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Abstract

Background: The progression of low-risk del(5q) myelodysplastic syndrome to acute myeloid leukemia is increased
when associated with mutations of TP53, or with additional chromosomal abnormalities. However, to date the prognostic
impact and molecular consequences of these rearrangements were poorly investigated. Single additional alterations to
del(5q) by balanced chromosome rearrangements were rarely found in myelodysplasia. In particular, balanced alterations
involving TP63 and FOXP1 genes were never reported in the literature.

Case presentation: Here we report on a 79-year woman with an aggressive form of myelodysplastic syndrome with del
(5q), no TP53 mutation, and a novel complex rearrangement of chromosome 3 in bone marrow cells. Our results revealed
that the FOXP1 and TP63 genes were both relocated along chromosome 3. Strikingly, immunohistochemistry analysis
showed altered protein levels, disclosing that this rearrangement triggered the expression of FOXP1 and TP63 genes.
FOXP1 was also found activated in other patients with myelodysplasia and acute myeloid leukemia, showing that it is
an important, recurrent event.

Conclusions: We document an apparent role of FOXP1 and TP63, up to now poorly documented, in the progression
of MDS in our patient who is lacking mutations in the TP53 tumor suppressor gene normally associated with poor
outcome in myelodysplastic syndrome with 5q-. Finally, our results may suggest a possible broader role of FOXP1 in
the pathogenesis and progression of myelodysplasia and acute myeloid leukemia.
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Background
In MDS, del(5q) was associated with a low-risk of leukemic
evolution, unless it was accompanied by a mutation of
TP53 [1], or by a complex karyotype (presence of ≥ 1
additional chromosomal abnormalities) [2,3]. The most
frequent single extra abnormalities to del(5q) were: del
(12p), trisomy 21, trisomy 8, del(20q) [2], and the recently
identified del(15)(q26.1), and del(3)(q26.1), respectively
deleting the CHD2, and THPO genes [3]. Conversely,
balanced chromosome rearrangements were rarely found
as a single additional alteration to del (5q). Notably, the
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molecular consequences and prognostic impact of each
single aberration, mostly if balanced, were poorly investi-
gated to date [4].
Here we describe a patient with an aggressive form of

MDS. The BM karyotype, in addition to 5q deletion,
showed an acquired abnormal chromosome 3 (Figure 1a).
This abnormality led to the concurrent alteration of the
FOXP1 and TP63 genes, never before reported in the
literature.
Case presentation
The patient, a 79-year woman, was admitted to our hospital
in January 2010. Her blood count showed: WBC 10 × 109/l
with 1% myeloblasts, Hb 8.5 g per 100 ml, and platelets
135×109/l. Histological sections indicated that the BM was
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Figure 1 (See legend on next page.)
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Figure 1 Partial metaphases showing the normal and the rearranged chromosome 3. (a) Q-banding; (b) FISH cohybridization experiment,
performed as previously described [5], using commercial PCP probes specific for 3p (Kreatech, prod. No. KBI-30104, green), and 3q (Kreatech, prod.
No. KBI-30105, red); (c, d) FISH experiments with BAC (c) and fosmid (d) clones to define the breakpoint regions in chromosome bands 3p13 and
3q13.12; (e, f) FISH cohybridization experiments with probes defining the breakpoints in bands 3p12.2 (e) and 3q28 (f); (g) Schematic representation
of the double inversion leading to the formation of the der(3) chromosome. I, II, III, and IV refer to contig maps of BAC and fosmid clones of
the breakpoint regions in chromosome bands 3p13, 3q13.12, 3p12.2, and 3q28, respectively. The clones used in FISH are indicated by red rectangles;
the red arrows point on the intervals (defined by the red vertical lines) containing the breakpoints.

L’Abbate et al. BMC Cancer 2014, 14:396 Page 3 of 6
http://www.biomedcentral.com/1471-2407/14/396
cellular at 80%, including numerous dystrophic megakaryo-
cytes, reduction of normoblastic erythroid elements, and
increase of myeloid immature cells with dysplastic morph-
ology. Moreover, a diffuse and severe reticulin fibrosis was
observed, and a diagnosis of myelodysplasia with myelofi-
brosis was made. The BM aspirate at MDS diagnosis had
the karyotype: 46,XX,inv(3)(p?26q?13),del(5)(q31q35)[20].
ish del(5)(q31.2q31.2)(EGR1-). The complex chromosome
3 rearrangement was found in all the metaphases, strongly
suggesting its role as a driver mutation. Notably, this pa-
tient showed neither deletions nor point mutation at TP53
(exons 4–8), known to be associated with an increased risk
of leukemic evolution in MDS with del(5q) [1]. However,
the patient, treated with hydroxyurea, progressed quickly
towards AML in December 2011, with the following blood
count: WBC 77 × 109/l with 21% myeloblasts, Hb 8.1 g per
100 ml, and platelets 19x109/l. The karyotype at this stage
was not available, due to the lack of metaphases in the BM.
Immediately after, the patient died for a fatal cerebral
hemorrhage.
CN analysis on the BM genomic DNA of the patient

was accomplished on a Genome-wide human SNP array
6.0 according to manufacturer protocols (Affymetrix,
Santa Clara, CA, USA). The resulting data, analyzed by
the Genotyping console software V.4.1.3.840, and by
Chromosome Analysis Suite V. CytoB-N1.2.0.225 using the
GRCh37/hg19 genome sequence, confirmed the occurrence
of a 5q23.1-q33.3 deletion. Additionally, CN variations
within JAK2 and KMT2A (also known as MLL) (CN
state 1 and 3, respectively) were observed. FISH, performed
as previously described [5], excluded the involvement of
JAK2 and KMT2A in further rearrangements leading, for
instance, to fusion genes (data not shown), but it could not
confirm the CN variation (18.8 and 32.6 Kb, respectively).
We conclude that, apart from the deletion of chromosome
5, the complex rearrangement of chromosome 3 was the
only relevant structural rearrangement in the bone marrow
cells of the patient.
Very few CN switches were observed either on chromo-

some 3 or the rest of the genome. Due to the poor quality
of the DNA, massive whole genome sequencing was not
performed. However, the genesis of this rearrangement
was not due to chromothripsis, because we observed less
than ten CN variations [6] along the entire chromosome.
The lack of mutation within TP53, previously reported
as strongly associated with chromothripsis in AML [6],
further reinforced this conclusion.
FISH analysis with chromosome paints for 3p and 3q

revealed a complex reorganization of chromosome 3
(Figure 1b). Reiterative FISH assays with BAC (Roswell
Park Cancer Institute [RPCI]-11 Human Male Bac Library,
Buffalo, NY) and fosmid (WIBR2 Human Fosmid Library)
probes, chosen according to the GRCh37/hg19 sequence
and obtained from the BACPAC Resource Center (http://
bacpac.chori.org), allowed us to map four breakpoint
regions.
The first region was mapped within the overlap be-

tween RP11-910P10, G248P80064E6 and G248P8385G8
(Figures 1c, d, g), upstream to the coding sequence of
the FOXP1 gene (Figure 1g). FOXP1 encodes for a tran-
scription factor playing important roles in the regulation
of tissue-specific gene transcription during cell growth
and differentiation [7].
The second breakpoint region was located within the

overlapping clones RP11-90I13 (Figure 1c), RP11-722G11,
and RP11-61G10, encompassing the 5′ portions of the
non coding RNA LOC100302640 and LOC344595 genes,
with opposite transcriptional orientation, and with un-
known function (Figure 1g).
We conclude that an initial inversion event [inv(3)

(p13q13.12)] led to the juxtaposition of the FOXP1 coding
region to the 5′ portion of a non coding RNA gene.
The third and forth breakpoints were mapped, respect-

ively, within the overlapping region between RP11-1148C5,
RP11-1105 J22, and RP11-626C4 (Figures 1e,g). They en-
compassed the TP63 gene (Figure 1g), and RP11-453G17
(Figure 1f,g), covering the first intron of the non-coding
RNA BC031255 gene, with unknown function. TP63 is a
member of the TP53 family of transcription factor genes,
encoding by alternative promoters for two main isoforms,
ΔNp63 (p40) and TAp63. The TAp63 proteins transactivate
the majority of the TP53 target promoters inducing cell
cycle arrest and apoptosis. On the contrary, the ΔNp63
isoforms seem to counteract the transactivation activ-
ities of TP53 and TAp63 proteins, possibly conferring a
proliferative advantage on cancer cells [8]. Notably, the
breakpoint within TP63 was mapped upstream to the
ΔNp63 transcription start site (Figure 1g).
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The second inversion event [inv(3)(p12.2q28)] led to
the rearrangement of TP63 and BC031255, with the
same transcriptional orientation.
Interphase FISH with the RP11-910P10 clone also

showed the splitting of the probe in 94% and 74% of
cells, respectively in the BM and in the peripheral blood
(PB) at diagnosis (data not shown). This result disclosed
that the abnormal cell clone was already present in the
PB at onset, confirming the aggressiveness of the MDS
disease.
The lack of RNA material precluded the possibility of

investigating genes expression patterns. However, we
evaluated FOXP1 and TP63 expression by immunohis-
tochemistry analysis (Figures 2 and 3). The patient was
negative for the expression of all ΔN isoforms of TP63
(with A00112 anti-p40 rabbit polyclonal antibody, Scytek,
UT, USA) (data not shown). However, the patient was
positive to the common region to all TP63 isoforms
(with NCL-p63 anti-p63 mouse monoclonal antibody,
Novocastra, Milan) (Figure 2a), as well as for FOXP1
Figure 2 Pictures of immunohistochemistry assays (600×
magnification) performed with anti-TP63 (all isoforms) antibody
on the bone marrow biopsie. (a) the patient under study
(no.8447); (b) the MDS case no. 7737 with del(5q) and trisomy 21
(see Additional file 1).
(with E19062 rabbit anti-FOXP1 polyclonal antibody,
Spring Bioscience Corp., CA, USA) (Figure 3a). For FOXP1,
we found a prevalent positivity of myeloid precursor cells,
present in a high percentage in the bone marrow of the
patient.
We performed the same analysis on four normal BM,

as well as in additional MDS/AML cases with normal
karyotypes, or with 5q- as a sole cytogenetic abnormality,
or with additional changes (Additional file 1).
The overall results showed that TP63 was negatively

expressed in all the control cases (Figure 2b and Additional
file 1). Conversely, FOXP1 was negatively expressed only in
normal BM (Figure 3b) and one MDS case with a normal
karyotype (Additional file 1). Of note, the remaining cases
showed a variable level of protein expression (from 1 to 4,
Additional file 1), directly proportional to the percentage of
myeloid precursor cells found in each case [level 1 (10%);
level 2 (10-50%); level 3 (50-80%); level 4 (more than 80%).
A low positivity level was occasionally found in megacaryo-
blasts, megacaryocytes, and in a few cases in rare erytroid
precursors.
Our overall results showed that AML cases in our cohort

displayed higher expression levels (from 2 to 4) of FOXP1
than MDS (from 0 to 3). In particular, our patient showed
the highest FOXP1 expression level among MDS cases
(level 3), i.e. she had a high percentage of positive myeloid
precursors in her bone marrow.
Moreover, we observed that the majority of the MDS/

AML patients refractory to therapies, including our case,
showed the highest FOXP1 expression levels [3–4 rather
than 1–2, respectively in 6/11 (54%) versus 3/9 (33%)].
According to these preliminary results, which need to
be confirmed by additional research, we hypothesize a
possible involvement of this gene in the progression of
myeloid diseases.

Conclusions
To the best of our knowledge, we describe here the first
MDS case with 5q- and a rearrangement of chromosome
3 involving FOXP1 and TP63.
FOXP1 was already described as fused to either the

PAX5 or the ABL1 gene in B-ALL, and to the immuno-
globulin heavy chain locus in lymphomas [7]. Strikingly,
the breakpoint position in the present case was the same
as in lymphomas accompanied by the gene upregulation.
In myeloid malignancies, FOXP1 was reported as a target
of deletion in both AML [9] and in myeloproliferative
neoplasms [10].We also report here for the first time
that FOXP1 is deregulated in MDS/AML cases. We
presently have little information concerning the role of
TP63 isoforms in myeloid cells. In B-cells, upregulation
of TAp63 isoforms increased survival by activating BCL2
expression [11]. Mutations of TP63 were described only in
CML blast crisis [12].



Figure 3 Pictures of immunohistochemistry assays (200× magnification) performed with anti-FOXP1 antibody showing different levels
of protein expression in the bone marrow biopsies of investigated cases. (a) patient under study (level 3); (b) normal BM (level 0); (c) MDS
case no. 558/10 with del(5q) as a sole cytogenetic abnormality (level 1); (d) MDS case no. 7737 with del(5q) and trisomy 21 (level 2); (e) MDS case
no. 2374 with del(5q) and monosomy 7 (level 3); (f) AML case no. 635/12 with normal karyotype (level 4). (see Additional file 1).
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In summary, we report here a notable MDS case, which
rapidly evolved to AML, harboring 5q- and dysregulation
of both FOXP1 and TP63.
We hypothesize that there is a possible role of FOXP1

and TP63 upregulation in the disease progression in this
patient, as well as a potential involvement of FOXP1 in
the evolution of MDS/AML and response to therapy,
to be confirmed by additional experiments on a larger
cohort of patients.
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