
23 April 2024

Alma Mater Studiorum Università di Bologna
Archivio istituzionale della ricerca

Frame synchronization for M-ary modulation with phase offsets / Elzanaty, Ahmed; Koroleva, Ksenia;
Gritsutenko, Stanislav; Chiani, Marco. - ELETTRONICO. - (2017), pp. 1-6. (Intervento presentato al
convegno IEEE International Conference on Ubiquitous Wireless Broadband (ICUWB), 2017 tenutosi a
Salamanca, Spain nel September 12th to 15th, 2017) [10.1109/ICUWB.2017.8250962].

Published Version:

Frame synchronization for M-ary modulation with phase offsets

Published:
DOI: http://doi.org/10.1109/ICUWB.2017.8250962

Terms of use:

(Article begins on next page)

Some rights reserved. The terms and conditions for the reuse of this version of the manuscript are
specified in the publishing policy. For all terms of use and more information see the publisher's website.

Availability:
This version is available at: https://hdl.handle.net/11585/622528 since: 2019-02-14

This is the final peer-reviewed author’s accepted manuscript (postprint) of the following publication:

This item was downloaded from IRIS Università di Bologna (https://cris.unibo.it/).
When citing, please refer to the published version.

http://doi.org/10.1109/ICUWB.2017.8250962
https://hdl.handle.net/11585/622528


This	is	the	post	peer-review	accepted	manuscript	of:		

A.	Elzanaty,	K.	Koroleva,	S.	Gritsutenko,	and	M.	Chiani,	“Frame	syn-	chronization	for	
M-ary	 modulation	 with	 phase	 offsets,”	 in	 IEEE	 Inter-	 national	 Conference	 on	
Ubiquitous	Wireless	Broadband	(ICUWB),	2017,	Salamanca,	Spain,	Sept	2017,	pp.	1–
6,	Best	Paper	Award.	

	

The	published	version	is	available	online	at:			

	

https://doi.org/10.1109/ICUWB.2017.8250962	

	

©	2017	 IEEE.	Personal	use	of	this	material	is	permitted.	Permission	from	IEEE	must	be	obtained	for	all	other	
uses,	 in	 any	 current	 or	 future	 media,	 including	 reprinting/republishing	 this	 material	 for	 advertising	 or	
promotional	purposes,	creating	new	collective	works,	for	resale	or	redistribution	to	servers	or	lists,	or	reuse	
of	any	copyrighted	component	of	this	work	in	other	works.	
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Abstract—We study frame synchronization (FS) based on the
transmission of known sequences (synchronization words) for
M -PSK signals in the presence of additive white Gaussian noise
and phase offset due to imperfect carrier phase estimation. In
particular, we derive optimal and simple suboptimal metrics for
noncoherent FS of M -PSK modulation with M ≥ 4. We show
that a simple ℓ1-norm correction of the noncoherent correlation
gives large improvements in terms of synchronization error
probability. For example, more than 2 dB are gained with
respect to usual correlation tests in terms of signal to noise ratio,
assuming QPSK with a synchronization error probability 10−3.
Finally, we illustrate that the proposed technique is better than
correlation based metric also for M -QAM systems, as well as in
the presence of small frequency offsets.

I. INTRODUCTION

Frame synchronization (FS) is a fundamental stage in most
communication systems for achieving reliable radio links with
low probability of error [1]–[18]. The FS mechanism considers
finding the position of a known synchronization sequence,
called here sync word (SW), which is inserted into a data
stream composed of modulated symbols.

The optimal FS metric for binary transmission has been
studied for binary symmetric channels (BSC) and additive
white Gaussian noise (AWGN) channels in [1] and [2], respec-
tively, where binary signalling with coherent demodulation and
perfect carrier synchronization was assumed. The probability
of correct frame synchronization for the metrics in [2] is
analyzed in [12], where the concept of pairwise synchroniza-
tion error probability (PSEP) is introduced. The derivation of
the optimum metrics according to hypothesis testing theory
and the acquisition time analysis is provided for variable
(unknown) frame lengths in [9]–[11], where sequential FS is
considered.

Nevertheless, in some systems FS is required to be per-
formed prior to phase synchronization, referred throughout the
paper as “noncoherent” FS. For this “noncoherent” FS setting,
it has been shown that, assuming a phase offset and negligible
frequency offset, the common noncoherent correlation detector
is not the optimum one [13]. In the presence of large frequency
offsets the situation is even more difficult. For example,
in code division multiple access (CDMA) systems, suitable
postdetection integration techniques, with combinations of
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successive partial noncoherent correlations, are employed to
mitigate the effects of frequency offsets [19], [20]. Metrics
for FS that are robust to frequency offsets have been provided
for TDMA systems in [21], [22].

While the previous schemed are usually given for binary
phase shift keying (BPSK), many modern systems use multi-
level modulations. For example, in link adaptive schemes the
number of levels in the modulation is chosen adaptively, de-
pending on the channel characteristics and required throughput
[23], [24]. Therefore, efficient FS is essential for such M -
ary modulation based systems. Extensions of coherent FS of
BPSK to multilevel modulation, frequency selective channels,
and code-aided frame synchronization techniques are provided
in several works [3]–[8].

On the other hand, less is known in the case of nonco-
herent FS for M -ary phase shift keying (M -PSK) modulated
symbols, where the most common approach is to use a
noncoherent correlator. The correlation is performed over a
testing time equal to the duration of the SW if the phase
offset is constant within that duration, while the performance
significantly degrades when the phase varies considerably
within the correlation time, due for example to the presence
of frequency offset. Yet, optimal metrics for noncoherent FS
of M -ary modulated symbols have not been fully addressed.

In this paper, we first derive an optimal metric for nonco-
herent FS of M -PSK modulations with M ≥ 4, assuming
a negligible frequency offset. We show that the optimal
test requires numerical integration, which is not suitable for
real-time implementations. Hence, suboptimal low-complexity
metrics, i.e., accurate approximations of the optimal detector,
are proposed for quadrature phase shift keying (QPSK) and
8-phase shift keying (8-PSK). Starting from the approach in
[13], we also analyze for M -PSK a low-complexity metric
consisting in the simple noncoherent correlator corrected by
removing the ℓ1-norm of the observed vector. The proposed
metric shows a considerable performance improvement with
respect to (w.r.t.) the (non-optimal) correlation based detector,
also in the presence of small frequency offsets. Finally, we
investigate the performance improvement of the new scheme
when applied to M -ary quadrature amplitude modulation
(M -QAM) systems.

II. PROBLEM STATEMENT

The frame structure is shown in Fig. 1 where a sync
word composed of NSW arbitrary symbols (c0, ..., cNSW−1)
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Fig. 1. Frame Structure.

is periodically inserted, with period Nf , in a random
M -PSK data stream. The SW symbols ci are completely
arbitrary. The data stream is assumed to be composed
of M -PSK symbols di which are independent, identically
distributed (i.i.d.) and uniformly distributed over the set
{

ej0, ej2π/M , ej4π/M , . . . , ej(M−1)2π/M
}

.
We assume matched filter (MF) and perfect clock synchro-

nization with sampling period T seconds. The observation
window is composed of the Nf samples r0, r1, . . . , rNf−1. The
SW is transmitted starting at position m ∈ {0, · · · , Nf − 1}.
The received baseband complex samples, ri = rI

i + j rQ
i , are

ri mod Nf = ci−m ejϕ+ni mod Nf , i = m, . . . , NSW+m−1

ri = di e
jϕ + ni, elsewhere.

where ϕ is a random variable (r.v.) uniformly distributed over
[−π,π ) representing the carrier phase offset, assumed constant
over the considered observation window, and ni are the i.i.d.
circularly symmetric complex Gaussian r.v.s, with zero mean
and variance σ2 per dimension, accounting for thermal noise.
We normalize the constellation for the data so that the energy
per symbol is unity, i.e., Es ! E

{

|di|2
}

= 1. Consequently,
the signal-to-noise ratio (SNR) is Es/N0 = 1/(2σ2), where
N0 is the one-sided thermal noise power spectral density.

III. TESTING HYPOTHESIS FOR FS

In this section, we generalize the work in [13], which
considered BPSK, to a broader class of multilevel modulation.
More precisely, we derive optimal metrics for frame synchro-
nization of M -PSK signals, M ≥ 4. As described in [10],
[12], [13], the metric for estimating if the SW position starts
at position 0 (hypothesis H1) or not (hypothesis H0) is related
to testing the following hypotheses:

H0 : ri = di e
jϕ + ni, i = 0, . . . , NSW − 1

H1 : ri = ci e
jϕ + ni, i = 0, . . . , NSW − 1 .

The common test used for synchronization is based on the
so-called noncoherent correlation metric

Λ(corr)(r) =

∣

∣

∣

∣

∣

NSW−1
∑

i=0

r∗i ci

∣

∣

∣

∣

∣

D1

≷
D0

λ (1)

where r = r0, r1 . . . , rNSW−1 and D0,D1, are respectively
decisions for H0,H1. Since this test is widely adopted, we
will use it as a benchmark for the comparison with the new
proposed tests. However, we remark that, although commonly

used, the test based on noncoherent correlation metric (1)
is by no way the optimal one, as shown in [13] for binary
modulation formats.

In order to derive the optimal test for M -PSK, we start from
the general form of the likelihood ratio test (LRT)

Λ(r) =
fR|H1

(r|H1)

fR|H0
(r|H0)

D1

≷
D0

λ (2)

where fR|Hl
(r|Hl) is the probability distribution function

(p.d.f.) of the random vector R = (R0, . . . , RNSW−1) in the
hypothesis Hl and Ri is the r.v. of the received sample ri [25].
We have now to specialize the general expression (2) to our
noncoherent frame synchronization problem.

A. Case H0

Assuming the H0 hypothesis, when the data vector
d = (d0, . . . , dNSW−1) with phase offset ϕ is observed, we
have the conditional p.d.f.

fR|H0,ϕ,d(r|H0,ϕ ,d) =
NSW−1
∏

i=0

1

2πσ2
e−

|ri−di ejϕ|2
2σ2 . (3)

Taking the expectation with respect to the distribution of the
M -PSK data symbols d and assuming M even, we have

fR|H0,ϕ(r|H0,ϕ) = (4)
(

2

M

)NSW

K(r)
NSW−1
∏

i=0

M/2−1
∑

p=0

coshℜ
{

r̃ie
−jp2π/M e−jϕ

}

where K(r) = (2πσ2)−NSW
∏NSW−1

i=0 e−
|ri|

2+1

2σ2 .

To simplify the notation, we use the tilde to indicate nor-
malization with respect to the noise variance, i.e., r̃i = ri/σ2.
Then, we evaluate fR|H0

(r|H0) by averaging (4) with respect
to ϕ, with different numerical approximation.

B. Case H1

For hypothesis H1, where we observe the known SW
symbols ci in additive Gaussian noise, we have the conditional
p.d.f.

fR|H1,ϕ(r|H1,ϕ) =
NSW−1
∏

i=0

1

2πσ2
e−

|ri−ci ejϕ|2
2σ2 . (5)

Averaging over ϕ, we obtain

fR|H1
(r|H1) = K(r) I0

(
∣

∣

∣

∣

∣

NSW−1
∑

i=0

r̃∗i ci

∣

∣

∣

∣

∣

)

(6)

where I0(x) = (2π)−1
∫ π
−π exp(x cos θ) dθ is the zeroth-order

modified Bessel function of first kind [26, (8.406)]. In order to
use (2), we need (6) and the expected value of (4) with respect
to ϕ. In the following sections we discuss different methods
to integrate (4) over ϕ for QPSK and 8-PSK.



IV. OPTIMAL AND SUBOPTIMAL TESTS FOR QPSK
MODULATION

In this section we provide the optimal likelihood ratio test
for the QPSK modulated signal. Putting M = 4 in (4) we get

fR|H0,ϕ(r|H0,ϕ) =

(

1

2

)NSW

K(r)×

NSW−1
∏

i=0

(

coshℜ
{

r̃ie
−jϕ
}

+ coshℜ
{

r̃ie
−jπ/2e−jϕ

})

=

(

1

2

)NSW

K(r)
NSW−1
∏

i=0

[

cosh
(

r̃Ii cosϕ+ r̃Qi sinϕ
)

+

cosh
(

r̃Ii sinϕ− r̃Qi cosϕ
)]

(7)

where r̃i = r̃I
i + j r̃Q

i .

Averaging with respect to ϕ we get, after some manipula-
tion, the metric for the (optimum) LRT in (8). Unfortunately,
the LRT in the form (8) is not suitable for real time imple-
mentation as it requires numerical integration, thus we have
to introduce some simplifications. At first, we approximate
the denominator by applying both the quadrature rule with
Nq points

∫ π

0
f(ϕ)dϕ ≃

π

Nq

Nq−1
∑

l=0

f

(

l
π

Nq

)

(9)

and by considering that the hyperbolic cosine has exponen-
tial growth taking into account only the maximum contribu-
tion. Then, the corresponding approximate log-likelihood ratio
(LLR) can be written as

lnΛ (1)(r) ! ln I0

(
∣

∣

∣

∣

∣

NSW−1
∑

i=0

r̃∗i ci

∣

∣

∣

∣

∣

)

−

max
l

[

NSW−1
∑

i=0

ln

(

cosh
(r̃Ii − r̃Qi ) cosϕl + (r̃Ii + r̃Qi ) sinϕl

2

× cosh
(r̃Ii + r̃Qi ) cosϕl + (r̃Qi − r̃Ii ) sinϕl

2

)]

(10)

where ϕl = lπ/Nq.

Regarding the numerator of (8), lnΛ (1)(r) can be approxi-
mated for high SNR as

lnΛ (2)(r) !

∣

∣

∣

∣

∣

NSW−1
∑

i=0

r̃∗i ci

∣

∣

∣

∣

∣

−

max
l

[

NSW−1
∑

i=0

∣

∣

∣

∣

∣

(r̃Ii − r̃Qi ) cosϕl + (r̃Ii + r̃Qi ) sinϕl

2

∣

∣

∣

∣

∣

+

NSW−1
∑

i=0

∣

∣

∣

∣

∣

(r̃Ii + r̃Qi ) cosϕl + (r̃Qi − r̃Ii ) sinϕl

2

∣

∣

∣

∣

∣

]

(11)

where we used the approximations ln I0(x) ≃ |x| −
ln
√

2π|x| ≃ |x| and ln cosh(x) ≃ |x|−ln 2, valid for |x| ≫ 1.

In fact, (11) can be interpreted as a modification of the
noncoherent correlator with an additive correction term. The
approximation accuracy of the numerical integration in (8)
increases with Nq. For Nq = 2 the metrics given in (10) and
(11) specialize to:

lnΛ (1)(r) ! ln I0

(
∣

∣

∣

∣

∣

NSW−1
∑

i=0

r̃∗i ci

∣

∣

∣

∣

∣

)

− (12)

max

[

NSW−1
∑

i=0

ln

(

cosh
r̃Ii +r̃Qi
2σ2

)

,
NSW−1
∑

i=0

ln

(

cosh
r̃Ii −r̃Qi
2σ2

)]

lnΛ (2)(r) !

∣

∣

∣

∣

∣

NSW−1
∑

i=0

r∗i ci

∣

∣

∣

∣

∣

−

max

[

NSW−1
∑

i=0

∣

∣

∣

∣

∣

r̃Ii + r̃Qi
2

∣

∣

∣

∣

∣

,
NSW−1
∑

i=0

∣

∣

∣

∣

∣

r̃Ii − r̃Qi
2

∣

∣

∣

∣

∣

]

. (13)

For Nq = 4 the metric for QPSK in (11) becomes

lnΛ (2)(r) ! −max

[

NSW−1
∑

i=0

∣

∣

∣

∣

∣

r̃Ii + r̃Qi
2

∣

∣

∣

∣

∣

,
NSW−1
∑

i=0

∣

∣

∣

∣

∣

r̃Ii − r̃Qi
2

∣

∣

∣

∣

∣

,

NSW−1
∑

i=0

∣

∣

∣

∣

∣

√
2|r̃Ii |
2

∣

∣

∣

∣

∣

,
NSW−1
∑

i=0

∣

∣

∣

∣

∣

√
2|r̃Qi |
2

∣

∣

∣

∣

∣

]

+

∣

∣

∣

∣

∣

NSW−1
∑

i=0

r∗i ci

∣

∣

∣

∣

∣

. (14)

In Section VII we numerically investigate the synchronization
error probability as a function of the signal to noise ratio for
the tests based on these metrics.

V. OPTIMAL AND SUBOPTIMAL TESTS FOR 8-PSK
MODULATION

For 8-PSK signals the transmitted symbols are
di = exp{jπm/4}, m ∈ {0, 1, ..., 7}, and (4) becomes:

fR|H0,ϕ(r|H0,ϕ) =

(

1

2

)NSW

K(r)
NSW−1
∏

i=0

(

coshℜ
{

r̃ie
−jϕ
}

+ coshℜ
{

r̃ie
−jπ/4e−jϕ

}

+ coshℜ
{

r̃ie
−jπ/2e−jϕ

}

+ coshℜ
{

r̃ie
−j3π/4e−jϕ

})

. (15)

Taking into account that ϕ is uniformly distributed over the
interval [−π,π ), we obtain from (15)

fR|H0,ϕ(r|H0) =
K(r)

π

∫ π

0

NSW−1
∏

i=0

[

cosh
(

r̃Ii cosϕ+ r̃Qi sinϕ
)

+ cosh

(√
2

2

(

(r̃Ii + r̃Qi ) cosϕ+ (r̃Qi − r̃Ii ) sinϕ
)

)

+ cosh

(√
2

2

(

(r̃Ii + r̃Qi ) cosϕ+ (r̃Ii − r̃Qi ) sinϕ
)

)

+ cosh
(

−r̃Ii sinϕ+ r̃Qi cosϕ
)

]

dϕ. (16)



Λ(r) !

I0

(
∣

∣

∣

∣

∣

NSW−1
∑

i=0

r̃∗i ci

∣

∣

∣

∣

∣

)

Nq−1
∑

l=0

NSW−1
∏

i=0

cosh
(r̃Ii − r̃Qi ) cosϕl + (r̃Ii + r̃Qi ) sinϕl

2
· cosh

(r̃Ii + r̃Qi ) cosϕl + (r̃Qi − r̃Ii ) sinϕl

2

(8)

The resulting exact metric (i.e., the LRT for 8-PSK modula-
tion) is reported in (17), where we put

r̃Si,ϕ = r̃Ii cosϕ+ r̃Qi sinϕ r̃Di,ϕ = r̃Qi cosϕ− r̃Ii sinϕ

r̃I+Q
i,ϕ =

(

r̃Ii + r̃Qi

)

cosϕ r̃I−Q
i,ϕ =

(

r̃Ii − r̃Qi

)

cosϕ .

To simplify (17), we again use the rectangular quadrature
rule and the approximations. More precisely, the LLR can be
approximated for large SNR as

lnΛ (1)(r) ! −max
l

[

NSW−1
∑

i=0

ln
(

cosh r̃Ii cosϕl + r̃Qi sinϕl

)

+cosh

(
√
2
2

(

(r̃Ii + r̃Qi ) cosϕl + (r̃Qi − r̃Ii ) sinϕl

)

)

+cosh

(
√
2
2

(

(r̃Ii + r̃Qi ) cosϕl + (r̃Ii − r̃Qi ) sinϕl

)

)

+cosh
(

−r̃Ii sinϕl + r̃Qi cosϕl

)

]

+

∣

∣

∣

∣

∣

NSW−1
∑

i=0

r̃∗i ci

∣

∣

∣

∣

∣

. (18)

For example, the formula based on the rectangular quadrature
approximation with Nq = 2 is

lnΛ (2)(r) !

∣

∣

∣

∣

∣

NSW−1
∑

i=0

r̃∗i ci

∣

∣

∣

∣

∣

−

max

[

NSW−1
∑

i=0

ln

(

cosh r̃Ii + cosh r̃Qi + 2 cosh
r̃Ii + r̃Qi√

2

)

,

NSW−1
∑

i=0

ln

(

cosh r̃Ii + cosh r̃Qi + 2 cosh
r̃Ii − r̃Qi√

2

)]

(19)

and for Nq = 4 is

lnΛ (2)(r) !

∣

∣

∣

∣

∣

NSW−1
∑

i=0

r̃∗i ci

∣

∣

∣

∣

∣

−max

[

NSW−1
∑

i=0

ln

(

cosh r̃Ii + cosh r̃Qi + 2 cosh
r̃Ii + r̃Qi√

2

)

,

NSW−1
∑

i=0

ln

(

cosh
r̃Ii − r̃Qi√

2
+cosh

r̃Ii + r̃Qi√
2

+cosh r̃Ii +cosh r̃Qi

)

,

NSW−1
∑

i=0

ln

(

cosh r̃Ii + cosh r̃Qi + 2 cosh
r̃Ii − r̃Qi√

2

)]

. (20)

VI. A TEST BASED ON A UNIFORM PHASE APPROXIMATION

FOR THE DATA SYMBOLS

The previous tests are based on the LRT and specialized
to particular data formats. Alternatively, in this section we
propose a slightly different approach, where we approximate

the phase distribution of the data symbols with a uniform
random variable. More precisely, since we are dealing with
M ≥ 4, we approximate the data symbols as di = ejθi where
we treat θ0, θ1, ...,θNSW−1 as i.i.d. continuous r.v.s uniformly
distributed over [−π,π ). In this way, (4) becomes

fR|H0,ϕ(r|H0,ϕ)

≃ K(r)
NSW−1
∏

i=0

1

2π

∫ π

−π
e−|r̃i| cos(arg ci−ϕ−θi)dθi

= K(r)
NSW−1
∏

i=0

I0(|r̃i|). (21)

Now, substituting (21) and (6) into (2) we obtain the metric1

lnΛ (3)(r)! ln I0

(
∣

∣

∣

∣

∣

NSW−1
∑

i=0

r̃∗i ci

∣

∣

∣

∣

∣

)

−
NSW−1
∑

i=0

ln I0 (|r̃∗i |) . (22)

Thus, for large SNR the metric becomes simply

lnΛ (4)(r) !

∣

∣

∣

∣

∣

NSW−1
∑

i=0

r∗i ci

∣

∣

∣

∣

∣

−
NSW−1
∑

i=0

|ri| (23)

which coincides with [13, (25)]. This metric is thus the
noncoherent correlation corrected by removing the ℓ1-norm
of the observed sampled vector, which accounts for the non-
gaussianity of the data symbols.

For M -PSK with M ≥ 4, we found that (23) gives
performance very close to the optimal metric obtained in the
previous sections. In the next section we also show that the
same test is better than noncoherent correlation for M -QAM
modulations.

VII. NUMERICAL RESULTS

In this section we investigate the performance of the pro-
posed methods used for frame synchronization by adopting
Monte Carlo simulations. All results shown in the following
have been obtained by counting at least 100 synchronization
errors.

Regarding FS by Peak Detection for QPSK signals, we as-
sume that the received samples are due to randomly generated
QPSK symbols (M = 4) with a constant phase offset over the
frame, in the presence of additive complex Gaussian noise.
We consider the algorithms described in Section IV: for each
observation window of Nf samples, the detector analyzes all
NSW -length sequences, estimating the SW position as that

1Note that there is no more dependency on ϕ, so (21) is an approximation
of fR|H0

(r|H0).
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Fig. 2. Frame synchronization error probability for peak detectors, QPSK
over AWGN channels with phase offset. Comparison between the noncoherent
correlation metric, and the metrics from [21]. Frame composed of Nf = 240
QPSK symbols, sync word of NSW = 24 QPSK symbols.

maximizing the metric. In particular, our metrics reported in
(13) and (14) (high complexity), and (23) (low complexity)
are compared with the common noncoherent correlation (1),
and with the complex metrics L1 and L2 derived in [21].

Fig. 2 shows the values of the synchronization error prob-
ability for the derived metrics, as a function of the SNR,
obtained with Nf = 240 and NSW = 24. The metrics L1 and
L2 have poor performance in this case, as they are designed
to be robust w.r.t. large frequency offsets. On the contrary, the
proposed metrics, which are designed for phase offsets but
negligible frequency offsets, show large improvements with
respect to the noncoherent correlation metric. For example, for
a target synchronization error probability of 10−3, our tests
require 2 dB less than the noncoherent correlation test. As
shown, the performance for the metrics (13) and (14) are very
close, and slightly outperforming that obtained by using (23).
The metric (23) seems therefore the most appealing due to its
simplicity.

We now investigate the performance of the proposed syn-
chronization metrics for 8-PSK modulation. Fig. 3 compares
the synchronization error probability for the common non-
coherent correlation (1), metrics L1 and L2 [21], and our
proposed metrics, i.e., (19) as a high complexity test and (23)
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Fig. 3. Frame synchronization error probability for peak detectors, 8-PSK
over AWGN channels with phase and frequency offsets. Comparison between
the noncoherent correlation metric and the new metrics and the metrics from
[21]. Frame composed of Nf = 1000 8-PSK symbols, sync word of NSW =
32 8-PSK symbols, frequency offset uniformly distributed over the interval
[−∆fmaxT : ∆fmaxT ] = [−0.01; 0.01].

as the simplest one.2 The performance is evaluated for various
values of SNRs with Nf = 1000, NSW = 32, and a maximum
frequency offset ∆fmaxT = 0.01. More precisely, we assume
that the phase ϕ in Section II is replaced by ϕ0 + 2π∆fT i,
where the r.v.s ϕ0 and ∆fT are uniformly distributed over
(−π,π ] and [−∆fmaxT,∆fmaxT ], respectively. Again, the
proposed metrics perform better than the others.

For example, for a target synchronization error probability
of 10−3, our tests require at least 2 dB less than the non-
coherent correlation test, and at least 4 dB less than the tests
designed for large frequency offsets [21]. We remark, however,
that the metrics from [21] are expected to be more robust w.r.t.
large frequency offsets.

Considering FS for M -QAM, the exact approach here used
for M -PSK could be in theory extended to M -QAM data
symbols. However, dealing with an alphabet of symbols with
different phases and amplitudes would lead to complicated
expressions of limited practical interest. Thus, it would be
interesting to see if, e.g., the simple metric (23), which was
derived assuming data symbols with constant amplitude and
uniformly distributed phase, could give for M -QAM some

2Note that the implementation of the tests (19), L1, and L2 could be quite
demanding.
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Fig. 4. Frame synchronization error probability for peak detectors, 16-QAM
over AWGN channels with phase offset. Comparison between the noncoherent
correlation metric, the new metric and the metrics from [21], labels as in
previous figure. Frame composed of Nf = 240 16-QAM symbols, sync word
of NSW = 24 16-QAM symbols.

improvements with respect to the noncoherent correlator.
In this regard, fig. 4 shows some simulation results as-

suming a 16−QAM constellation for the proposed test (23),
the common noncoherent correlation rule (1), and L2 from
[21, eq. (11)], without frequency offsets. Again, we see that
(23) outperforms the other approaches: for example, for a
synchronization error probability of 10−4 we save more than
1.5 dB in terms of SNR.

VIII. CONCLUSION

We studied frame synchronization for M -PSK modulation
in AWGN channels with phase offset, deriving the optimal
synchronization rule and some suboptimal rules based on
hypothesis testing theory. We verified numerically that our
tests outperform the commonly used noncoherent correlation
detector. Finally, we can conclude that the simple metric
(23) (i.e., subtracting an ℓ1-norm correction term from the
noncoherent correlation) can be used in practice to replace
the noncoherent correlation for a wide class of modulation
formats, i.e., M -PSK, and M -QAM, in the presence of phase
and small frequency offsets due to imperfect carrier recovery.
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