernoulli
measurement matrices. This is motivated by the universality
of the TW laws for the extreme eigenvalues of large random
matrices [61], [62], although further research is required to
investigate such extensions.

VIII. NUMERICAL RESULTS

In this section, numerical results are presented to compare
the proposed exact and TW approaches with the concentration
inequalities, for analyzing the probability that the RIP is
satisfied. Moreover, the statistics of the RICs, the probability of
perfect reconstruction, the maximum sparsity order for various
recovery algorithms, and the robustness and stability constants
are also investigated.

Fig. 2 shows upper bounds on the probability of not satisfy-
ing the RIP, P{δs(A)≥1/3}, using the EED based approach
(22), the TW approximation (8), (54), and the concentration
bound (8), (12). Note that when the sparsity level is beyond
some threshold value, the probability of not satisfying the RIP
rapidly increases from zero to one. This figure also illustrates
the limit on the maximum sparsity ratio that still permits
satisfying the RIP with a targeted probability. We can see
that the EED based approach indicates higher sparsity ratios
(less sparse vectors) compared to those estimated by the well-
known concentration bound (more than 220% increase in s/n
when the probability is 10−14 and m/n = 0.4). In fact,
the concentration inequality is quite loose in bounding the
probability that a submatrix is ill conditioned, 1 − Psw(δ),
and consequently in analyzing the RIP.

Regarding the ARICs, the upper RIC thresholds,
δ
∗
s(m,n, ϵ), computed by means of (30) and (51), are

plotted in Fig. 3 for an excess probability ϵ = 10−3, as a
function of the compression ratio, m/n, and the oversampling
ratio, s/m. In this figure, we set m = 4000 and vary n from
2 · 105 to 4000. As can be noticed the TW approximation is
quite accurate.

2Note that x ≤ 1 is a stronger condition than x ≤ 2
(

1+
√
ρ
)2−1.

1 2 3 4 5 6 7 8 9 10
10
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-12
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0

s/n

P
{δ

s
(A

)
≥

1
/
3
}

Concentr. bound

EED approach

TW approx.

×10−4

Fig. 2. Symmetric RIP: upper bounds on the probability of not satisfying
the RIP, P {δs(A) ≥ 1/3}, for m/n = 0.1 (solid) and m/n = 0.4
(dashed). The signal dimension is n = 3 · 104. Curves obtained through the
concentration bound, (8) and (12), the EED, (22), and the TW approximation,
(8) and (54).
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0.7

s
/
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m/n

×10−3

Fig. 3. Level sets of the upper RIC threshold δ
∗

s(m,n, ϵ) ∈
{0.3, 0.4, 0.5, 0.6, 0.7} such that P{δs(A) ≥ δ

∗

s(m,n, ϵ)} ≤ ϵ, using the
EED (solid) and TW (dashed), for m = 4000 and ϵ = 10−3.

To further investigate the RIC bounds, we report in Table I
both the LRIC and URIC thresholds for different m/n using
various approaches: the proposed EED (28), (30), the TW
approximation (52), (51), the empirical lower bounds in [63],
and the asymptotic bounds in [36], [37]. We can see that the
upper bounds on the RICs obtained from the EED approach is
sharp, with small differences from the empirical lower bounds
(averaged over 100 different realizations) indicated by [63].

With the aim of comparing different sufficient recovery
conditions via ℓ1-minimization, IHT, and CoSaMP algorithms,
in Fig. 4 we report the maximum oversampling ratio, s∗/m,
such that PPR ≥ 0.999. All curves have been obtained by using
the EED based approach. Specifically, for ℓ1-minimization we
consider the symmetric RIC condition δs(A) ≤ 1/3 [28],
its relaxed asymmetric extension µECG(s,A) < 1 proposed



ELZANATY et al.: LIMITS ON SPARSE DATA ACQUISITION: RIC ANALYSIS OF FINITE GAUSSIAN MATRICES 9

TABLE I
THE RIC THRESHOLDS USING THE EED BOUND AND TW APPROXIMATION FOR ϵ = 10−2 , EMPIRICAL AVERAGED LOWER BOUNDS [63], BCT [36],

AND BT [37] APPROACHES, FOR m = 2000 AND s = 4. FOR EACH m/n, THE TWO ROWS GIVE THE UPPER AND LOWER RIC.

Finite Asymptotic

m/n ↓ EED
upper bounds

(30), (28)

TW
approximation

(51), (52)

Empirical
lower bounds

[63]

BCT

[36]

BT

[37]

0.3071 0.3395 0.2703 0.3408 0.3402
0.4

0.2561 0.2846 0.2322 0.2777 0.2772

0.3000 0.3304 0.2626 0.3344 0.3337
0.6

0.2512 0.2778 0.2268 0.2734 0.2729

0.2949 0.3239 0.2580 0.3297 0.3291
0.8

0.2477 0.2729 0.2214 0.2703 0.2698

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
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11

12

m/n

s
∗
/
m

ℓ1, µBT(s,A) < 1

ℓ1 , δ2s(A) < 0.624
ℓ1 , µFL(s,A) < 1

ℓ1, µECG(s,A) < 1

ℓ1, δs(A) < 1/3
IHT, δ3s(A) < 0.5773

CoSaMP, δ4s(A)<0.4782

IHT, µBCTT(s,A) < 1

×10−3

Fig. 4. The maximum oversampling ratio, s∗/m, for various recovery
algorithms and their associated sufficient conditions using the proposed EED
based approach, for m = 4000 and PPR ≥ 0.999 (η = 10−3).

in Section V-B, δ2s(A) < 0.624 [21], µFL(s,A) < 1 [24],
and µBT(s,A) < 1 [41]. For IHT we used the conditions
δ3s(A) < 0.5773 [42] and µBCTT(s,A) < 1 [43], while for the
CoSaMP we considered δ4s(A) < 0.4782 [21]. We can see
that the asymmetric conditions provide higher estimates of the
sparsity which can be handled by compressed sensing, com-
pared to the symmetric conditions (more than 40% increase in
s). As known, the ℓl-minimization and IHT algorithms allow
higher oversampling ratios than the CoSaMP algorithm.

Moreover, we provide in Fig. 5 the maximum oversampling
ratio, for uniform recovery, indicated by our proposed ap-
proach along with those obtained from the polytope [20], Null
space [21, Theorem 9.29], geometric functional [18, Theorem
4.1], and RIP [21, Theorem 9.27] analyses for finite matrices
with m = 4000 and PPR ≥ 0.5. However, we would like
to note that the polytope based approach suggests tighter
bounds on the maximum sparsity order, as it fully exploits
the geometry of the ℓ1-minimization for signal recovery from
Gaussian measurements. On the other hand, the RIP is suitable
for analyzing the robust and stable reconstruction with several
sparse recovery algorithms, such as optimization, greedy, and

0.2 0.4 0.6 0.8
1

2

4

8

16

32

64

128

m/n

s
∗
/
m

RIP analysis (EED), µBT(s,A) < 1

Polytope analysis [20]

Geometric functional analysis [18]

Null space property [21]

RIP analysis [21], δ2s(A) < 0.624

×10−3

Fig. 5. The maximum oversampling ratio, s∗/m, for perfect recovery via
ℓ1-minimization, estimated by the proposed RIP based approach (EED) along
with the RIP [21], polytope [20], Null space [21], and geometric functional
[18] analyses, for m = 4000 and PPR ≥ 0.5.

thresholding.
Finally, regarding the analysis for compressible signals in

noise, the contours for robustness and stability thresholds C∗
1

and C∗
2 are shown in Fig. 6. As can be seen for small s/m

the thresholds are small, indicating that the more sparse is
the signal, the more robust and stable is the reconstruction
process. Therefore, a compromise between sparsity and ro-
bustness/stability should be considered when designing the
acquisition system. This figure also gives the maximum over-
sampling ratio for a given m and n, such that the minimization
program (41) can approximately recover the measured signal
with a predefined discrepancy.

IX. CONCLUSION

For sparse data acquisition we have found that the concen-
tration of measure inequality provides a loose upper bound on
the probability that a measurement submatrix is ill conditioned.
For example, in some cases it overestimate the maximum
sparsity ratio by over 220% with respect to the proposed exact
eigenvalues based approach. For finite matrices, by tightly
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Fig. 6. Level sets of robustness and stability thresholds in Section VI, C∗

1

(solid) and C∗

2
(dashed), with C∗

1
, C∗

2
∈ {4, 5, 6, 7, 8, 9}, for m = 2 · 104

and ϵ1 = ϵ2 = 10−3, using the EED based approach.

bounding the symmetric and asymmetric RICs, the best current
lower bound on the maximum sparsity order guaranteeing
successful recovery has been provided, for various sparse
reconstruction algorithms. For stable and robust recovery of
compressible data, we have noticed that when the sparsity
order decreases the discrepancy between the recovered and
original signals reduces. Finally, we have shown that simple
approximations for the RICs can be obtained based on TW
distributions.
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