IRF2018

Proceedings of the 6th International Conference on INTEGRITY-RELIABILITY-FAILURE

(Lisbon/Portugal, 22-26 July 2018)

Editors

J.F. Silva Gomes and Shaker A. Meguid

FEUP-INEGI (2018)

IRF2018

Proceedings of the 6th International Conference on INTEGRITY-RELIABILITY-FAILURE

(Lisbon/Portugal, 22-26 July 2018)

IRF2018

Proceedings of the 6th International Conference on INTEGRITY-RELIABILITY-FAILURE

(Lisbon/Portugal, 22-26 July 2018)

Editors

J.F. Silva Gomes and Shaker A. Meguid

FEUP-INEGI (2018)

Published by

INEGI-Instituto de Ciência e Inovação em Engenharia Mecânica e Gestão Industrial Rua Dr Roberto Frias, 4200-465 Porto - Portugal Telefone: +351 22 9578710; Email: inegi@inegi.up.pt http://www.inegi.up.pt/

July, 2018

ISBN: 978-989-20-8313-1

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, electronic, mechanical, optical, recording, or otherwise, without the prior written permission of the Editors

TABLE OF CONTENTS

Preface		xxiii
Internat	ional Scientific Committee	xxiv
Organiz	ing Committee and Secretariat	XXV
Acknow	vledgments	xxvi
List of 7	Tracks and Symposia	xxvii
	INVITED KEYNOTE PAPERS	1
7001	STRATEGIES FOR IMPROVED VEHICLE SAFETY: SURVIVABILITY OF OCCUPANTS. Shaker A. Meguid, Mohamed T.Z. Hassan.	3
7002	ENHANCEMENT OF FATIGUE LIFE AND ELONGATION OF METALLIC MATERIALS BY HIGH-DENSITY PULSED ELECTRIC-CURRENT. Yang Ju.	5
7003	SAFETY IN SPORTS: CHALLENGES AND OPPORTUNITIES. Veit Senner.	7
	CONFERENCE MAIN TOPICS	9
TOPIC	-A: COMPOSITE AND ADVANCED MATERIALS	11
7096	THE IMPACT OF METAL REINFORCEMENT UPON THE PROPERTIES OF A COMPOSITE. Robert Szczepaniak, Pawel Przybylek, Aneta Krzyzak, Michal Mikolajewski, Andrzej Komorek.	13
7097	INVESTIGATION INTO THE THERMAL RESISTANCE OF A POLYMER COMPOSITE WITH AEROGEL. Robert Szczepaniak, Pawel Przybylek, Arkadiusz Bartuzi.	23
7110	MECHANICAL PROPERTIES OF NiAl-TiB2 COMPOSITE MATERIALS. Masashi Yoshida.	31
7123	EFFECTS OF ACCELERATED AGEING ON THE TENSILE PERFORMANCE OF GFRP/ EPOXY COMPOSITE AND THERMOSET EPOXY. Silviu Ivan, Matteo Cavasin, Stefanos Giannis, Ivo Dlouhy, Barry Thomson.	41
7129	SOME QUASI-ISOTROPIC LAMINATES ARE MORE ISOTROPIC THAN OTHERS. Mazen A. Albazzan, Ramy Harik, Zafer Gürdal, Jesse Hartzell.	43
7135	THERMO-PROTECTIVE PROPERTIES OF POLYMER COMPOSITES WITH NANO- TITANIUM DIOXIDE. Sylwester Stawarz, Natalia Bryła, Wojciech Kucharczyk, Mohamed Bakar, Magdalena Stawarz.	57
7137	THE MECHANICAL AND THERMAL BEHAVIOR OF EXPONENTIALLY GRADED SANDWICH PLATES IN BENDING TEST. Dongdong Li, Zongbai Deng, Shang-Chao Hung, Nai-Jen Cheng.	75
7150	NUMERICAL ANALYSIS OF A COMPOSITE LEG PROSTHESIS. João V.G. Santos, Vincent Wong, Vicente G. Neto, Luis C. Paschoarelli, Marcos A.R. Pereira, Carlos A. Fortulan, Cesar R. Foschini.	77

7186	MATERIAL CHARACTERISTICS OF GEOPOLYMERS BASED ON AN INDUSTRIAL WASTE PRODUCT. Jan Fořt, Eva Vejmelková, Zdeněk Soukup, Pavla Rovnaníková, Robert Černý.	85
7221	SURFACE MODIFICATION OF POLYSTYRENE BEADS WITH SULFONAMIDE DERIVATIVES AND APPLICATION TO WATER SOFTENING SYSTEM. Seong Ik Jeon, Cheol-Hee Ahn.	93
7228	MECHANICAL PROPERTIES AND MICROSTRUCTURE OF CARBON-FIBRE/ ALUMINIUM-MATRIX AND CARBON-FIBRE/TITANIUM-MATRIX COMPOSITES. Alexander Rudnev, Rida Gallyamova, Andrew Gomzin, Andrew Kolchin, Sergei Galyshev, Fanil Musin, Sergei Mileiko.	95
7229	APPLICATION OF ZEOLITE IN CONCRETE MIXTURES FOR RADIONUCLIDE BARRIERS. Eva Vejmelková, Martin Keppert, Petr Bezdička, Robert Černý.	97
7238	DAMPING PROPERTIES OF CORK/FIBRE REINFORCED POLYMER COMPOSITES. Ali Daliri, Tahsin Anowar, José Silva.	101
7244	SILICATE-BASED FIBRES TO REINFORCE HIGH TEMPERATURE COMPOSITES. Sergei Mileiko, Andrew Kolchin, Natalia Novokhatskaya, Nelly Prokopenko, Olga Shakhlevich, Vladimir Chumichev, Sergei Abashkin. <i>(Invited Paper)</i> .	103
7251	EFFECT OF HOSTILE SOLUTIONS ON THE VISCOELASTIC BEHAVIOUR OF CARBON/EPOXY LAMINATES. M. Kamocka, Ana M. Amaro, Paulo N.B. Reis, Maria A. Neto, José Maria Cirne.	105
7254	THERMAL AND MECHANICAL ANALYSIS OF AN EPOXY FOAM SYNTHESIZED BY MEANS OF A CHEMICAL FOAMING AGENT. Matteo Cavasin, Marco Sangermano, Milena Salvo, Stefanos Giannis.	107
7277	ISOLATING VIBRATION BY PERIODIC COMPOSITE STRUCTURES. Hongping Hu, Yuantai Hu.	109
7291	SELF-ACTUATED MORPHING COMPOSITE WITH TUNABLE FREQUENCY AND DAMPING. Arnaldo Casalotti, Giulia Lanzara.	111
ΤΟΡΙΟ	C-B: COMPUTATIONAL MECHANICS	123
7084	CLUSTERING OF TRIBOLOGICAL FAULTS USING THE WARD METHOD. Antonio P.V. Pinto, Carlos E.F. Bezerra, Andreyvis S. Souza, Marco A.L. Cabral, Efrain P. Matamoros.	125
7098	MATHEMATICAL MODELING OF THE BLENDED WING BODY AIRCRAFT FLOW- OVER IN CRUISE MODE. Francheska Slobodkina.	135
7105	TIME-HARMONIC ANALYSIS OF LINEAR ANISOTROPIC ELASTIC SOLIDS WITH A BOUNDARY ELEMENT METHOD. Leonid Igumnov, Ivan Markov, Igor Vorobtsov, Mikhail Grigoryev.	139
7119	THREE-DIMENSIONAL DYNAMIC ANALYSIS OF A THREE-PHASE POROELASTIC MEDIUM USING THE TIME-DOMAIN BOUNDARY ELEMENT METHOD. Andrey Petrov, Leonid Igumnov, Igor Vorobtsov, Aleksandr Belov.	141
7120	NUMERICAL SOLUTION FOR A TRANSIENT PROBLEM OF A SANDSTONE LAYER ON A SOIL FOUNDATION UNDER VERTICAL LOAD USING BEM. Svetlana Litvinchuk, Akeksandr Ipatov, Aleksandr Boev.	143

7207	STRUCTURAL INTEGRITY ASSESSMENT OF CRACKED COMPOSITE PLATE UNDER AEROELASTIC LOADING BY MEANS OF XFEM. Nur Azam Abdullah, Jose L. Curiel Sosa, Nanda Wirawan, Mahesa Akbar.	145
7208	AEROFRACTURELASTIC ON WING BOX OF MULTI-PURPOSE COMMUTER AIRCRAFT UNDER GUST LOAD BY MEANS OF XFEM. Nur Azam Abdullah, Nanda Wirawan, Jose L. Curiel Sosa, Mahesa Akbar.	153
7215	ASYMPTOTIC STOKES FLOWS USING AXIAL GREEN FUNCTION METHOD WITH REFINEMENT. Junhong Jo, Hong-Kyu Kim, Do Wan Kim.	159
7219	ANALYSIS OF THE COLD FORMING PROCESS. Sigitas Kilikevičius, Ramūnas Česnavičius, Povilas Krasauskas, Andrius Juodsnukis.	161
7223	NUMERICAL AND EXPERIMENTAL ANALYSIS OF AERONAUTICAL CFRP COMPONENTS SUBJECTED TO STRUCTURAL LOADS. Alessandro Castriota, Vito Dattoma, Riccardo Nobile, Francesco Panella, Alessandra Pirinu, Andrea Saponaro.	165
7232	NEW APPROACH TO SOLVING MATHEMATICAL EQUATION FOR DAMPED OSCILLATIONS BY SLIDING (COULOMB) FRICTION AT THE KARAKURI MECHANISM. Tomas Riegr, Ivan Masin.	177
7246	SIMULATION OF A VIBRATORY SYSTEM WITH SHAPE MEMORY ALLOY UNDER ROTATING UNBALANCE EXCITATION. Michel A. Silva, Vinicius Piccirillo, Carlos A. Andrade.	179
7307	FROM PERCOLATION OF FRACTURED MEDIA TO SEISMIC ATTENUATION: A NUMERICAL STUDY. Mikhail Novikov, Vadim Lisitsa.	181
ΤΟΡΙΟ	C-C: EXPERIMENTAL MECHANICS AND INSTRUMENTATION	189
TOPIC 7052	C-C: EXPERIMENTAL MECHANICS AND INSTRUMENTATION DETERMINATION OF BURST PRESSURE FOR DEFECTED PIPES. Abdullah M. Al Shabibi, Majid Al Moharbi, Sultan Al Owaisi.	189 191
	DETERMINATION OF BURST PRESSURE FOR DEFECTED PIPES. Abdullah M. Al	
7052	DETERMINATION OF BURST PRESSURE FOR DEFECTED PIPES. Abdullah M. Al Shabibi, Majid Al Moharbi, Sultan Al Owaisi. MECHANICAL BEHAVIOR OF NEW POLYUREA ELASTOMERS: CONSTITUTIVE	191
7052 7060	DETERMINATION OF BURST PRESSURE FOR DEFECTED PIPES. Abdullah M. Al Shabibi, Majid Al Moharbi, Sultan Al Owaisi. MECHANICAL BEHAVIOR OF NEW POLYUREA ELASTOMERS: CONSTITUTIVE MODELLING. Nahuela Rull, Antoni Sanchez-Ferrer, M. Patricia Frontini. FATIGUE STRENGTH OF CARBON STEEL COVERED WITH PROTECTIVE LAYERS	191 193
7052 7060 7101	DETERMINATION OF BURST PRESSURE FOR DEFECTED PIPES. Abdullah M. Al Shabibi, Majid Al Moharbi, Sultan Al Owaisi. MECHANICAL BEHAVIOR OF NEW POLYUREA ELASTOMERS: CONSTITUTIVE MODELLING. Nahuela Rull, Antoni Sanchez-Ferrer, M. Patricia Frontini. FATIGUE STRENGTH OF CARBON STEEL COVERED WITH PROTECTIVE LAYERS FOR CO2 ASSISTED SHALE GAS MINING. Marta Baran, Tomasz Brynk, Z. Pakiela. RESIDUAL STRESSES - NEUTRON DIFFRACTOMETER STRESS-SPEC @ FRM II.	191 193 195
7052706071017111	 DETERMINATION OF BURST PRESSURE FOR DEFECTED PIPES. Abdullah M. Al Shabibi, Majid Al Moharbi, Sultan Al Owaisi. MECHANICAL BEHAVIOR OF NEW POLYUREA ELASTOMERS: CONSTITUTIVE MODELLING. Nahuela Rull, Antoni Sanchez-Ferrer, M. Patricia Frontini. FATIGUE STRENGTH OF CARBON STEEL COVERED WITH PROTECTIVE LAYERS FOR CO2 ASSISTED SHALE GAS MINING. Marta Baran, Tomasz Brynk, Z. Pakiela. RESIDUAL STRESSES - NEUTRON DIFFRACTOMETER STRESS-SPEC @ FRM II. Joana Rebelo Kornmeier, Michael Hofmann, Weimin M. Gan, Jens Gibmeier, Jan Saroun. COMPARATIVE STUDY ON ACCELERATED FLUID DIFFUSION IN THERMOSET EPOXY AND GFRP FOR MARINE APPLICATIONS. Matteo Cavasin, Silviu Ivan, 	191 193 195 205
 7052 7060 7101 7111 7152 	DETERMINATION OF BURST PRESSURE FOR DEFECTED PIPES. Abdullah M. Al Shabibi, Majid Al Moharbi, Sultan Al Owaisi. MECHANICAL BEHAVIOR OF NEW POLYUREA ELASTOMERS: CONSTITUTIVE MODELLING. Nahuela Rull, Antoni Sanchez-Ferrer, M. Patricia Frontini. FATIGUE STRENGTH OF CARBON STEEL COVERED WITH PROTECTIVE LAYERS FOR CO2 ASSISTED SHALE GAS MINING. Marta Baran, Tomasz Brynk, Z. Pakiela. RESIDUAL STRESSES - NEUTRON DIFFRACTOMETER STRESS-SPEC @ FRM II. Joana Rebelo Kornmeier, Michael Hofmann, Weimin M. Gan, Jens Gibmeier, Jan Saroun. COMPARATIVE STUDY ON ACCELERATED FLUID DIFFUSION IN THERMOSET EPOXY AND GFRP FOR MARINE APPLICATIONS. Matteo Cavasin, Silviu Ivan, Stefanos Giannis, Marco Sangermano, Milena Salvo, Barry Thomson.	 191 193 195 205 207

7182	EDDY CURRENT APPROACH FOR METALLURGICALLY CLAD PIPE INSPECTION. Cesar G. Camerini, João M.A. Rebello, Rafael W. Santos, João M. Santos, Gabriela R. Pereira.	227
7197	ADVANCED NDT PROCEDURES AND THERMAL DATA PROCESSING ON CFRP AERONAUTICAL COMPONENTS. Vito Dattoma, Riccardo Nobile, Francesco Panella, Alessandra Pirinu, Andrea Saponaro.	229
7220	STRENGTH AND MICROSTRUCTURE ANALYSIS OF SPOT WELDED JOINTS. Ramūnas Česnavičius, Sigitas Kilikevičius, Povilas Krasauskas, Vytautas Jurgaitis.	243
7222	DETERMINATION OF ALUMINUM ALLOY EN AW-1100 LIMITING DRAWING RATIO AT DIFFERENT TEMPERATURES THROUGH PRACTICAL EXPERIMENTS AND NUMERICAL SIMULATION USING FINITE ELEMENT METHOD. Gilmar C. Silva, Matheus M. Costa, João P.S. Carneiro, Jorge A.P. Rodrigues, José F.P. Vasconcelos, Daniel C. Maciel, Tiago A. Silva.	247
7224	MAGNETIC CHARACTERIZATION OF HEAT-RESISTANT AUSTENITIC STEELS BY USING AN OWN EDDY CURRENT SYSTEM. Mónica P. Arenas, Clara J. Pachecho, Artur L. Ribeiro, Helena G. Ramos, Carlos B. Eckstein, Laudemiro Nogueira Jr., Luiz H. Almeida, João M.A. Rebello, Gabriela R. Pereira.	255
7266	ANALYSIS OF HIGH TEMPERATURE PIPE INTEGRITY USING CUSTOMIZED EDDY- CURRENT SYSTEM. Fernando S. Crivellaro, Ana Peixoto, Miguel A. Machado, José P. Sousa, António Custódio, J. Pamies Teixeira, Telmo G. Santos.	257
TOPIC	C-D: FATIGUE AND FRACTURE MECHANICS	263
7074	FRACTURE MECHANICS ANALYSIS OF POROSITY EFFECT ON STRENGTH CHARACTERISTICS OF POROUS ALUMINA. Natsumi Miyazaki, Toshihiko Hoshide.	265
7080	CREEP FRACTURE OF PLATES IN UNSTEADY COMPLEX STRESS STATE IN THE PRESENCE OF AMBIENT MEDIUM. Alexander Lokoshchenko, Leonid Fomin.	277
7089	INVESTIGATION OF FATIGUE PROPERTIES OF SOME STEAM TURBINE BLADE MATERIALS. Jan Chvojan, Jaroslav Václavík.	279
7092	NEW CORROSION MODEL TO PREDICT STEEL STRENGTH. Rachid Dami.	281
7102	STUDY OF THE EFFECT OF STRESS CONCENTRATORS IN FATIGUE FAILURE ANALYSIS OF A CRANKSHAFT. José R.G. Carneiro, Leonardo C. Aguiar, Gilmar C. Silva, João P.S. Carneiro .	283
7166	THE EFFECT OF FRESH WATER CORROSIVE SOLUTION ON FATIGUE STRENGTH OF LOW CARBON STEEL. Marta Morgantini, Volodymyr Okorokov, Yevgen Gorash, Donald MacKenzie, Ralph van Rijswick.	289
7172	APPROACH TO FULL-SCALE FATIGUE TEST OF THE MIG-29 VERTICAL STABILIZER WITH REPAIR OF COMPOSITE STRUCTURES. Piotr Synaszko, Michał Sałaciński, Michał Dziendzikowski, Krzysztof Dragan, Andrzej Leski.	297
7230	PERIDYNAMIC MECHANO-CHEMICAL MODELING OF STRESS CORROSION CRACKING. Ziguang Chen, Siavash Jafarzadeh, Shumin Li, Florin Bobaru, Qin Qian.	299

7240	ADVANCED NUMERICAL TECHNIQUES APPLIED TO THE STRENGTH PREDICTION OF STEPPED-LAP ADHESIVE JOINTS. Rui Machado, Raúl Campilho.	311
7241	MIXED-MODE FRACTURE OF BONDED JOINTS USING THE ASYMMETRIC TAPERED DOUBLE-CANTILEVER BEAM TEST. Filipe Nunes, Raúl Campilho.	313
7264	REAR SUSPENSION DEVELOPMENT: DURABILITY STUDY ON THE EFFECTS OF VARIATION OF VEHICLE AND SUSPENSION CHARACTERISTICS IN A TWIST BEAM REAR SUSPENSION. Guilherme Carneiro, Marco Anjos, Ernani S. Palma.	315
7292	COUPLED METHOD TO INVESTIGATE PLASTIFICATION OF HEAVY HAUL RAILWAY WHEELS. Pedro Picanço, Felipe Bertelli, Eduardo A. Lima, Thairon R. Costa, Auteliano A. Santos.	317
ΤΟΡΙΟ	2-E: NANOTECHNOLOGIES AND NANOMATERIALS	325
7081	EFFICIENT FABRICATION METHOD OF METALLIC NANO/MICRO STRUCTURES FOR NANO DEVICES. Masahiko Yoshino, P. Potejanasak, Duc P. Truong, Motoki Terano.	327
7109	NANOINDENTATION INDUCED PLASTIC DEFORMATION IN NANOCRYSTALLINE ZrN COATING. Zhoucheng Wang.	329
7149	ALUMINA DOPING FOR IMPROVING PROPERTIES OF ZIRCONIA CERAMICS. Danil Belichko, Larysa Loladze, Tetyana Konstantinova, Alexandr Myloslavskyy.	331
7151	NEW CHALLENGES IN THE CREATION OF RELIABLE CERAMIC NANOCOMPOSITES. Igor A. Danilenko, Tetyana E. Konstantinova, Oxana A. Gorban, Irina I. Brukhanova, Larysa V. Loladze, Danil R. Belichko, Artyom V. Shylo.	333
7269	ZINC OXIDE MATERIAL FOR OPTOELECTRONIC APPLICATIONS. Irinela Chilibon.	335
7290	CARBON NANOTUBES BASED SENSORS FOR DAMAGE DETECTION. Erika Magnafico, Arnaldo Casalotti, Maryam Karimzadeh, Krishna C. Chinnan, Giulia Lanzara.	337
7296	IMPROVEMENT OF ADHESION STRENGTH OF THE COPPER NANOWIRE SURFACE FASTENER BY INVESTIGATING THE DIAMETER RATIO OF NANOWIRES. Motohiro Kato, Yuhki Toku, Yasuyuki Morita, Yang Ju.	345
7297	ELECTROMAGNETIC PERFORMANCE OF SPIRALLY DEFORMED COATED NANOWIRES. Yuhki Toku, Yuji Ueda, Yasuyuki Morita, Yang Ju.	347
ΤΟΡΙΟ	-F: TRIBOLOGY AND SURFACE ENGINEERING	349
7076	STRUCTURAL DEGRADATION OF LUBRICATING GREASES. AN ENERGY DRIVEN PROCESS. Erik Kuhn.	351
7177	CROSS-SECTIONAL MICROSTRUCTURE AND STRESS DISTRIBUTIONS IN THIN FILMS DURING INDENTATION REVEALED BY X-RAY NANODIFFRACTION. Josef Keckes, Rostislav Daniel, Juraj Todt, C. Krywka, M. Burghammer.	353
7194	EVALUATION OF RESEARCH OPPORTUNITIES OF A TRIBOLOGICAL TESTING TAPE MACHINE. Wojciech Żurowski, Wojciech Kucharczyk, Jarosław Zepchlo.	355
7265	FAULT DETECTION IN DIESEL ENGINE INJECTORS USING A VIBRATION AND SOUND PRESSURE LEVEL TECHNIQUE. Jarbas S. Medeiros, Daniel M. Lago, Antônio C. Moreira Filho, Efrain P. Matamoros, João T.N. Medeiros.	357

7304	MICROSTRUCTURE ANALYSIS OF RARE EARTH-MAGNESIUM ALLOY REPAIRED USING HIGH POWER SURFACE LASER CLADDING. Rongjuan Yang, Dongyun Ge, Xuan Zhao.	369
TOPIC	C-G: MECHANICAL DESIGN AND PROTOTYPING	371
7059	USING DESIGN S-N CURVES AND DESIGN STRESS SPECTRA FOR PROBABILISTIC FATIGUE LIFE ASSESSMENT OF VEHICLE COMPONENTS. Miloslav Kepka, Miloslav Kepka Jr.	373
7077	QUANTITATIVE ANALYSIS OF RELATIONSHIP BETWEEN EXTRUSION BLOW MOLDING PROCESS PARAMETERS AND DEFORMATION PROPERTIES. Esther R. Dorp, Berenika Hausnerova, Bernhard Möginger.	385
7082	MAIN EXPECTED PROBLEMS DURING THE IMPLEMENTATION OF "INDUSTRY- 4.0" REFORMS AND THEIR PRACTICAL SOLUTIONS BASED ON IMPROVING THE EFFICIENCY OF USED MECATRONIC SYSTEMS. Raul Turmanidze, Vasili Bachanadze, Giorgi Popkhadze.	387
7189	A NUMERICAL AND EXPERIMENTAL STUDY OF THE ENERGY ABSORPTION CAPACITY OF AUXETIC STRUCTURES MANUFACTURED WITH ADDITIVE TECHNOLOGY. Filip Sarbinowski, Remigiusz Labudzki, Rafał Talar, Adam Patalas.	399
7270	DESIGN METHODOLOGY OF AN ALUMINIUM CHASSIS. Ana L. Ramos, Oscar Zapata, Tania Berber, Natalia Navarrete.	403
7301	COMPARISON OF UNIBODY AND FRAME BODY VERSIONS OF ULTRA EFFICIENT ELECTRIC VEHICLE. Wojciech Skarka, Tomasz Pabian, Michał Sosnowski.	405
7305	METHODOLOGY FOR THE OPTIMIZATION OF AN ENERGY EFFICIENT ELECTRIC VEHICLE. Wojciech Skarka.	415
TOPIC	C-H: BIOMECHANICAL APPLICATIONS	423
7050	KINEMATICS ANALYSIS OF MOZAMBICAN ATHLETES IN THE 100 METERS RACE. Ercilio Machanguan, Anicêncio Macitela, Alberto Graziano.	425
7051	ANALYSIS OF THE PERFORMANCE OF LOWER MEMBERS IN SUSPENSION SERVICE IN VOLLEYBALL. Anicêncio Macitela, Alberto Graziano.	429
7063	THE EFFECT OF MULTIPLE NEUROTRANSMISSION ON THE BIOMECHANICS OF THE HUMAN STOMACH. Saleh Alrowaili, Roustem Miftahof.	433
7066	BIOMECHANICS OF THE BOLUS PROPULSION IN THE COLON. Omar Al Qatrawi, Roustem Miftahof.	435
7067	BIOMECHANICS OF THE HUMAN STOMACH AFTER DIABETIC VAGOTOMY. Dareen Bash, Roustem Miftahof.	437
7071	MODELLING OF THE EFFECT OF METOCLOPRAMIDE ON THE BIOMECHANICS OF THE GASTROPARETIC HUMAN STOMACH. Fatima Alhayki.	439
7075	CONTRACTILE ACTIVITY OF THE HUMAN STOMACH UNDER COMPLEX STIMULATION. AlDana M. Zaid, Roustem Miftahof.	441

7094	MODELING OF LARGE GAUGE ARTERIES WITH A SOFT ELASTIC MEMBRANE PIPE FINITE ELEMENT. Francisco Q. Melo, António G. Completo, José L.S. Esteves.	443
7190	A MECHANICAL ANALYSIS OF CANCELLOUS BONE IN FEA SIMULATION RESEARCH AND EXPERIMENTAL TESTING WITH THE μCT CONTROL. Adam Patalas, Remigiusz Labudzki, Filip Sarbinowski, Bartosz Gapiński, Rafał Talar.	445
7203	INFLUENCE OF BONE QUALITY IN THE BEHAVIOUR OF GRAFT FIXATION IN ANTERIOR CRUCIATE LIGAMENT RECONSTRUCTION. Covadonga Quintana, Cristina Rodriguez, Ines Peñuelas, Antonio Maestro.	447
7204	BIOMECHANICAL BEHAVIOUR CHARACTERIZATION OF THE MATERIALS INVOLVED IN ANTERIOR CRUCIATE LIGAMENT RECONSTRUCTION. Covadonga Quintana, Cristina Rodriguez, Ines Peñuelas, Antonio Maestro.	457
7267	IN VIVO CHARACTERIZATION OF MICRO ARCHITECTURE OF A HUMAN VERTEBRA BY MICRO-IMAGING. Hacene Ameddah, Hammoudi Mazouz.	471
ΤΟΡΙΟ	C-I: CIVIL AND STRUCTURAL ENGINEERING APPLICATIONS	477
7057	AGGREGATE SIZE AND LATERAL DIMENSION EFFECTS ON CORE COMPRESSIVE STRENGTH OF CONCRETE. Adel Benidir, M'Hamed Mahdad, Ahmed Brara.	479
7068	EXPERIMENTAL STUDY OF THE MECHANICAL BEHAVIOR OF COMPRESSED STABILIZED EARTH BLOCKS AND WALLS. M'Hamed Mahdad, Adel Benidir, Ahmed Brara.	487
7083	SUBSTITUTION OF THE TRANSVERSE REINFORCEMENT WITH ENGINEERED CEMENTITIOUS COMPOSITE IN RC EXTERIOR BEAM-COLUMN JOINTS SUBJECTED TO CYCLIC LOADING. Shwan H. Said.	497
7085	THE EFFECTS OF SOIL CATEGORY ON THE SEISMIC RESPONSE OF CIRCULAR STEEL WATER TANKS WITH MEDIUM H/D RATIO USING LAGRANGIAN APPROACH. Armen Assatourians, Sohrab Fallahi.	499
7090	IDENTIFICATION OF HYSTERICALLY DEGRADING STRUCTURES USING THE BOUC-WEN-BABER-NOORI (BWBN) MODEL. Ying Zhao, M. Noori, Wael Altabey.	507
7108	PERFORMANCE OF AIR CURED CONCRETE TREATED WITH WATERPROOFING ADMIXTURES OR SURFACE TREATMENTS. Sirwan Kamal, Hsein Kew, Hamid Jahromi.	509
7112	NON-DESTRUCTIVE EVALUATION OF DETERIORATED REINFORCED CONCRETE SLAB USING EXPERIMENTAL AND NUMERICAL METHODOLOGIES. Norbert Renault, Jean-Louis Gallias, Christophe Barnes.	511
7118	STRAIN-RATE INFLUENCE ON A SHAPE MEMORY ALLOY BASED DAMPER. João Morais, Carlos Santos, Paulo Morais.	513
7121	PROBABILISTIC TRAFFIC LOAD IDENTIFICATION FOR CONCRETE BRIDGES. Sebastian Zorn, Jörg F. Unger.	521
7130	COST CONSEQUENCE-BASED RELIABLITY ANALYSIS OF BURSTING FAILURE IN SUBSEA PIPELINES. Bahram Mehrafrooz, Pedram Edalat, Mojtaba Dyanati.	523
7162	DAMDAMAGE1.0: A MATLAB 3DFE PROGRAM FOR NON LINEAR ANALYSIS OF ARCH DAMS. André Alegre, Sérgio Oliveira.	525

7165	RESILIENCY OF SLAB TRACK SYSTEMS SUBJECTED TO LONG-TERM DETERIORATION: NUMERICAL MODELLING WITH SUBSTRUCTURING TECHNIQUES. Samuel Matias, Patrícia Ferreira.	527
7167	INFLUENCE OF 4 BOLTS-PER-ROW CONNECTION ON A STEEL FRAME BUILDING SUBJECTED TO COLUMN LOSS. Daniel Nunes, I. Marginean, Adrian Ciutina, Florea Dinu.	529
7168	MODAL IDENTIFICATION METHODS IN TIME DOMAIN NUMERICAL TESTS AND APPLICATIONS IN CIVIL ENGINEERING. Ana Prior, Sérgio Oliveira, Matilde Freitas.	539
7170	MONITORING AND ANALYSIS OF CONCRETE DAMS BEHAVIOR OVER TIME CONSIDERING SWELLING EFFECTS. INTEGRATED USE OF FINITE ELEMENT MODELS AND MODELS FOR EFFECTS SEPARATION. Miguel Rodrigues, Sérgio Oliveira.	541
7171	OPTIMIZATION OF WEB STIFFENER IN COLD-FORMED STEEL CHANNEL BEAMS SUBJECTED TO PURE BENDING. Ayman R. Ahmed, Ahmad M. Abdullah, Sedky A. Tohamy, Amr Bakr Saddek.	543
7188	EVALUATION OF HYGRIC PROPERTIES OF CONTEMPORARY PLASTERS. Jan Fořt, Zbyšek Pavlík, Lukáš Balík, Robert Černý.	545
7191	ULTIMATE CAPACITY OF STEEL FRAMES WITH BOLTED CONNECTIONS UNDER COLUMN LOSS SCENARIOS. Ioan Marginean, Florea Dinu, Robert Kulcsár, Simina Sabău, Dan Dubina.	553
7192	APPLICATION OF A COMPLETE STRUCTURAL HEALTH MONITORING CHAIN ON THE CANADIAN RIVIÈRE-AUX-MULETS BRIDGE NUMERICAL MODEL SUBJECTED TO A SEISMIC LOAD. Farouk Frigui, Jean-Pierre Faye, Carmen Martin, Olivier Dalverny, François Pérès, Sébastien Judenherc.	555
7195	NUMERICAL STUDY OF THE ROBUSTNESS OF STEEL STRUCTURES WITH FRICTION JOINTS. Francisca Santos, Aldina Santiago, Gianvittorio Rizzano, Luís S. Silva, Massimo Latour.	569
7201	STATIC AND DYNAMIC ELASTICITY MODULE ANALYSIS OF CEMENT COATING MORTARS. Ana Isabel Marques, João Morais, Carlos Santos, Paulo Morais, Maria do Rosário Veiga.	571
7202	DEVELOPMENT OF ALTERNATE LOAD PATHS IN STEEL FRAMES WITH COMPOSITE BEAMS SUBJECT TO ACCIDENTAL EXPLOSIONS. Florea Dinu, Ioan Marginean, Ioan Petran, Mihai Senila, Calin Neagu, Dan Dubina.	581
7205	NUMERICAL STUDIES ON SEISMIC RESPONSE OF STEEL AND COMPOSITE ECCENTRICALLY BRACED FRAMES. Mihai Senila, Ioan Petran, Calin Neagu, Florea Dinu.	583
7209	NUMERICAL MULTI-SCALE APPROACH FOR MASONRY INFILLED FRAME. T.T.N. Nguyen, N.Q. Vu, S.T. Nguyen, N.H. Tran, M.N. Vu.	585
7212	FRAGILITY CURVES FOR RC BRIDGES USING GENERALIZED PUSHOVER ANALYSIS. Camilo Perdomo, Ricardo Monteiro.	587
7213	ANALYSIS OF THE GROWTH CURVE FOR THE USE OF THE REJECT OF GRANITE ROSA IRACEMA IN THE MANUFACTURE OF EXIT FUNNELS IN THE TEXTILE INDUSTRY. Joseanne Alves de Sousa, Jorge Luiz Cardoso, Cândido S. Lobo.	589

7216	STUDY OF THE PERFORMANCE OF R.C. WALLS WITH OPENINGS USING AN ANALYTICAL FINITE ELEMENT MODEL. Alaa Morsy, Youssef Ibrahim.	591
7217	INTEGRATING THREE INSPECTION/MONITORING METHODS FOR CIVIL ENGINERING APPLICATIONS. Amir Nasrollahi, Piervincenzo Rizzo.	593
7227	ECODESIGN FOR DECONSTRUCTION IN THE LIFE CYCLE POST-OPERATIONAL STAGE TO IMPROVE CONCRETE RECYCLING IN BRAZIL. Silvia Letícia Vacelkoski, George Stanescu.	595
7236	INVESTIGATION INTO THE DOUBLE-LAYER BARREL VAULT SPACE STRUCTURE RESISTANCE TO PROGRESSIVE COLLAPSE. Karim Abedi, Shahram R. Kolachahi.	607
7248	IMPACT OF PREVENTIVE MAINTENANCE ON FLEXIBLE PAVEMENT SERVICE LIFE. Manuel Ruíz, Luís Ramírez, Fermín Navarrina, J.R. Fernández Mesa, David López- Navarrete, Mario Aymerich.	615
7250	USE OF STRUCTURAL MASONRY OF CONCRETE BLOCKS AND PROTECTED LABS WITH FENCED CORDOBA IN RESIDENTIAL BUILDINGS. Harlen Nunes, Roberto Carvalho.	625
7255	STRUCTURAL RECOVERY AND PROJECT MANAGEMENT: THE DESIGN DRAWS CONTRIBUTION. Giorgio Garzino.	627
7259	TIMBER SHEAR WALLS: NUMERICAL ASSESSMENT OF THE EQUIVALENT VISCOUS DAMPING. Giorgia Di Gangi, Cristoforo Demartino, Giuseppe Quaranta, Marco Vailati, Giorgio Monti.	641
7260	THERMAL EFFECT OF A LOCALIZED FIRE IN THE STEEL STRUCTURE OF AN OPEN CAR PARK. Paulo Piloto, Edson M.S. Júnior, Francisco A.A. Gomes.	651
7261	FIRE DYNAMICS IN OPEN COMPARTMENTS. Paulo Piloto, Ketlen Possoli, Luiz C.M. Júnior, Khadouma Nechab, Benarous Abdallah.	663
7271	DATA PROCESSING FOR DATA ACQUISITION SYSTEMS: ANALYSIS OF VIBRATIONS IN STRUCTURES. R.S. Gonçalves, Matheus S. Vieira, Thalyta L. Santos, J.G.S. Jesus.	673
7275	PERFORMANCE OF DUAL-SHOULDER-MOUNT-TRUSS WEATHERING-STEEL OVERHEAD SIGN STRUCTURES IN WEST VIRGINIA. Wael Zatar, Hai Nguyen.	675
7276	DEVELOPMENT OF A STRUCTURE VIBRATIONS MONITORING INSTRUMENT USING TRIAXIAL ACCELEROMETER. J.G.S. Jesus, Matheus S. Vieira, Thalyta L. Santos, R.S. Gonçalves.	677
7286	STABILITY EVALUATION OF MARBLE STONE CLADDING AFFECTED BY BOWING AND WIND PRESSURE - A CASE STUDY. Rui Sousa, Hipólito Sousa.	679
ΤΟΡΙΟ	C-J: IMPACT AND CRASHWORTHINESS	689
7131	A FINITE ELEMENT MODEL TO STUDY WELD AND GEOMETRIC IMPERFECTIONS IN AN IMPACT ATTENUATOR DEVICE. Jose A. López-Campos, Abraham Segade, E. Casarejos, Jose R. Fernandez, J.A. Vilán.	691
7132	STUDY OF A CRASH BOX DESIGN OPTIMIZED FOR A UNIFORM LOAD PROFILE. Abraham Segade, Alejandro Bolaño, Jose A. López-Campos, E. Casarejos, Jose R. Fernandez,	701

J.A. Vilán.

7144	RESEARCH ON THE ANISOTROPIC PROPERTIES OF WOOD AT HIGH-RATE LOADING. Anatoly Bragov, Alexander Konstantinov, Andrey Lomunov.	717
7160	ESTIMATION OF DEFORMATION ENERGY DURING IMPACT DESTRUCTION OF ADHESIVE JOINT SAMPLES. Jan Godzimirski, Andrzej Komorek, Robert Szczepaniak.	727
7193	ANALYTICAL MODELING OF THE TRANSITION OF THE PROGRESSIVE FOLDING MODE OF THIN-WALLED TUBES AFTER FOAM-FILLING. Fan Yang, Shaker A. Meguid.	735
7198	OPTIMIZATION STRATEGIES FOR CRASH RELEVANT VEHICLE STRUCTURES. Ralf Sturm, Michael Schäffer, Marco Münster.	737
7226	USE OF COMPUTATIONAL METHODS TO EVALUATE DAMPING DEVICE EFFICIENCY DURING THE DESIGN OF NUCLEAR POWER PLANT EQUIPMENT. A.M. Bragov, O Yu. Vilensky, A. Yu. Konstantinov, D.A. Lapshin, M.G. Malygin, V.V. Petrunin.	739
7256	MECHANICAL STUDY OF ADDITIVE MANUFACTURED HONEYCOMB STRUCTURES. Piotr Dziewit, Paweł Płatek, Jacek Janiszewski.	741
7321	MULTIBODY DYNAMIC ANALYSIS OF WHIPLASH. Mohamed T. Z. Hassan, Mo Gabriel Shi, S. A. Meguid.	743
7322	EFFECT OF IMPACT SEVERITY ON OCCUPANT'S RESPONSE DURING REAR-END COLLISIONS. Mohamed T. Z. Hassan, S. A. Meguid.	745
ΤΟΡΙΟ	C-L: INDUSTRIAL ENGINEERING AND MANAGEMENT	747
7055	CUTTING AND PASSIVE TIMES CALCULATION FOR TURNING PROCESS. Nivaldo L. Coppini, Gabriel N. Oliveira, Danilo E. Braga.	749
7070	CONDITION MONITORING WITH PREDICTION BASED ON OIL ENGINES OF URBAN BUSES - A CASE STUDY. Hugo Raposo, José T. Farinha, Inácio Fonseca, Luís A. Ferreira.	751
7087	BUSINESS SUSTAINABILITY THROUGH THE PRACTICE OF CSR: THE A. PETTI SPA EXPERIENCE. Maria R. Sessa, Ornella Malandrino, Daniela Sica, Stefania Supino.	755
7133	DEVELOPING THE BEST PREVENTIVE MAINTENANCE POLICY FOR FULLY AUTOMATED SHIP-TO-SHORE CRANE. Yassine Achhal, Hassan Samadi.	757
7148	COMMON CAUSE ANALYSIS OF CIRCULAR VARIABLE NACELLE INLET CONCEPTS FOR AERO ENGINES IN CIVIL AVIATION. Stefan Kazula, David Grasselt, Klaus Höschler.	759
7153	NEW APPROACH FOR THE JOINT OPTIMIZATION OF THE DESIGN AND MAINTENANCE OF MULTI-COMPONENT SYSTEMS BY INTEGRATION OF LIFE CYCLE COSTS. Oussama Adjoul, Khaled Benfriha, Améziane Aoussat, Yacine Benabid.	771
7155	METHODOLOGICAL FRAMEWORK FOR IMPLEMENTATION OF A PREDICTION RELIABILITY MODEL FOR IGBT POWER MODULES USED IN RAILWAY APPLICATIONS. Essi Dabla, François Pérès, Carmen Martin, Claire Fournier, Michel Piton, Floran Andrianoelison.	783
7157	DEFINITION AND IMPLEMENTATION OF AN INTEGRATED MANAGEMENT PLAN (IMP) APPLIED TO THE EQUIPMENT AT PERIODICAL TECHNIAL INSPECTION (PTI)	785

Casarejos, M.L. Lago.

7159	PRELIMINARY SYSTEM-SAFETY-ANALYSIS AND COMPARISON BETWEEN TWO NEW BROADBAND NOISE ABSORBING ACOUSTIC-LINER CONCEPTS FOR CIVIL AVIATION. Marcel Mischke, Stefan Kazula, David Grasselt, Klaus Höschler.	795
7169	A MECHANICAL AND STATE ANALYSIS OF A GAS TURBINE. Suzana Lampreia, Vitor Lobo, José Requeijo.	797
7180	INTEGRATION OF MAINTENANCE SYSTEMS. Sarje Suhas.	805
	SPECIAL SESSIONS	807
SYMP	OSIUM-1: EXPERIMENTAL MECHANICS FOR RELIABILITY	809
7058	DRAG REDUCTION OF A SWEPT WING BY MEANS OF PLASMA ACTUATORS. Sergey Chernyshev, Marat Gamirullin, Andrey Kiselev, Aleksandr Kuryachii, Sergey Manuilovich, Dmitry Sboev.	811
7127	DUCTILITY OF TITANIUM ALLOYS IN A WIDE RANGE OF STRAIN RATES. Vladimir V. Skripnyak, Vladimir A. Skripnyak, Evgeniya G. Skripnyak.	813
7141	AN IN-SITU EVALUATION OF STRUCTURAL DAMAGE IN A HIGH POWER SPALLATION NUETRON SOURCE. Masatoshi Futakawa, Tao Wan, Hiroyuki Kogawa, Takashi Naoe.	823
7199	INFRARED THERMOGRAPHY AND DIC USED TO INVESTIGATE GUM METAL LOCALIZATION EFFECTS. Elzbieta Pieczyska, K.M. Golasiński, M. Staszczak, M. Maj, T.O. Furuta, S. Kuramoto.	825
7274	APPLICATION OF THREE-AXIS ACCELEROMETER ON VIBRATION ANALYSIS IN MACHINING PROCESSES. R.S. Gonçalves, Thalyta L. Santos, J.G.S. Jesus, Matheus S. Vieira.	827
7323	TRACKING OF DISPLACEMENT FIELD USING STEREO-CORRELATION IMAGES. A. May, A. Mokdad, H. Habouche, T. Rehamnia	829
SYMP	OSIUM-2: MODELING OF FRACTURE AND FRAGMENTATION OF SOLIDS UNDER STATIC AND DYNAMIC LOADING. DETERMINISTIC AND PROBABILISTIC APPROACHES	839
7078	PERIDYNAMICS ANALYSIS OF GLASS FRACTURE UNDER EXPLOSION LOAD. Jian Tu, Li-jun Zhao, Shan Yu, Chun-liang Xin.	841
7079	PROTECTION OF STRUCTURES AGAINST LONG PROJECTILES. Alexander Gerasimov, Sergey Pashkov, Roman O. Cherepanov.	849
7099	MODELLING POROUS STRUCTURES AND MECHANICAL BEHAVIOUR OF CERAMICS USING PROBABALISTIC APPROACH. Igor Yu. Smolin, Valentina A. Mikushina, Pavel V. Makarov, Mikhail O. Eremin.	851
7100	MATHEMATICAL MODEL OF GENERATION AND PROPAGATION OF SLOW DEFORMATION FRONTS. Pavel V. Makarov, A. Yu. Peryshkin, Mikhail O. Eremin.	853
7128	MODELLING OF THE MECHANICAL RESPONSE OF Zr-Nb AND Ti-Nb ALLOYS IN A WIDE TEMPERATURE RANGE. Vladimir A. Skripnyak, Vladimir V. Skripnyak, Evgeniya G. Skripnyak, Nataliya V. Skripnyak.	855

7134	EXPERIMENTAL STUDY AND NUMERICAL MODELLING OF FRACTURE PROCESS TRANSITION TO BLOW-UP MODE. Pavel V. Makarov, Igor Yu. Smolin, Alexey S. Kulkov, Mikhail O. Eremin, Vladimir A. Tunda.	863
7145	PROBABILISTIC FAILURE OF CERAMICS UNDER HIGH-VELOCITY IMPACT. Sergey A. Zelepugin, Vladimir F. Tolkachev, Alexey S. Zelepugin.	865
7147	NUMERICAL SIMULATION OF THE EXPLOSIVE COMPACTION OF MULTI- COMPONENT MIXTURES. Sergey A. Zelepugin, Oksana Ivanova.	871
7185	DISCRETE ELEMENTS SIMULATION OF GEOLOGICAL FAULT FORMATION. Vadim Lisitsa, Vladimir Tcheverda, Victoria Valyanskaya.	877
7225	PENETRATION OF STELL AND ICE BARRIERS BY A PROJECTILE AT LOW INITIAL SPEEDS (<325 m/s). Maxim Yu. Orlov, Yuri N. Orlov, Viktor P. Glazyrin, Yu. N. Orlova.	887
7234	ANALYSIS OF THE PENETRATION OF BARRIERS BY IMPACTORS WITH AN EXPLOSIVE SUBSTANCE. Viktor P. Glazyrin, Maxim Yu. Orlov, Yuri N. Orlov.	893
7263	A METHOD FOR DETERMINING RELIABILITY OF A SELECTED STRUCTURAL COMPONENT OF AN AIRCRAFT FROM THE POINT OF VIEW OF FATIGUE PROCESSES. Mariusz Zieja, Mirosław Zieja, Mariusz Ważny.	899
SYMP	OSIUM-3:FRACTURE BEHAVIOUR AND FATIGUE DAMAGE OF STRUCTURES: THEORY AND EXPERIMENTS	909
7095	FRACTURE FRAMEWORK OF PLASTIC PIPES: EXPERIMENTAL WORK AND FINITE ELEMENT ANALYSIS OF DOUBLE POLYETHYLENE CANTILEVER BEAM SPECIMENS. Federico Rueda, César Hernández, Patricia Frontini.	911
7142	INFLUENCE OF MICROSTRUCTURE ON THE MECHANICAL BEHAVIOUR OF STEEL IN EXTREME ENVIRONMENT. Valeriy Lepov, Albert Grigoriev, Afanasiy Ivanov, V. Achikasova, Anastassia Ivanova, Nikolay Balakleiskii, Boris Loginov, Artem Loginov.	913
7146	EFFECT OF GRAPHITE MORPHOLOGY ON COMPACTED GRAPHITE IRON THERMOMECHANICAL FATIGUE PROPERTIES. Edwin A. Lopez, S. Ghodrat, Leo Kestens.	915
7206	FATIGUE IMPROVEMENT OF WELDED ELEMENTS BY ULTRASONIC IMPACT TREATMENT. Yuri Kudryavtsev.	919
7210	ULTRASONIC MEASUREMENT OF RESIDUAL STRESSES IN WELDED JOINTS. Yuri Kudryavtsev, Jacob Kleiman.	921
SYMP	OSIUM-4: RELIABILITY OF TRIBOLOGICAL SYSTEMS AT VARIED LENGTH SCALES	923
7091	EFFECT OF SURFACE ENERGY ON FRICTION COEFFICIENT OF CARBONACEOUS HARD COATINGS BY IN-SITU MEASUREMENT IN ESEM. Taichi Nakao, Makoto Terada, Noritsugu Umehara, Motoyuki Murashim.	925
7154	THE INFLUENCE OF MOLECULAR CLUSTERS ON LUBRICATING FILM FORMATION. Antoni Jankowski, Miroslaw Kowalski, Andrzej Kulczycki, Wojciech Dziegielewski, Jaroslaw Kaluzny, Jerzy Merkisz.	927

7247	A NEW STOCHASTIC MODEL FOR PARTICULATE MATTER AND DEBRIS EMITTED BY DIESEL ENGINES. Fábio Oliveira, Daniel Lago, Manoel Oliveira Filho, João Medeiros.	939
7302	PROPOSAL OF DEVELOPMENT GUIDLINE FOR LOW FRICTIONAL MATERIAL IN OIL LUBRICATION WITH HIGH PERMITTIVITY MATERIAL. Motoyuki Murashima, See-Jun Oh, Takaaki Miyachi, Noritsugu Umehara, Takayuki Tokoroyama, Kota Konishi, Tatsuya Okamoto.	941
7306	THE WEAR OF DIAMOND-LIKE CARBON BY MOLYBDENUM BASED PARTICLES UNDER BOUNDARY LUBRICATION. Takayuki Tokoroyama, Takahiro Nishino, Makoto Yamaguchi, Khairul Kassim, Noritsugu Umehara.	943
SYMP	OSIUM-5: ADDITIVE MANUFACTURING AND RAPID PROTOTYPING	945
7064	3D PRINTING TECHNIQUES OF CERAMIC CORES USED FOR TURBINE BLADES MANUFACTURING. Rafal Cygan.	947
7124	RESISTANCE OF 3D PRINTED POLYMER STRUCTURES AGAINST FATIGUE CRACK GROWTH. Johannes Knöchel, Michael Kropka, Thomas Neumeyer, Volker Altstädt.	949
7125	FATIGUE RESPONSE OF AS BUILT DMLS PROCESSED MARAGING STEEL AND EFFECTS OF MACHINING, HEAT AND SURFACE TREATMENTS. Dario Croccolo, Massimiliano De Agostinis, Stefano Fini, Giorgio Olmi, Francesco Robusto, Snezana Ciric-Kostic, Aleksandar Vranic, Nusret Muharemovic, Nebojsa Bogojevic.	951
7126	EXPERIMENTAL STUDY ON THE SENSITIVITY OF DMLS MANUFACTURED MARAGING STEEL FATIGUE STRENGTH TO THE BUILD ORIENTATION AND ALLOWANCE FOR MACHINING. Dario Croccolo, Massimiliano De Agostinis, Stefano Fini, Giorgio Olmi, Francesco Robusto, Nusret Muharemovic, Nebojsa Bogojevic, Aleksandar Vranic, Snezana Ciric-Kostic.	971
7214	HOW BUILD ORIENTATION AND THICKNESS OF ALLOWANCE MAY AFFECT THE FATIGUE RESPONSE OF DMLS PRODUCED 15-5 PH STAINLESS STEEL. Dario Croccolo, Massimiliano De Agostinis, Stefano Fini, Giorgio Olmi, Nebojsa Bogojevic, Snezana Ciric-Kostic.	987
7262	EVALUATION OF DIFFERENT NDT TECHNIQUES FOR THE PRODUCTION OF COMPOSITE MATERIALS FABRICATED BY ADDITIVE MANUFACTURING. J.P. Oliveira, Patrick L. Inácio, Fernando Crivellaro, Carlos P. Simão, E. Camacho, Rosa M. Miranda, A. Velhinho, F.M. Braz Fernandes, Telmo G. Santos.	997
SYMP	OSIUM-6: FASTENING AND JOINING TECHNOLOGY	999
7122	A NOVEL FINITE ELEMENT MODEL METHODOLOGY FOR THE GENERIC MODELLING OF ADHESIVE AGEING. Mathias Creyf, Pol Coudeville, Wim Desmet, David Seveno, Stijn Debruyne.	1001
7136	INFLUENCE OF THE STIFFNESS AND FRICTIONAL CHARACTERISTICS ON THE SHANK TORQUE OF SCREWS IN BOLTED JOINTS. Dario Croccolo, Massimiliano De Agostinis, Stefano Fini, Giorgio Olmi, Francesco Robusto, Omar Cavalli, Nicolò Vincenzi.	1003
7235	MECHANICAL PERFORMANCE AND FRACTURE BAHAVIOR OF ADHESIVE-MULTI PIN JOINTS BETWEEN COMPOSITE AND METALLIC MATERIALS. Longquan Liu.	1009

7237	STRUCTURAL VALIDATION OF INTRAMEDULLARY NAILS: FROM EXPERIMENTATION TO VIRTUAL TESTING. Dario Croccolo, Massimiliano De Agostinis, Stefano Fini, Silvia Funaioli, Giorgio Olmi, Francesco Robusto.	1011
7242	DESIGN INFLUENCES OF PRELOAD RELAXATION BEHAVIOUR IN BOLTED JOINTS USING ALUMINIUM PARTS. Jens Peth, Christoph Friedrich.	1017
SYMP	OSIUM-7: INFLUENCE OF MANUFACTURING PROCESSES IN INTEGRITY OF MECHANICAL OR STRUCTURAL COMPONENTS	1029
7053	RELIABILITY ASSESSMENT OF A SUBSEA ELECTRO-HYDRAULIC CONTROL SYSTEM. António H.M. Silva, Henrique da Hora, Rogrigo Fernandes.	1031
7054	VALUE STREAM MAPPING IN OPTIMIZING TERRESTRIAL PIPELINES ASSEMBLY. Nivaldo L. Coppini, Luíz F.C. Cunha.	1039
7072	EVALUATION AND CHARATERIZATION OF WEAR BEHAVIOUR OF ROLLED STEELS FOR THE PRODUCTION OF A SCREW. Ricardo Paulo, Teresa Morgado, Alexandre Velhinho, Carla Machado, J. Pamies Teixeira.	1041
7073	STUDY OF WEAR BEHAVIOR OF A HELICAL GEAR. Miguel Mousinho, Teresa Morgado, David Braga, Alexandre Velhinho, Carla Machado, J. Pamies Teixeira.	1043
7239	EXPERIMENTAL STUDY OF LASER BEAM MACHINING IN Ti6Al4V ALLOY. Gabriela Belinato, Danielle M.D. Costa, Pedro P. Balestrassi, Pedro A.R.C. Rosa.	1045
7314	INTERACTION BETWEEN LEAN PHILOSOPHY AND INDUSTRY 4.0: EXPLORATORY STUDY. Beatrice P. Santos, Fernando C. Santos, Tânia M. Lima.	1047
SYMP	OSIUM-8: SUSTAINABLE ENERGY SYSTEMS	1049
7056	DATA CENTERS AND THEIR ENERGY CONSUMPTION FOR CLIMATIZATION. Clito F. Afonso, João Moreira.	1051
7088	NUMERICAL INVESTIGATION OF FILM COOLING EFFECTIVENESS USING THE ANTI-VORTEX CONCEPTION. Fadéla Nemdili, Saliha Nemdili, Abbé Azzi.	1061
7115	A METHOD FOR HEAT TRANSFER CALCULATION IN FOUR-STROKE SPARK IGNITION INTERNAL COMBUSTION ENGINES. Pedro Carvalheira.	1063
7116	A METHOD FOR MASS BURNING RATE CALCULATION IN FOUR-STROKE SPARK IGNITION INTERNAL COMBUSTION ENGINES. Pedro Carvalheira.	1073
7281	EXPERIMENTAL AND NUMERICAL STUDY OF DIFFUSER AUGMENTED WIND TURBINE - DAWT. Lino M. Paulo, Jorge Paulo, João E. Ribeiro, Luís F. Ribeiro.	1085
SYMP	OSIUM-9: OPTIMIZATION AND UNCERTAINTY QUANTIFICATION	1101
7069	UNCERTAINTY QUANTIFICATION USING A NEW NON INTRUSIVE STOCHASTIC APPROACH: APPLICATION TO THE ESTABLISHMENT OF INUNDATION MAPS DUE TO DAM BREAK FLOWS. Azzedine Abdedou, Azzeddine Soulaimani.	1103

7093 EFFECTIVE ESTIMATION OF CONFIDENCE IN THE VULNERABILITY ASSESSMENT 1105 OF UNCERTAIN STRUCTURAL SYSTEMS. Marco Vailati, Giorgio Monti.

7104	THE RELIABILITY INDEX APPROACH WITH EVOLUTIONARY ALGORITHMS: APPLICATION TO THE RBRDO PROBLEM OF COMPOSITE STRUCTURES. Gonçalo N. Carneiro, Carlos C. António.	1107
7106	MULTI-OBJECTIVE OPTIMIZATION AIMING THE SUSTAINABLE DESIGN OF FRP COMPOSITE STRUCTURES. Carlos C. António. (<i>Invited Paper</i>)	1115
7107	RESEARCH AND VALIDATION OF GLOBAL MPP IN THE RELIABILITY ANALYSIS OF COMPOSITE STRUCTURES. Luísa N. Hoffbauer, Carlos C. António.	1127
7280	THE USE OF RESPONSE SURFACE OPTIMIZATION METHOD TO MINIMIZE THE VIBRATIONS IN THE MILLING PROCESS. João E. Ribeiro, Manuel B. César, Ana I. Pereira.	1137
7313	RELIABILITY SYSTEM ANALYSIS FOR AIRCRAFT COMPOSITE STRUCTURES. Paola Caracciolo.	1145
SYMP	OSIUM-10: BIOMECHANICS OF CARDIOVASCULAR AND ORTHOPAEDIC DISEASE	1147
7158	FLUID-STRUCTURE INTERACTION FOR HEMODYNAMIC STUDY IN PATIENT CORONARY ARTERIES - VALIDATION. Nelson Pinho, Catarina F. Castro, Carlos C. António, Nuno Bettencourt, Luisa. C. Sousa, Sónia I.S. Pinto.	1149
7161	CORRELATION BETWEEN GEOMETRIC PARAMETERS OF LEFT CORONARY ARTERY AND PLAQUE DEPOSITION IN LEFT ANTERIOR DESCENDING ARTERY. Nelson Pinho, Catarina F. Castro, Carlos C. António, Nuno Bettencourt, Luisa C. Sousa, Sónia I.S. Pinto.	1155
7178	HEMODYNAMICS IN PATIENT-SPECIFIC CORONARY ARTERIES CONSIDERING BLOOD ELASTIC BEHAVIOR: NUMERICAL STUDY. Sónia I.S. Pinto, João B Campos.	1159
7289	LATERAL LUMBAR FUSION, A MINIMALLY INVASIVE SURGICAL APPROACH FOR LUMBAR INTERBODY FUSION. Susana C. Caetano, Luisa C. Sousa, Marco Parente, Renato Natal, Henrique Sousa, João Gonçalves.	1165
7293	VESSEL DETECTION IN CAROTID ULTRASOUND IMAGES USING ARTIFICIAL NEURAL NETWORKS. Catarina F. Castro, Carlos C. António, Luisa C. Sousa.	1169
SYMP	OSIUM-12: MECHATRONICS DESIGN: APPLICATIONS AND CASE STUDIES	1173
7183	DESIGN OF A CONTROL SYSTEM FOR A MEDICAL WRIST REHABILITATION DEVICE. Eurico Seabra, Luis F. Silva, Valdemar Leiras, Ricardo Ferreira.	1175
7184	DESIGN, DEVELOPMENT AND CONSTRUCTION OF A MEDICAL WRIST REHABILITATION DEVICE. Eurico Seabra, Luis Silva, Ricardo Ferreira, Valdemar Leiras.	1177
7249	HAND TENSOR: A FULL MOTION HAND PROSTHESIS WITH MECHANISMS BY ONE SINGLE TRACTION ENGINE. João E. Polis, Cecilia Amélia Zavaglia, Carlos A. Cimini Jr.	1179
7252	ASBGO*: A MECHATRONIC IMPROVED SMART WALKER. Joana Alves, Cristina P. Santos, Eurico Seabra, Luis F. Silva.	1181
7278	TGK DYNAMIC ANALYSIS OF A HUMANOID RESCUE ROBOT. Gerardo García, Enrique Vazquez, Pedro de J. García, Jonathan A. Soto, Isidro Sanchez, Juan G. Sandoval.	1183

SYMP	OSIUM-13: STRUCTURAL DYNAMICS AND CONTROL SYSTEMS: THEORY, EXPERIMENTS AND APPLICATIONS	1185
7114	THE EFFICIENCY OF USING ADDITIONAL ISOLATED UPPER FLOOR (AIUF) IN SEISMIC UPGRADING OF RESIDENTIAL R.C. FRAME BUILDINGS IN ARMENIA. Armen Assatourians, Mohammad Reza Mehrdoust, Sohrab Fallahi.	1187
7143	DETECTION OF DEFECTS IN COMPOSITE HELMETS USING ULTRASONIC IR THERMOGRAPHY. Monika Pracht, Waldemar Swiderski.	1195
7187	MODAL DECOMPOSITION PROCEDURES FOR FE-BASED STUCTURAL MODELS WITH NON-PROPORTIONAL DAMPING. Evgueni Stanoev.	1201
7218	EVALUATION OF DYNAMIC WHEEL LOAD CONSIDERING BALLAST FOULING DURING TRAIN PASSAGE. Chayut Ngamkhanong, Keiichi Goto, Sakdirat Kaewunruen.	1227
7282	DYNAMIC CHARACTERIZATION OF MAGNETORHEOLOGICAL DAMPER AND EXPERIMENTAL ADJUSTMENT OF MODIFIED BOUC-WEN NUMERICAL MODEL. Said Boukerroum, Nadhira Kheznadji, Nacer Hamzaoui.	1229
7284	INFLUENCE OF STIFFNESS AND STRENGTH DEGRADATION OF AN INFILL WALL UPON THE PERFORMANCE OF A TMD. Pedro L.P. Folhento, Manuel T. Braz-César, António M.V. Paula, Rui C. Barros.	1231
7285	STRUCTURAL CONTROL OF A SDOF FRAME WITH NON-LINEAR HYSTERETIC BEHAVIOR USING A TUNED MASS DAMPER. Pedro L.P. Folhento, Manuel T. Braz- César, António M.V. Paula, Rui C. Barros.	1247
7287	NUMERICAL STUDY OF VIBRATIONS IN THE MILLING PROCESS. Ana Isabel Pereira, Manuel Braz-César, João E. Ribeiro.	1271
7288	THERMAL-BRIDGE ASSESSMENT IN GLAZING AND ALUMINIUM FRAMES BY THERMO-IMAGES: A CASE STUDY. Thiago Laignier, Manuel Braz-César, João Ribeiro.	1273
7308	SEISMIC ANALYSIS OF THE IRREGULAR FIRE STATION BUILDING OF L'AQUILA. Marco Scagnetti, Rui C. Barros, Marco Mezzi.	1275
7309	ON THE USE OF RADAR INTERFEROMETRY FOR THE STRUCTURAL MONITORING OF BRIDGES. Rui C. Barros, Fábio M. Paiva.	1287
7310	DYNAMIC STRUCTURAL HEALTH MONITORING OF A TRANSMISSION TOWER USING INTERFEROMETRIC RADAR. Fábio M. Paiva, Rui C. Barros, Luís Guerreiro.	1301
SYMP	OSIUM-14: NEW PRODUCT DEVELOPMENT - DESIGN RESEARCH, MATERIALS SELECTION, INNOVATION SYSTEMS	1303
7065	RELIABILITY AND FAILURE OF POLICY IMPLEMENTATION OF INCLUSIVE DESIGN: CASE STUDIES OF OPEN SPACE IN BEIJING, TAIPEI, AND HONG KONG. Kin W.M. Siu, Yi Lin Wong, Jia Xin Xiao.	1305
7173	FAILURE OF SOCIAL INCLUSION IN PUBLIC SPACE: A CASE STUDY OF CHILDREN'S INCLUSIVE PLAYGROUND AND THEIR ENGINEERING STANDARDS IN HONG KONG. Yi Lin Wong, Mei Seung Lam, Kin W.M. Siu.	1313
7231	TECHNICAL CONTRADITIONS SOLVING TECHNIQUE IN PLANT MAINTENANCE.	1319

Ivan Masin.

7245	GUIDELINES FOR THE ALIGNMENT OF THE INTEGRATED MANAGEMENT SYSTEM WITH THE BUSINESS STRATEGY IN INDUSTRIAL COMPANIES. Luis C. Barbosa, Gilberto Santos, Otávio J. Oliveira.	1321
7253	THE CONTRIBUTION OF DESIGN TO THE SUSTAINABLE DEVELOPMENT BY THE TRANSFORMATION OF "NON-PLACES" IN URBAN GARDENS FOR PRACTICING URBAN AGRICULTURE. António Barroso, Maria João Félix, Gilberto Santos.	1323
7257	MATERIALS SELECTION AND INNOVATION SYSTEMS IN PACKING DESIGN FOR HEALTHY FOOD. Verónica Duarte, Maria João Félix.	1325
7295	LINKING MOULD FILLING AND STRUCTURAL SIMULATIONS. Carlos N. Barbosa, Julio C. Viana, Markus Franzen, Thomas Baranowski, Ricardo Simões.	1327
SYMP	OSIUM-15: QUALITY AND PROCESS MANAGEMENT. THEORY, APPLICATIONS AND CASE STUDIES	1337
7086	FABRICATION LABORATORIES: WHERE NEW DIGITAL TECHNOLOGIES COME TO LIFE. Laura Bravi, Gilberto Santos, Federica Murmura.	1339
7113	DOUBLE-SHEAR W-S-W CONNECTIONS AT AMBIENT TEMPERATURE, WITH DIFFERENT APPLIED TENSILE LOADS AND STEEL DOWELS DIAMETER. Ruben D.A.R. Martins, Elza M.M. Fonseca.	1341
7117	W-W-W CONNECTIONS IN DOUBLE-SHEAR AT AMBIENT TEMPERATURE: EFFECT OF THE APPLIED TENSILE LOAD AND DOWELS DIAMETER. Abderrahim Aissa, Elza M.M. Fonseca, Alvear P.M. Daniel.	1349
7164	USING DMAIC FOR AUTOMATED IDENTIFICATION OF CAUSES AND MEASURES. Patrick Drange, Klaus Seiffert, Roland Jochem.	1357
7175	MAINTENANCE PLANS FOR KNOWN FAULTS EVENTS ADJUSTED WITH FUZZY LOGIC SUPPORT. Joaquin S. Herrera, Jhonny Rodrigues, Miguel Strefezza.	1359
7181	STATISTICAL ANALYSIS OF MAJOR ACCIDENT HAZARDS DATA: LEARNING FROM THE PAST TO DEVELOP A SAFETY CASE. Nasser M. Blahareth, Soliman A. Mahmoud.	1367
7196	ADAPTING KANO'S THEORY FOR WEIGHTING AND IMPLEMENTING CUSTOMER REQUIREMENTS ON A SOFTWARE TOOL FOR ASSESSING HUMAN RELIABILITY IN MANUAL ASSEMBLY. Christian Kern, Robert Refflinghaus.	1369
7211	DEVELOPING AND VALIDATING A MODEL OF ISO 9001 EFFECTIVENESS GAP: EMPIRICAL EVIDENCE FROM CHINA. Xiaojing Sun, Decheng Wen, Dongwei Yan.	1383
7258	THE ANALYSIS OF THE HELICOPTER TECHNICAL READINESS BY MEANS OF THE MARKOV PROCESSES. Józef Żurek, Mariusz Zieja, Jarosław Ziółkowski.	1387
7268	HUMAN FACTOR INFLUENCE ON EDDY CURRENT NON-DESTRUCTIVE TESTINGS. Carlos E. Silva, Rita C. Ferreira, Yasmin S. Martins, Dalton G. Souza, Ana C. Santos.	1401
7272	R&R STUDY FOR VALIDATION OF THE MEASUREMENT SYSTEM OF A PROCESS FOR THE MANUFACTURE OF WIRE COILS IN A TEXTILE INDUSTRY. Fabricio A. Almeida, Vinicius R. Paula, Rachel C. Sabioni, Daniel S. Cortez, José H. Gomes, Pedro P. Balestrassi.	1405

7273	R&R STUDY FOR ANALYSIS OF THE MEASUREMENT SYSTEM OF A PUMP LABELING PROCESS. Vinicius R. Paula, Rachel C. Sabioni, Fabricio A. Almeida, Petra N. Leite, José H. Gomes, Pedro P. Balestrassi.	1407
7279	THE JOURNEY OF MULTI NATIONAL ENTERPRISES INTO BUSINESS AND HUMAN RIGHTS. Pasquale Vetta.	1411
7283	CLUSTER ANALYSIS FOR ENHANCING PROCESS QUALITY IN JOB SHOP PRODUCTION. Antonia Fels, Max Ellerich, Robert Schmitt.	1413
7299	AN ANALYSIS OF QUALITY CONTROL GAME BETWEEN ONLINE SHOPPING PLATFORMS AND SELLERS UNDER COMPLETE INFORMATION. Yaping Li, Decheng Wen, Dongwei Yan.	1423
SYMPO	OSIUM-16: NEW MATERIALS AND DESIGN PROCESSES IN DENTAL MEDICINE	1425
7061	MATHEMATICAL MODELING OF TECHNOLOGIES FOR THE DESIGN OF INNOVATIVE FUNCTIONAL BIO-COATINGS FOR DENTAL IMPLANTS. Alla V. Balueva, Ilia N. Dashevskiy.	1427
7294	SURFACE CHANGES (SCANNING ELECTRON MICROSCOPE) INDUCED BY ARTIFICIAL SALIVA IN TITANIUM-MOLYBDENUM ORTHODONTIC LOOPS. Saul Castro, Maria Ponces, J.C. Reis Campos, Jorge Lopes, Maria Pollmann.	1429
7298	COMPARATIVE STUDY OF FLEXURAL STRENGTH IN THERMOFORMABLE DENTURE BASE RESINS. Tomás Pacheco, José M. Rocha, Nuno V. Ramos, J.C. Reis Campos, Maria H. Figueiral.	1431
7300	MAXILLARY AND MANDIBULAR SUPERIMPOSITIONS IN THE ASSESSMENT OF ORTHODONTIC TREATMENT OUTCOMES. Berta Meireles, Ana C. Braga, Lucinda G. Faria, Saul Castro, Maria João Ponces.	1433
7311	GROWTH PATTERN OF FETAL FACIAL STRUCTURES AND ULTRASOUND DIAGNOSIS MEANS FOR OROFACIAL ANOMALIES. Inês Côrte-Real, Rosete Nogueira, Ana C. Braga, J.C. Reis Campos, Francisco Valente, César Silva, Paula Vaz.	1435
7312	BIS-ACRYL RESIN COLOR EVALUATION BEFORE AND AFTER SURFACE TREATMENTS AND IMMERSION IN COLORING BEVERAGES. Susane L. Gras, Joseane Silva, Paula Vaz, César Silva, J.C. Sampaio Fernandes, Claudia Volpato.	1437
7315	BIOMEDICAL RAPID PROTOTYPING OF FREE-FORM SURFACES BY PLANAR CONTOURS METHOD. Hacene Ameddah, Hammoudi Mazouz.	1439
7316	FORENSIC IDENTIFICATION TOOL IN DENTAL REMOVABLE PROSTHODONTICS. Adélia Fernandes, André Correia, Ana Margarida Silva, Cristina Figueiredo.	1441

AUTHOR INDEX

1445

PAPER REF: 7126

EXPERIMENTAL STUDY ON THE SENSITIVITY OF DMLS MANUFACTURED MARAGING STEEL FATIGUE STRENGTH TO THE BUILD ORIENTATION AND ALLOWANCE FOR MACHINING

Dario Croccolo^{1(*)}, Massimiliano De Agostinis¹, Stefano Fini¹, Giorgio Olmi¹, Francesco Robusto¹, Nusret Muharemovic², Nebojsa Bogojevic³, Aleksandar Vranic³, Snezana Ciric-Kostic³

¹Department of Industrial Engineering (DIN), University of Bologna, Bologna, Italy

²Plamingo d.o.o., Gračanica, Bosnia and Herzegovina

³Faculty of Mechanical and Civil Engineering in Kraljevo, University of Kragujevac, Serbia ^(*)*Email:* dario.croccolo@unibo.it

ABSTRACT

This work derives its motivations from the increasing interest towards Additive Manufacturing and the lack of studies, mainly in the field of fatigue. The effect of build orientation and of allowance for machining on DMLS produced Maraging Steel MS1 has been assessed. The experimental results, properly set up by tools of Design of Experiment, have been statistically processed and compared. The outcomes were that, probably due to effect of the thermal treatment, machining and material properties, the aforementioned factors do not have a significant impact on the fatigue response. This made it possible to work out a global curve that accounts for all the results, consisting in a high amount of data points. This can be regarded as one of the most generable and reliable fatigue models being currently available in the literature. Fracture surfaces have been carefully studied as well, individuating the initiation points being usually located at sub-surface porosities. Micrographies along the stacking direction and the build plane have been performed as well.

Keywords: additive manufacturing, DMLS, maraging steel, rotating bending fatigue.

INTRODUCTION

Nowadays, Additive Manufacturing (AM) technologies are attracting a remarkable interest from industry, civil constructions and academia, considering its great potentials and its large applications. AM makes it possible to achieve the production of even much complicated geometries directly from three-dimensional CAD (computer aided design) models in a short time (Branco, 2018), thus remarkably reducing the time from conception to market. Moreover, through a full exploitation of metal AM technique, lighter parts can be obtained: the capability of building even highly complicated shapes, which would not be affordable by conventional production methods, makes it possible to significantly increase the strength to weight ratio. This technique is more and more used in many strategic fields, e.g. automotive, aerospace, as well in the biomedical and injection molds industries (Becker, 2016; Branco, 2018).

The most widely used techniques of AM for metals are Selective Laser Melting (SLM) that emphasizes the use of a laser as energy source, and Direct Metal Laser Sintering (DMLS) that makes use of a laser to selectively sinter some solid areas of the cross section of the built part. Nowadays, these two techniques can be regarded as being basically the same, according to (Croccolo, 2018; Herderick, 2011; Lewandowski, 2018; Nicoletto, 2018). Both have the capability of building metal parts layer-by-layer, starting from a highly controlled metal powder (Abe, 2001; Santos, 2006). The CAD 3D model is initially split into several slices, individuating the cross sections corresponding to each slice. This makes it possible to convert a 3D problem into a 2D one. Afterwards, a high power laser is used to selectively fuse metallic powder particles, by some scans with controlled direction, which generate the solid shape of the part. After the consolidation of one powder layer, a new powder layer is stacked, the base plate is moved downwards, and the aforementioned processed is repeated until the completion of the component. During this building process, a large part of metal powder is generally unused, but can then be recycled, which makes it possible to strongly reduce the waste of raw material.

However, AM techniques also have some drawbacks arising from their typical cast structure, involving high surface roughness, presence of pores or sometimes oxides and thermal tensile residual stresses. These are due to remarkably steep temperature gradients affecting the layers and significant cooling rates. Despite these outcomes, previous studies in the literature, as well as data sheets by powder producers, indicate that their monotonic properties can be well comparable to those of wrought material, with an isotropic response regardless of the build orientation during the stacking process. Anyway, a further issue with AM processed parts arises from the lack of a sufficiently high amount of studies dealing with their fatigue properties, considering that this is the most frequent state of load in the previously mentioned application fields. According to the literature (Niemann, 2005) the fatigue limit is often coarsely estimated as the 50% of the ultimate tensile strength (UTS) of the material, considering conventional subtractive manufacturing. The determination of a correct fatigue limit to UTS ratio for additively produced parts is still under investigation.

Maraging steels are particularly suitable to powder bed fusion manufacturing techniques, such as DMLS or SLM (Casati, 2017). Moreover, they exhibit a high performance in terms of UTS (close to 2,000 MPa, following aging treatment, regardless of the build orientation (EOS web site)) and of fracture toughness, which makes them promising materials in many fields. However, a possible issue is that a lack of studies, dealing with the fatigue response of this material, can be still observed in the scientific literature. A previous research (Croccolo, 2016) investigated the fatigue response (in terms of both the fatigue strength in the finite life domain and the fatigue limit) of Maraging steel MS1 (also reported as 18% Ni Maraging 300 or AISI 18Ni300). An experimental campaign was aimed at the investigation of the potential impact of the build orientation on fatigue, following heat aging treatment and machining with 0.5 mm allowance. The outcome was that the results were consistent for the three considered build orientation and the estimated fatigue limit was around 590 MPa, corresponding to 29% of the UTS. Consequently, the post manufacture treatments (aging and machining) proved to be able to remove any source of anisotropy. The determined fatigue limit to UTS ratio was also consistent with those of the experimental campaigns described in (Karlinski, 1999; Nagano, 2007; Wang, 2010; Chen, 2013; Schuller, 2015) that dealt with Maraging steels in wrought conditions. A recent study (Santos, 2016) has been focused on the effect of the laser scan speed on both static and fatigue performance, as well as on the porosities induced in the microstructure. However, the tests were conducted under subsequent blocks with different stress range and are therefore not comparable to the previous ones. Moreover, one build orientation only (vertical with respect to the powder bed) has been considered. Other studies, e.g. (Becker, 2016), are mainly focused on the static properties or on the effect of the process parameters on the achieved microstructure of AM processed Maraging steel parts (Mutua, 2018). An interesting and particularly recent study is presented in (Berto, 2017), where AISI

18Ni300 samples were involved in a quite extensive low-cycle fatigue campaign. However, this study was more oriented to the elasto-plastic behaviour in the low-cycle fatigue domain, rather than to the fatigue response in the nominally elastic field and to its dependence on build or post-process parameters.

The subject of the present study consists in an extension of the outcomes of (Croccolo, 2016): it aims at investigating the build orientation effect for increased allowance for machining, and then to better investigate the potential effect of allowance on the fatigue strength of the built and then machined components. The parts have all been produced by DMLS using a commercial machine by EOS. These two goals have been tackled by designing a suitable experimental campaign that completes and integrates the previous one described in (Croccolo, 2016). Regarding the study on allowance, motivations stem from some recent researches (Zhang X, 2017; Zhang J, 2016; Van Hooreweder, 2012), which are starting to focus on the so called "size effect", i.e. the effect of the amount of material to be removed after sintering on mechanical properties. The here reported results indicate a remarkably slower crack growth rate, following machining from oversized blocks. The fatigue performance of machined Ti-6Al-4V samples with suitable selection of allowance has also been the topic of the study (Wycisk, 2015), which confirms the general interest in this point. A recent study (Croccolo, 2018) has studied the effect of allowance on fatigued 15-5 PH Stainless steel, reporting a beneficial effect of the incremented allowance. This is presumably due to the removal of the surficial layers around the contour, where the concentration of voids is statistically higher, and to the drop of residual stresses.

EXPERIMENTAL

The experimental campaign involved Maraging steel MS1 (also reported as 18% Ni Maraging 300 or AISI 18Ni300), whose chemical composition is provided in Table 1. The material powder was supplied by EOSGmbH - Electro Optical Systems, Krailling/Munich, Germany). Fatigue testing was carried out under rotating bending, following the ISO 1143. Specimen geometry was chosen accordingly, with reference to the cylindrical smooth shape with uniform cross section at gage. The samples were manufactured with 6 mm diameter at gage and 10 mm diameter at the heads as a good compromise to reduce production costs, while ensuring agreement with the Standard.

N	Ji [%]	Co [%]	Mo [%]	Ti [%]	Al [%]	Cr [%]	Cu [%]	C [%]	Mn [%]	Si [%]	P [%]	S [%]	Fe [%]
1	17-19	8.5-9.5	4.5-5.2	0.6-0.8	0.05-0.15	≤ 0.5	≤ 0.5	≤ 0.03	≤ 0.1	≤ 0.1	≤ 0.01	≤ 0.01	Bal.

Table 2 - Chemical composition of Maraging steel MS1

The specimens were manufactured by EOSINT M280 system (EOS GmbH - Electro Optical Systems, Krailling/Munich, Germany), equipped with Ytterbium fibre laser with 200W power and emitting 0.2032mm thickness and 1064nm wavelength infrared light beam. The process takes place in an inert environment in a working space with 250×250 mm dimensions on the horizontal plane and a maximum height of 325 mm. The layer thickness was set to 40 µm and a parallel scan strategy with alternating scan direction was adopted. This direction was rotated by 70° at every layer, to get a better structure uniformity. Moreover, a contour line was scanned at every layer to better define the external shape.

The experimental campaign was arranged according to Table 2 that takes two parameters into account: build orientation and allowance. In particular, three levels were considered for the first factor: horizontal, vertical and slanted (45° inclined) with reference to the inclination of the sample main axis of inertia with respect to the horizontal base plate during the deposition process with vertical stacking direction. Regarding the allowance factor, it refers to the allowance accounted during the machining task at every sample gage. Five levels were considered: 0.5, 1, 2, 3 and 4 mm. For the sake of clarity, consistently with the study (Croccolo, 2018), a double notation has been used: the sample Sets have been identified by both their sequential number and a letter (H for horizontal, V for vertical, and S for slanted), followed by a number indicating the entity of allowance. It is worth mentioning that this study must be regarded as a follow-up of the previous one included in (Croccolo, 2016): in particular, the sets with numbers 1-3 were included in that previous research. The current one has dealt with sets #4 to #9, to investigate the effect of the build orientation at incremented (3 mm) allowance and to then deepen the study on allowance for fixed (vertical) build orientation. The blank boxes indicate not investigated treatment combinations, due to their reduced interest for production and design purposes.

	Allowance [mm]					
		0.5	1.0	2.0	3.0	4.0
	Horizontal	Set #2			Set #4	
		(H,0.5)			(H,3)	
Build orientation	Vertical	Set #1	Set #7	Set #8	Set #6	Set #9
Duna orientation		(V,0.5)	(V,1)	(V,2)	(V,3)	(V,4)
	Slanted	Set #3			Set #5	
		(S,0.5)			(S,3)	

Table 2 - Design of the experiment

After the building process and before machining all the samples underwent the recommended surface and heat treatments by the powder producer. In particular, they were treated by microshot-peening, in order to close the pores that may be induced by laser sintering. Afterwards, an aging heat treatment, consisting in age-hardening at 490°C for 6 hours (EOS Web Site) was conducted. This treatment, which is aimed at reducing the tensile residual stresses, arising from the stacking process, was performed with the samples being still connected to their supports. Finally, the specimens underwent machining and refining by grinding with the aim of accomplishing the roughness and dimensional specifications and of improving the fatigue performance.

The fatigue testing was aimed at the determination of the S-N curves and the fatigue limits (FLs). An abbreviated staircase method was applied to determine the FL, according to the Dixon method (Dixon, 1983; Olmi, 2010; Olmi, 2013; Van Hooreweder, 2012). A life duration of 10⁷ cycles was set as run-out, as suggested by the literature and in accordance with (Croccolo, 2016). A confidence analysis (90% confidence level) was also performed based on the standard deviation of FL (scattering of the experimental results) and on the size of the sequence that led to its computation. The data in the finite life domain were processed according to the Standard ISO 12107 (ISO, 2012): both the linear and the quadratic model have been worked out and the general linear test has then been applied, to assess the significance of the improvements arising from the latter. Lower and upper bounds to be wrapped around the curves have been determined, considering failure probabilities of 10% and 90% and with a 90% confidence level. The fatigue tests were performed under rotating

bending (load ratio R=-1, frequency, f=60Hz), so that each sample was loaded under a four point-bending configuration with constant bending moment at gage.

The experimentation was preceded by dimensional checks and roughness measurements that involved every sample. For this purpose, a micrometer screw gage, a digital caliper (both with the resolution of 0.01mm) and a portable surface roughness tester (with the resolution of 0.01 µm, Handysurf E-30A; Carl Zeiss AG, Oberkochen, Germany) were used. Measurements were carried out with 4 replications at each head and with 6 replications at gage. The sample diameter was measured along 90° angled direction. As for roughness, Ra was retrieved considering again 90° angled spots, averaging the roughness profiles over a 4 mm tester shift. Measurements related to the Set #6 are collected in Table 3. Some roughness measurements at the gage are missing, when the related sample survived the fatigue testing: in this cases Ra at heads only was retrieved, due to the impossibility to correctly align the roughness tester at the gage for unbroken samples. At the end of the fatigue testing, crack surfaces were carefully analysed for the individuation of the crack nucleation point and of internal defects, oxides or porosities. For this purpose, a Stemi 305 stereo-microscope (by ZEISS, Oberkochen, Germany) as well as an Optiphot-100 optical microscope (by Nikon, Melville, NY, United States) have been utilized. Micrographies have also been performed, performing cuts of the samples along the cross section and along their longitudinal direction, thus individuating the microstructure along the build direction and on the deposition plane. After proper surface texturing, chemical etching (for 1 min 20 s at room temperature) has been performed. according to the following recipe: 150ml H₂O, 50ml HCl, 25ml HNO₃, 1g CuCl₂. The samples have then been observed by the aforementioned optical microscope.

Sussimon		Gage diam	eter	Hea	ad diameter (left side)	Hea	d diameter (1	right side)
Specimen ID	Mean	St. dev.	Roughness	Mean	St. dev.	Roughness	Mean	St. dev.	Roughness
ID	[mm]	[mm]	Ra [µm]	[mm]	[mm]	Ra [µm]	[mm]	[mm]	Ra [µm]
6.1	6.00	0.008	0.819	10.02	0.001	0.315	10.01	0.001	0.275
6.2	6.00	0.008	0.785	10.01	0.002	0.295	10.02	0.001	0.269
6.3	6.00	0.008	0.758	10.01	0.002	0.294	10.02	0.000	0.293
6.4	5.99	0.010		10.02	0.001	0.304	10.02	0.001	0.271
6.5	6.00	0.007	0.779	10.01	0.002	0.336	10.02	0.002	0.305
6.6	6.00	0.013	0.738	10.01	0.002	0.388	10.02	0.002	0.286
6.7	5.99	0.009		10.01	0.002	0.294	10.02	0.000	0.309
6.8	5.99	0.006	0.748	10.02	0.002	0.331	10.02	0.001	0.330
6.9	5.99	0.007	0.736	10.01	0.002	0.320	10.02	0.001	0.286
6.10	6.00	0.007	0.733	10.01	0.002	0.346	10.01	0.002	0.286
6.11	6.00	0.007	0.733	10.01	0.003	0.313	10.02	0.001	0.261
6.12	5.99	0.007	0.745	10.02	0.001	0.353	10.01	0.000	0.270
6.13	6.00	0.008	0.769	10.02	0.002	0.404	10.01	0.001	0.308

Table 3 - Dimensional and roughness (Ra) measurements with regard to the samples of Set #6

RESULTS

The results of the fatigue tests for samples Sets #4 to #9 are collected in Tables 4-9: in particular, sample identifier, the applied load (in terms of stress at the gage) and the observed life are provided. As mentioned above, the fatigue curve in the finite lifespan domain were processed according to ISO 12107 (ISO, 2012) through the determination of both the linear and the quadratic models. The general linear test always led to the outcome that the improvements yielded by the latter were not significant. Therefore, the linear model proved to be the most suitable to process all the results. The fatigue curves can be expressed as in Eq. (1) or Eq. (2), the related coefficients are expressed in Table 10 for each sample Set.

Specimen ID	Stress [MPa]	Life [N]	Failure
4.1	759	554,382	Y
4.2	700	3,435,461	Y
4.3	670	387,562	Y
4.4	640	5,642,058	Y
4.6	580		Ν
4.7	610	8,255,277	Y
4.8	580	9,289,822	Y
4.9	550	9,472,904	Y
4.10	550		Ν

Table 4 - Results of the fatigue tests on the samples of Set #4

Table 5 - Results of the fatigue tests on the samples of Set #5

Specimen ID	Stress [MPa]	Life [N]	Failure
5.1	700	3,499,346	Y
5.2	670	6,092,545	Y
5.3	639	4,554,231	Y
5.4	610		N
5.5	639	8,214,794	Y
5.6	610	9,367,065	Y
5.7	580	9,612,600	Y
5.8	550		Ν
5.9	760	1,807,539	Y
5.10	820	503,537	Y

Table 6 - Results of the fatigue tests on the samples of Set #6

Specimen ID	Stress [MPa]	Life [N]	Failure
6.1	759	3,411,585	Y
6.2	700	5,499,068	Y
6.3	640	7,468,459	Y
6.4	610		Ν
6.5	640	8,456,821	Y
6.6	610	7,982,955	Y
6.7	579		Ν
6.8	610	8,247,250	Y
6.9	881	445,085	Y
6.10	881	243,461	Y
6.11	821	1,265,354	Y
6.12	821	1,591,045	Y
6.13	579	6,547,376	Y

Table 7 - Results of the fatigue tests on the samples of Set #7

Specimen ID	Stress [MPa]	Life [N]	Failure
7.1	759	1,664,344	Y
7.2	699	2,716,753	Y
7.3	639	4,854,824	Y
7.4	610	2,733,629	Y
7.5	579	4,263,093	Y
7.6	550	8,686,316	Y
7.7	520		Ν
7.8	550	8,308,210	Y
7.9	520		N

Specimen ID	Stress [MPa]	Life [N]	Failure
8.1	759	2,173,992	Y
8.2	699	3,681,461	Y
8.3	639	7,003,462	Y
8.4	580	9,426,902	Y
8.5	550		Ν
8.6	580	9,074,564	Y
8.7	550		Ν
8.8	580	9,901,534	Y
8.9	610	5,153,485	Y
8.10	821	1,609,415	Y

Table 8 - Results of the fatigue tests on the samples of Set #8

Table 9 - Results of the fatigue tests on the samples of Set #9

Specimen ID	Stress [MPa]	Life [N]	Failure
9.1	759	2,643,707	Y
9.2	699	3,483,595	Y
9.3	639	5,671,878	Y
9.4	579		Ν
9.5	610	5,586,420	Y
9.6	579		Ν
9.8	610	7,388,578	Y
9.9	579		Ν
9,10	821	1,171,227	Y

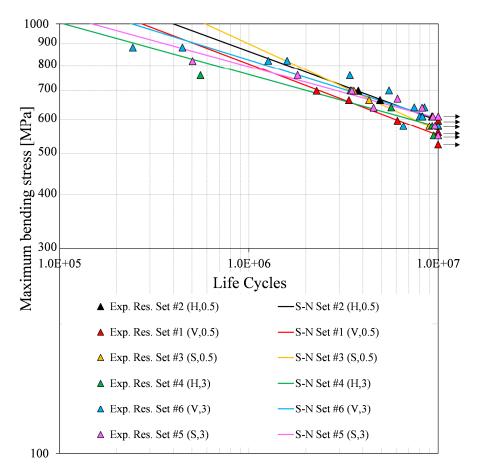


Fig. 1 - S-N curves in the finite life domain for Sets #1 to #6

Set #	b_0	b_1	$10^{-b} {}^{/b}_{0}$	1/b ₁
4	29.87	-8.28	4,038	-0.121
5	30.17	-8.33	4,172	-0.120
6	27.46	-7.36	5,383	-0.136
7	18.97	-4.42	19,417	-0.226
8	20.93	-5.06	13,806	-0.198
9	21.66	-5.32	11.735	-0.188

Table 10 - Coefficients of the determined S-N curves, according to the linear model of (ISO, 2012), with reference to Eq.s (1-2)

$$Log(N) = b_0 + b_1 \cdot Log(S) \tag{1}$$

$$S = 10^{-\frac{b_0}{b_1}} \cdot N^{\frac{1}{b_1}}$$
(2)

The fatigue curves for Sets #1 to 6, considering also the results in (Croccolo, 2016) are depicted in Figure 1. The comparison of these curves makes it possible to account for the potential joint effect of build orientation and of allowance. The fatigue curves for Sets #1, 6, 7, 8, 9 are conversely plotted in Figure 2. The analysis of this graph makes it possible to compare the fatigue responses at different allowance levels.

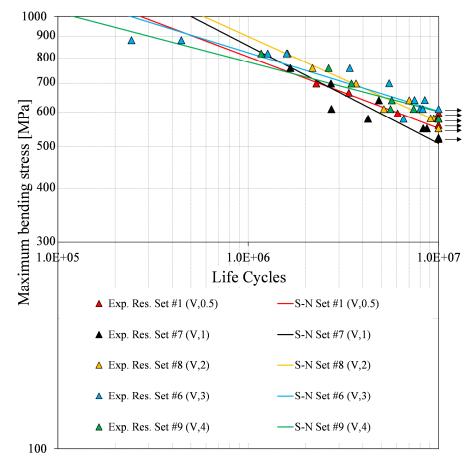


Fig. 2 - S-N curves in the finite life domain for Sets #1, 6, 7, 8 and 9

DISCUSSION

The results have been statistically processed, to assess if the differences among the curves were significant with respect to the observed scattering affecting the experimental data. For this purpose, the ANOVA-based methodology introduced and described in (Olmi, 2012; Croccolo, 2018) was applied. The S-N curves related to the sets #1 to 6 were compared, regarding the related plan as a two-factor design. Conversely, the fatigue curves with regard to Sets #1, 6, 7, 8, 9 have been compared, considering a one-factor design, to evaluate the impact of allowance for machining. The first analysis was conducted as in (Croccolo, 2018), through the calculation of mean fatigue curves and of a grand mean fatigue curve. Then an "SSBR" term, i.e. a "Sum of squares between rows" related to the differences among the responses for different build orientation was computed. At the same way an "SSBC" term, i.e. a "Sum of squares between Columns" related to the effect of allowance has then estimated, to assess the difference between the fatigue responses for 0.5 and 3 mm allowance. Then, "SSI" term, related to the interaction between the two factors was determined. All the values were converted into scalars, by calculating their integral mean over the reference life span. The error-related term was finally determined as the sum of the squares of the residuals between the actual experimental data and the predicted ones based on the interpolating S-N curves. All the determined yields were subsequently processed in a conventional two-factor ANOVA, provided that the aforementioned squared terms were scaled and made comparable one another by division by the related degrees of freedom. The analysis was conducted, considering both an interval between 10^5 and 10^7 cycles and a more reduced span between 10^6 and 10^7 . The results in both cases were that all the differences are negligible, meaning that the two factors are not significant and that no interaction occurs. The ANOVA table regarding the first one is reported in Table 11.

		0 (,	
	Sum of squares	Degrees of freedom	Failure	Fisher's ratio	p-value
SSBR: Effect of the build orientation	0.0005	2	0.0003	0.44	0.65
SSBC: Effect of the thickness of allowance for machining	0.0028	1	0.0028	4.84	0.04
SSI: Interaction	0.0016	2	0.0008	1.35	0.28
SSE: Error	0.0135	23	0.0006		

Table 11 - ANOVA Table for the two-factor design (lifespan between 10^5 and 10^7)

The one-factor ANOVA was developed as in (Olmi, 2012), however, considering that in this reference the analysis had been applied to a Low Cycle Fatigue study, some details are provided below for the sake of clarity. A grand mean curve $\overline{S_{\mu}}$ has initially been computed as in Eq. (3), where S indicates the 10-base logarithm of the stress corresponding to a generic fatigue life and the subscript refers to the Set number.

$$\overline{S_{...}} = \frac{S_1 + S_6 + S_7 + S_8 + S_9}{5} \tag{3}$$

Then, an "SSBC" term, being related to the effect of allowance, has been determined as in Eq. (4). This takes the differences among the fatigue curves for different allowance levels into account.

$$SSBC = \left[\left(S_1 - \overline{S_{...}} \right)^2 + \left(S_6 - \overline{S_{...}} \right)^2 + \left(S_7 - \overline{S_{...}} \right)^2 + \left(S_8 - \overline{S_{...}} \right)^2 + \left(S_9 - \overline{S_{...}} \right)^2 \right]$$
(4)

As above, the error was estimated as the sum of the squares of the residuals between the experimental yields and the predicted ones, according to the interpolating fatigue curves. Scalar terms were the worked out by the integral means of the aforementioned terms. The analysis proceeded as a conventional one-factor ANOVA, provided the scalar terms were made comparable, rationalizing them by their degrees of freedom. The study was repeated for the same intervals that have been mentioned above with regard to the analysis with two factors. The outcome for the interval between 10^5 and 10^7 is provided in Table 12, in both cases the statistical test proved that the allowance does not have any effect.

	Sum of squares	Degrees of freedom	Failure	Fisher's ratio	p-value
SSBC: Effect of the thickness of allowance for machining	0.0048	4	0.0012	1.66	0.19
SSE: Error	0.0189	26	0.0007		

Table 12 - ANOVA Table for the one-factor design (lifespan between 10^5 and 10^7)

This outcome is also confirmed by the computation of the fatigue limits for infinite life, considering the aforementioned run-out of 10^7 cycles. The nominal values along with their confidence intervals at the 95.5% confidence level are displayed in the bar graph in Figure 3. They are all quite close, with overlapped bands, except for that for Set # 7 that is a bit lower. The average value of the fatigue limit, involving the nine sets, is 581 MPa, corresponding to 38% the UTS of the studied material, following the aging treatment.

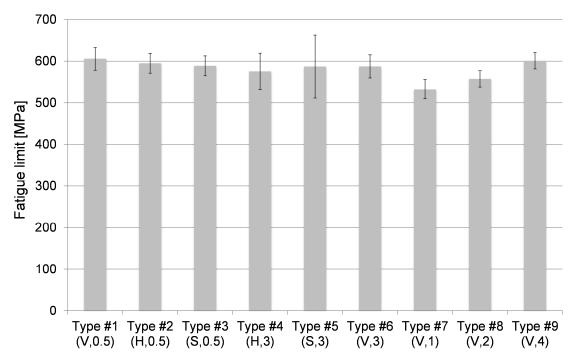


Fig. 3 - Fatigue limits for 10 million cycle run-out with regard to samples #4 to 9. The results for Sets #1 to 3 (Croccolo, 2016) are also appended for comparison purposes.

This result indicates that Maraging Steel has an isotropic behaviour, moreover its response does not exhibit variation for incremented allowance. In other words, this material has a particularly robust response that yields all consistent results even in different production conditions. This outcome also confirms the remarks in (Croccolo, 2018). The build process of

a Maraging Steel is performed with a doubled layer thickness (40μ m instead of 20μ m) with respect to the manufacturing of a Stainless steel. Moreover, it leads to a much more reduced tensile residual stress field, due to the lower coefficient of thermal expansion (CTE). In particular, the CTE of Maraging steel is approximately 10% lower than that for Stainless steel and the lower CTE, the lower the induced residual stresses (Fergani, 2017; Croccolo, 2018). The doubled value of layer thickness also affects the induced residual stress. In fact, with approximately one-half stacked layers, the state of heating/cooling is made more uniform along the part height, and the thermal gradient, as well as the residual stress state, are reduced.

Incremented allowance proved to have a beneficial effect for Stainless Steel, as machining was able to remove the external surface layers, thus promoting a remarkable drop of the detrimental residual stresses. For Maraging steels, residual stresses already keep a much more reduced value; therefore this beneficial effect turns to be negligible.

Moreover, due to the higher number of layers, Stainless Steel proved to be sensitive to the notch effect in case of missing scans and to the number of defects per layer due to the limited perpendicularity between the laser path and the surface. Slanted orientation proved to be the best for that material as a good compromise between a not high notch effect and a not too extended build area, which made it possible to get a good perpendicularity with the laser path. Maraging Steel, with one-half layers, is less sensitive to the described effects; therefore, the build orientation is also completely ineffective. Moreover, like in (Croccolo, 2016), the present results confirm that the post-manufacture heat treatment and machining are able remove any possible cause of anisotropy.

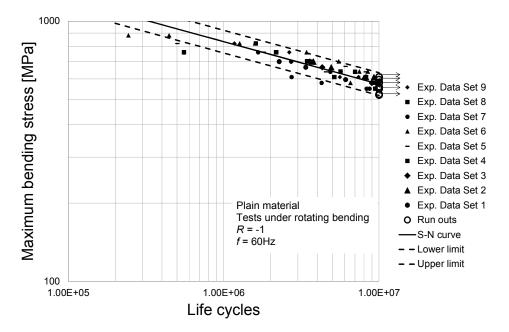


Fig. 4 - Global S-N curve in the finite life domain accounting for all the 56 data

Considering the aforementioned outcomes and the statistical evidence of not significant differences among the fatigue responses of the nine sets (also including those tested in Croccolo, 2016)), a global fatigue curve was determined. This curve has been yielded by the regression of all the data for all the studied sets and can be regarded as the most general and reliable description of the response of the studied Maraging Steel in the current state of the

art. This model is likely to have many applications in the field of machine design, as it simultaneously accounts for the issues of build orientation and machining and related allowance. The fatigue curve was worked out, based on ISO 12107 (ISO, 2012), by the linear model, like for all the sample sets. The confidence band at the 90% confidence level, with lower and upper bounds respectively corresponding to 10% and 90% failure probabilities, has been determined as well. The curve and the related band, along with dots corresponding the 56 experimental data that were involved in the interpolation, is plotted in Figure 4. The analytical equations of the nominal curve at the 50% failure probability, to be used for life prediction, are provided in Eq.s (5-6).

$$Log(N) = 23.91 + 6.31 \cdot Log(S)$$
 (5)

$$S = 7940 \cdot N^{-0.163}$$

(6)

Fig. 5 - Fractographic analysis of the fracture surface of sample 8.4: detail at the right side with crack initiation from a sub-surface porosity

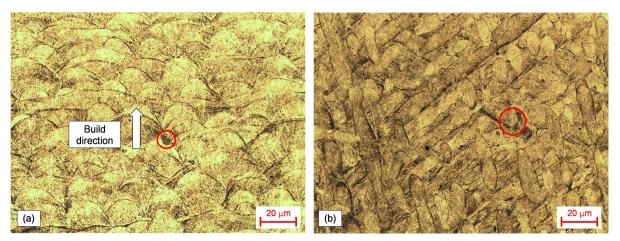


Fig. 6 - Micrographies on samples of Set #4 (H,3): (a) stacked layers with highlighted build direction: (b) laser scans with emphasized inclusions by red circles

The study was finally completed by fractography. Some fracture surfaces along with details of the crack initiation points are shown in Figure 5. It can be remarked that almost the totality of failures was triggered by sub-surface porosities or voids with average dimension (diameter) and distance from the edge of respectively 50um and 80um. The area of initial propagation is also clearly visible due to its bright aspect. The outcomes of the carried out micrographies are shown in the pictures in Figure 6 with reference to samples of Set #4 that were horizontally stacked with a 3 mm allowance. The deposited layers are visible in Figure 6(a): this image was recorded, considering a cut along the sample cross section. The laser scans along the build plane are then visible in Figure 6(b): this picture was taken, following a cut along a plane containing the sample longitudinal axis, i.e. along the deposition plane.

CONCLUSIONS

The motivations for this study arose from the lack of a sufficient amount of data regarding the fatigue response of Maraging steel MS1 (also reported as 18% Ni Maraging 300 or AISI 18Ni300). Moreover, a further interest has been addressed to the possible effect of build orientation (even in presence of post-manufacture heat treatment and machining) and of the allowance for machining. Regarding this point, previous studies in the literature and by the same research group had indicated the possibility of a size effect (for parts machined from oversized blocks) in some conditions.

The aforementioned goals have been tackled experimentally, running fatigue tests under rotating bending, involving aged Maraging steel MS1 (also reported as 18% Ni Maraging 300 or AISI 18Ni300). Six sample sets have been tested in the present campaign, thus investigating the effects of build orientation and of allowance, according to an extensive experimental plan. The results, statically processed, have indicated that the two mentioned factors do not have any impact on the fatigue response, including both the behaviour in the finite life domain and that for infinite life. In particular, the averaged fatigue limit, including all the performed tests, is 581 MPa, corresponding to 38% of the Ultimate Tensile Strength. This completely isotropic response is due to the beneficial effect of aging and machining, to the higher layer thickness (with respect, for instance to Stainless Steels) and to material properties, especially a not high coefficient of thermal expansion, which lead to a quite small residual stress field arising from the stacking process.

The analysis has been completed by the determination of a global fatigue curve that can be regarded as one of the most general and reliable models for fatigue life prediction being currently available in the literature. The curve, along with its confidence band (for 10% and 90% failure provability, 90% confidence level) has been determined through the interpolation of 56 experimental data, retrieved for different build orientations and different allowances, but all well consistent one another.

Finally, fractographic analyses have been conducted and have indicated that cracks usually start from sub-surface porosities having dimensions and distance from the edge of respectively 50µm and 80µm. Some inclusions have also been highlighted by micrographies conducted on the build plane and along the perpendicular build direction.

ACKNOWLEDGMENTS

The research presented in this paper has received funding from the European Union's Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie grant agreement No. 734455.

REFERENCES

[1] Branco R, Costa JDM, Berto F, Razavi SMJ, Ferreira JAM, Capela C, Santos L, Antunes F. Low-Cycle Fatigue Behaviour of AISI 18Ni300 Maraging Steel Produced by Selective Laser Melting. Metals, 2018, 8, 32, pp. 1-15.

[2] Becker TH, Dimitrov D. The achievable mechanical properties of SLM produced Maraging Steel 300 components. Rapid Prototyping Journal, 2016, 22, 3, pp. 487-494.

[3] Croccolo D, De Agostinis M, Fini S, Olmi G, Bogojevic N, Ciric-Kostic S. Effects of build orientation and thickness of allowance on the fatigue behaviour of 15-5 PH stainless steel manufactured by DMLS. Fatigue & Fracture of Engineering Materials & Structures, 2018, 41, pp. 900-916.

[4] Herderick E. Additive manufacturing of metals: a review. In: Proc. of Materials Science and Technology (MS&T), October 16-20, 2011, Columbus, Ohio.

[5] Lewandowski JJ, Seifi M. Metal additive manufacturing: a review of mechanical properties. Annual review of materials research, 2016, 46, pp. 151-186.

[6] Nicoletto G. Directional and notch effects on the fatigue behavior of as-built DMLS Ti6Al4V. International Journal of Fatigue, 2018, 106, pp. 124-131.

[7] Abe F, Osakada K, Shiomi M, Uematsu K, Matsumoto M. The manufacturing of hard tools from metallic powders by selective laser melting. Journal of Materials Processing Technology, 2001, 111, 1-3, pp. 210-213.

[8] Santos EC, Shiomi M, Osakada K, Laoui T. Rapid manufacturing of metal components by laser forming, International Journal of Machine Tools and Manufacture, 2006, 46, 12-13, pp. 1459-1468.

[9] Niemann G, Winter H, Hohn BR. Maschinenelemente. Springer-Verlag, Berlin, Germany, 2005.

[10] Casati R, Lemke J, Vedani M. Microstructural and Mechanical Properties of As Built, Solution Treated and Aged 18 Ni (300 grade) Maraging Steel Produced by Selective Laser Melting. La Metallurgia Italiana, 2017, 1, pp. 11-20.

[11] https://cdn0.scrvt.com/eos/c88047245bff2c4b/2f494ef432d0/MS-MS1-M80_M290_400 W_Material_data_sheet_05-14_en.pdf.

[12] Croccolo D, De Agostinis M, Fini S, Olmi G, Vranic A, Ciric-Kostic S. Influence of the build orientation on the fatigue strength of EOS maraging steel produced by additive metal machine. Fatigue & Fracture of Engineering Materials & Structures, 2016, 39, pp. 637-647.

[13] Karlinski W, Tacikowski J, Wojtyra K. Fatigue strength of nitrided 18Ni250 and 18Ni300 grade maraging steels. Surface Engineering, 1999, 15, pp. 483-489.

[14] Nagano T, Kawagoishi N, Moriyama M, Chen Q, Nagashima E. Influence of shot peening on fatigue strength of maraging steels with different hardness. Journal of the Society of Materials Science, 2007, 56, pp. 1126-1132.

[15] Wang W, Yan W, Duan Q, Shan Y, Zhang Z, Yang K. Study on fatigue property of a new 2.8 GPa grade maraging steel. Materials Science and Engineering: A, 2010, 527, pp. 3057-3063.

[16] Chen, Q, Nagano T, Nakamura Y, Maeda Y, Kawagoishi N. Initiation and propagation behavior of a fatigue crack of maraging steel in high humidity. In: Proc. 13th International Conference on Fracture, International Congress on Fracture (ICF), 2013, Beijing, China, pp. 16-21.

[17] Schuller R, Fitzka M, Irrasch D, Tran D, Pennings B, Mayer H. VHCF properties of nitrided 18Ni maraging steel thin sheets with different Co and Ti content. Fatigue & Fracture of Engineering Materials & Structures, 2015, 38, pp. 518-527.

[18] Santos LMS, Ferreira JAM, Jesus JS, Costa JM, Capela C. Fatigue behaviour of selective laser melting steel components. Theoretical and Applied Fracture Mechanics, 2016, 85, pp. 9-15.

[19] Mutua J, Nakata S, Onda T, Chen Z-C. Optimization of selective laser melting parameters and influence of post heat treatment on microstructure and mechanical properties of maraging steel. Materials and Design, 2018, 139, pp. 486-497.

[20] Zhang X, Martina F, Ding J, Wang X, Williams S. Fracture toughness and fatigue crack growth rate properties in wire + arc additive manufactured Ti-6Al-4V. Fatigue & Fracture of Engineering Materials & Structures, 2017, 40, 5, pp. 790-803.

[21] Zhang J, Wang X, Paddea S, Zhang X. Fatigue crack propagation behaviour in wire+arc additive manufactured Ti-6Al-4V: effects of microstructure and residual stress. Materials and Design, 2016, 90, pp. 551-561.

[22] Van Hooreweder B, Moens D, Boonen R, Kruth J-P, Sas P. Analysis of fracture toughness and crack propagation of Ti-6Al-4V produced by selective laser melting. Advanced Engineering Materials, 2012, 14, pp. 92-97.

[23] Wycisk E, Siddique S, Herzog D, Walther F, Emmelmann C. Fatigue performance of laser additive manufactured Ti-6A-4V in very high cycle fatigue regime up to 10⁹ cycles. Frontiers in Materials, 2015, 2, pp. 1-8.

[24] Dixon WJ, Massey F Jr. Introduction to Statistical Analysis. McGraw-Hill, New York, United States, 1983.

[25] Olmi G, Comandini M, Freddi A. Fatigue on shot-peened gears: experimentation, simulation and sensitivity analyses. Strain, 2010, 46, 4, pp. 382-395.

[26] Olmi G, Freddi A. A new method for modelling the support effect under rotating bending fatigue: application to Ti-6Al-4V alloy, with and without shot peening. Fatigue & Fracture of Engineering Materials & Structures, 2013, 36, 10, pp. 981-993.

[27] Van Hooreweder B, Moens D, Boonen R, Sas P. The critical distance theory for fatigue analysis of notched aluminium specimens subjected to repeated bending. Fatigue & Fracture of Engineering Materials & Structures, 2012, 35, pp. 878-884.

[28] International Organization for Standardization ISO 12107:2012. Metallic Materials - Fatigue Testing - Statistical Planning and Analysis of Data. International Organization for Standardization (ISO), Geneva, Switzerland, 2012.

[29] Olmi G. Low cycle fatigue experiments on Turbogenerator steels and a new method for defining confidence bands. Journal of Testing and Evaluation, 2012, 40, 4, Paper ID JTE104548.

[30] Fergani O, Berto F, Welo T, Liang SY. Analytical modelling of residual stress in additive manufacturing. Fatigue & Fracture of Engineering Materials & Structures, 2017, 40, pp. 971-978.