
10 April 2024

Alma Mater Studiorum Università di Bologna
Archivio istituzionale della ricerca

Published Version:

User-space APIs for dynamic power management in many-core ARMv8 computing nodes

Published:
DOI: http://doi.org/10.1109/HPCSim.2016.7568400

Terms of use:

(Article begins on next page)

Some rights reserved. The terms and conditions for the reuse of this version of the manuscript are
specified in the publishing policy. For all terms of use and more information see the publisher's website.

Availability:
This version is available at: https://hdl.handle.net/11585/613812 since: 2019-04-23

This is the final peer-reviewed author’s accepted manuscript (postprint) of the following publication:

This item was downloaded from IRIS Università di Bologna (https://cris.unibo.it/).
When citing, please refer to the published version.

http://doi.org/10.1109/HPCSim.2016.7568400
https://hdl.handle.net/11585/613812

This is the post peer-review accepted manuscript of:

D. Bortolotti, S. Tinti, P. Altoé and A. Bartolini, "User-space APIs for dynamic power management in

many-core ARMv8 computing nodes," 2016 International Conference on High Performance

Computing & Simulation (HPCS), Innsbruck, 2016, pp. 675-681.

The published version is available online at: https://doi.org/10.1109/HPCSim.2016.7568400

© 2018 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any

current or future media, including reprinting/republishing this material for advertising or promotional purposes,

creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of

this work in other works

https://doi.org/10.1109/HPCSim.2016.7568400

User-space APIs for Dynamic Power Management

in Many-core ARMv8 Computing Nodes

Daniele Bortolotti

EEES - DEI

University of Bologna

Bologna, Italy

daniele.bortolotti@unibo.it

Simone Tinti, Piero Altoé

E4 Computer Engineering

Scandiano, Italy

simone.tinti@e4company.com

piero.altoe@e4company.com

Andrea Bartolini

Integrated Systems Laboratory

ETH Zurich

Zurich, Switzerland

barandre@iis.ee.ethz.ch

Abstract—The push for energy-efficient and energy-
proportional computing nodes, together with the increasing
number of cores integrated in the same silicon die has lead
to computing nodes with fine grained power management
capabilities. To unleash the potential of this HW design a
novel user-space power management APIs is needed to bring
fine-grain power management in the hands of the programmer.
In this work we present a novel programming mechanism
for energy efficiency which is build around novel user-space
power management APIs suitable to be embedded in user-
space applications. We evaluated its timing and power saving
performance on a novel computing node based on Cavium
ThunderX ARMv8-based many-cores SoC.

I. INTRODUCTION

Supercomputers peak performance is expected to reach the

ExaFlops (1018 Flops) scale in 2023 [1], as revealed by the

exponential increase of the worldwide supercomputer installa-

tion [2]. With almost 100x more computational capabilities

than today’s most powerful supercomputers, the Exascale

machine will bring supercomputer-assisted calculations into

our daily life, revolutionizing many aspects of society, such

as manufacturing, transportation, health and decision making,

among others. However, Exascale supercomputers cannot be

built by simply expanding the number of processing nodes and

by leveraging technology scaling, as the power demand would

increase unsustainably (in the order of hundreds of MW). To

be sustainably powered at the Exascale level, current super-

computers must achieve a quantum leap in energy efficiency,

pushing towards the goal of 50 GFlops/W.

Dynamic resource management and power management

aim at reducing the energy consumption of computational

systems by selecting at run-time the best operating point,

which reduces the power consumption while preserving a

given QoS for the user. The available operating points depend

on mix of architectural features and physical low-power design

strategies [3], [4]. According to the chip manufacturer and

market segment, the configuration or run-time selection of

these operating points are either handled at the firmware

level or by the Operating System (OS) [4], [5], [6]. Today

two main low-power mechanisms are available on general

purpose processors to modulate the power consumption and

to increase the energy-efficiency, namely dynamic voltage and

frequency scaling (DVFS [7]) and power-gating. DVFS allows

to dynamically scale the operating frequency and the voltage

to reduce the power consumption and eventually save energy.

Indeed, by reducing the voltage and the frequency of electronic

devices the power consumption decreases super-linearly (with

a theoretical cubic law). However, the application execution

time may be affected by the reduced frequency up to a linearly

proportional dependency with the clock frequency in case of a

CPU-intensive load. These power states are referred in ACPI

standard as P-states [4].

Power-gating instead aims at reducing the idle power by

dynamically unplugging the cores voltage supply, thanks to

a power gating switch. Differently from low-frequency DFVS

states, the power-gated core achieves zero power consumption,

also leakage power is removed at the cost of a context loss.

Moreover according to the architecture, the power gated region

can cover different logic areas (cores, cores + L1, individual

cores + L1, cores + uncores, etc). Clearly, the more coarse the

power-gated region is, the more costly the context loss will

be. These power states are refereed in ACPI standard with

C-states. Power-gating C-states are handled by the OS kernel

by switching-off cores when their are unused (idle) for a time

longer than a defined threshold. In this way it avoids to pay

the context loss overhead for very short power-gated periods,

which would lead to an overall performance and energy loss.

Short idle periods are handled with HW mechanisms which do

not induce context loss, however with reduced power savings

(i.e. clock-gating and low-frequency DVFS states).

As a matter of fact, power-gated states which are capable

of significantly reducing the power consumption are used only

when cores stay idle for long periods. However, in current

OSs several interrupts and kernel threads keep the cores active

even when they do not execute any application [8], [9], [10].

On the contrary, applications running in computing nodes,

usually empowered with accelerators, show workloads and

communication phases not ideal for parallel scaling leading

to potential idle-slack inside the application execution flow.

This behavior cannot be captured by current OSs power

management infrastructure as opportunistic and application-

agnostic approaches would lead to an overall performance

and energy loss. Even if the programmer could identify the

most exploitable phase, it would lack mechanisms to insert

from user-space power management directives directly inside

its code, while preserving a consistent environment.

Pushed by technology scaling, while searching for higher

energy-efficient and cost-effective designs, chip manufacturers

started to focus their attention on stand-alone many-core SoCs

in additions to classical multi-core chips. Differently from their

“big-brother” counter-parts, many-cores devices use simpler

cores to achieve a higher cores count in the same silicon

area and/or power budget, with the ultimate goal of providing

a finer adaptation to workload phases and computational

demand [11], [12], [13], [14], [15], [16], [17]. Recently the

introduction of the 64-bit ARM architecture has created the

opportunity for a wider range of chip manufacturers to propose

solutions for the HPC market, trying to fill the embedded-to-

HPC performance gap by increasing the cores count. In paral-

lel several attempts have been made to integrate supercomputer

machine with embedded processors [18], as these devices are

characterized by stronger energy-efficiency constraints and are

pushed by a more competitive and growing market [18].

As effect of the higher cores count and simpler cores logic,

fine grained DVFS support would cause large overheads in

many-cores devices making fine grained power-gating a more

attractive low-power design solution. However to transform

the latter as a base for the deployment of more energy-

proportional computing nodes there is the need to offer such

power management features to the programmer with novel

APIs. This can happen only if computing nodes with software

support become available to the wide public.

In this paper we aim for this by deploying a holistic co-

design which includes (i) the design of a real computing node

prototype based on a novel Cavium ThunderX SoC [16], (ii)

the integration in the OS of the control mechanisms for fine

grained power-gating, available on the target SoCs, (iii) the

design of user-space power management APIs suitable to be

added by the programmer in the scientific applications and

finally (iv) an evaluation of the energy saving potential and

the limiting factors for its achievement in current systems.

Summarizing, the main contribution of this work are the

following:

• the integration of fine grained power-gating features in

the Linux Kernel for switching off the unused cores when

not used. We empirically demonstrate that the linux CPU

hotplug system can be used as an enabling framework for

exposing this low-level power management mechanisms

to the user-space. Our results show that this mechanism

can lead up to a ≈ 35% of power reduction in the CPU

logic and up to ≈ 24% of idle power reduction at the

node level.

• the creation of the user-space APIs based on the introduc-

tion of two novel system calls to be inserted directly in

the application code. We quantified the time granularity

at which this mechanism can operate, showing that even

if in today’s OSs this mechanism does not scale with the

integrated number of cores, already presented solutions

allow us to accurately estimate the final impact.

The rest of the paper is organized as follows. In Section III

the state-of-the-art computing node is presented, while Sec-

tion IV focuses on the the programming support for energy

efficiency. In Section V we describe the experimental setup and

the results of the evaluation in terms of energy consumption.

Finally, the conclusions are presented in Section VI.

II. RELATED WORK

The ACPI standard [4] defines several power management

states which can be configured dynamically. P-states groups

dynamic voltage and frequency scaling operating points. These

can be selected at run-time to modulate the power consumption

during active computation. Differently, C-states groups idle

power management states which targets idle power reduction.

C0 is the active idle state while C1 is the active low-power

state and C3 is the power-gated idle state. Differently from C0

and C1, C3 leads to a loss of information and context in the

logic area which is affected by the power gating. The Linux

Kernel uses the ACPI power states by mean of two different

kernel drivers, namely the “cpuidle” and “cpufreq”.

The cpufreq driver modulates the P-states by mean of power

governors which can be set to implement different policies.

The most used one is the on-demand governor which modu-

lates the current P-state to maximize the core utilization. It is

effective with I/O intensive tasks for which the core is often in

idle waiting for I/O operations. In a node of a supercomputer

this condition is not frequent and thus system administrators

prefer to keep the computing node always operating at the

maximum frequency. The authors in [19] show that DVFS,

if carefully used, can lead up to the 27% of energy saving

considering real supercomputing workloads. In addition, the

authors show that the optimal frequency level depends on the

application, as more memory intensive applications achieve

the most energy-efficient operating point at lower speed with

respect to CPU-bound ones. Following this approach authors

of [20] proposes to run the computing cluster at a lower but

more energy-efficient frequency than the maximum for the

general users, and then increase it to the maximum one only

for running the applications which would obtain large benefits

from executing in faster core. These applications are identified

based on performance counters online characterization.

The cpuidle driver modulates the C-states according to the

duration of an idle phase. In the Linux Kernel the idle task

executes each time a core does not have useful tasks to be

performed. Internally the idle task loops over architecture

specific instructions which can selected to reduce the power

consumption pushing the core to an idle. As deeper ACPI

states incur in costly transition overheads, these transitions are

only triggered when it is likely to stay in this state for a long

time. This is done by setting a minimum time threshold before

entering the deep low-power state [21]. However Operating

Systems noise induced by periodic activities in the Linux

Kernel reduces the maximum length of the idle phases limiting

de-facto the usage of deep power states[9], [10].

In addition to cpuidle the linux kernel has a mechanisms to

logically offline and online CPU cores. This is done by the

CPU hotplug subsystem which exposes a virtual filesystem

entry for each core which can configured dynamically to

logically switching on and off the operating system from that

cores.

Authors in [22] present Barrelfish/DC, an extension to the

Barrelfish OS which decouples physical cores from a native

OS kernel. Thanks to this approach, the authors can replace

and reboot the OS kernel in each core independently and

migrate per-core OS state in between cores. As a result in

Barrelfish/DC stopping cores costs only from 0.8µs (Haswell)

to 3.5µs (Sandy-Bridge), while with the standard Linux the

authors measured a core shutdown time ranging in between

46ms to 131ms. As a matter of fact Barrelfish/DC achieves a

55x speedup. The work in [23] shows that by rethinking the

Linux Kernel core hotplug mechanism, its performance can be

drastically improved. The authors present Bolt which extends

the existing hotplug infrastructure to reduce the transition

latency betwee CPU states, as well as supports insertion and

removal of multiple cores at once. Bolt can achieve over 20x

speedup in the core shutdown routine and in between 13x to

20x for the online time. All the approaches mentioned above

focus on the time taken by the OS Kernel to logically remove

or restart a given core, without evaluating the real energy

efficiency potentials when these mechanisms are connected to

real power management mechanisms. In this paper we evaluate

such potentials by inserting our novel low-level mechanisms

in a scientific application to deploy an holistic co-design for

energy efficiency.

III. COMPUTING NODE

The recent introduction of the many-cores ARMv8 SoC is

a disruptive innovation for the market. Several chip designers

have announced new silicon within very tight roadmaps, with

early results already available. Lately, various companies have

proposed low-power micro-servers (multi- or many-cores pro-

cessors with a simple micro-architecture). Furthermore, most

of these microservers have the potential to execute enterprise

workloads, e.g. memory-intensive big data applications, the

presentation layer of large-scale web applications, etc. Some

examples of such products are Cavium 48 ARM cores Thun-

derX [16], Applied Micro X-Gene ARM server 2 [17], etc.

These processors comes with interesting design trade-offs and

power management features.

The considered computing node is composed by two Cav-

ium ThunderX SoCs, 256GB of DDR3 memory and an In-

ifiniband Mellanox Card. The node follows Openrack standard

and is powered from a busbar and features a mixed of air

and liquid cooling. The CPUs are liquid cooled while the

rest of the components are air cooled. Figure 1 shows the

computing node. Each node is equipped with a current sensor

and a voltage sensor which measures the energy and power

consumption with a ms of time granularity. These values are

integrated over period of 1 sec and made available to the

software stack.

Figure 2 shows a block scheme of the ThunderX SoC by

Cavium. It features:

• Scales from 24 to 48 cores with up to 2.5GHz frequency;

• 78KB-I cache and 32KB-D cache per-core;

Fig. 1. Computing Node composed of 2 ThunderX SoCs, DDR memory,
interconnection and mixed air/liquid cooling.

• 16MB shared L2 cache;

• Single and dual socket configuration support via (Cavium

Coherent Processor Interconnect (CCPI);

• Up to 4 DDR3/4 memory controllers;

• Up to 1TB of memory capacity in dual socket configu-

ration;

• Multiple 10/40GE ports;

• Multiple independent SATAv3 controllers;

• Multiple PCIe - x4, x8 support (24 lines total);

In addition the Cavium ThunderX SoC has a fine grained

low-power management support with selective cores power

gating, giving to the architecture peculiar power savings fea-

tures, thanks to the many-core architecture and the fine grained

cores shutdown possibilities. The per-core power gating can be

configured online by means of specific machine registers, vis-

ible from all the cores and sockets. The potential of reducing

the idle power by switching off the entire power consumption

of the core region can be effective if (i) is integrated in the OS

kernel and (ii) is provided to the final user in form of APIs to

be inserted in the application.

Finally the computed node features a built-in power mea-

Write Buffer

ARMv8
64-bit
CPU 3

2
K

B
 D

$

7
8

K
B

 I
$

Write Buffer

ARMv8
64-bit
CPU 3

2
K

B
 D

$

7
8

K
B

 I
$

I/O
Network

Coproc
Network

Secure
Vault

16MB
L2$

DDR3/4
Ctlrs

Crypto
Engine

Reg-Ex
Engine

Comp
Engine

Ethernet
MACs

Ethernet
MACs

PCIe v3

SATA 6G

RAID

DMA

8x

8x

100
Gbps

200
Gbps

Coherent
Interconnect

200Gbps
Switch

48 cores
total

Coherent Fabric

.....

Cavium
ThunderX

power
management

Fig. 2. Cavium ThunderX schematic view: highlighted in red are the power
management knobs.

surement systems which measures through an hall-effect sen-

sors the entire node power as well as the per-component

(CPUs, DRAMs) power through the BMC. The node power

measurement is measured with high-frequency sampling and

averaged in periods of 1s.

IV. PROGRAMMING SUPPORT FOR ENERGY-EFFICIENCY

A. Linux Kernel

To integrate Cavium’s specific low-level register calls in-

side the Hotplug mechanism, we modified the Linux Kernel

choosing as starting point version 4.2.0−20.1. By bridging the

gap between OS and real HW knobs for power management,

Hotplug can effectively zero the power consumption of a given

core when triggered via the sysfs Linux interface, e.g.

echo 0 > /dev/sys/devices/system/cpu/cpuX/online

or alternatively resume a core, by switching it on with

echo 1 > /dev/sys/devices/system/cpu/cpuX/online

Clearly this mechanisms will be usable only for system

administrators only as it requires root access, and thus will not

lead to fine grained energy management while the application

is running on the node. The block scheme in Figure 3 shows

where we inserted our routines in the kernel code to implement

low-level power gating.

Inside the _cpu_down() routine we added the initializa-

tion procedure, to set up and initialize data structures and

remap virtual addresses to access low-level registers. As a

last operation before leaving the inner lock (hotplug.lock),

we inserted the procedure that accesses Cavium registers and

power gate a given core. It is important to notice the double

lock structure that guarantees a safe removal of the CPU from

the OS kernel, but will cause transitions overheads.

B. User-space

To expose the power managements knobs from kernel

mechanisms to the application programmer, we added two new

architecture specific system calls to the Linux Kernel. The sys-

tem call definitions, namely pm_coredown and pm_coreup,

are reported in Listing 1 and 2 respectively.

Fig. 3. Hotplug modification to add low-level power management features.

SYSCALL_DEFINE2(pm_coredown, unsigned int *,

cpu_v, unsigned int, N)

{

int i,ret;

unsigned int cpu_kv[_NC];

if (copy_from_user(cpu_kv, cpu_v,

sizeof(int) * N))

return -EFAULT;

for(i=0; i<N; i++) {

/* shut down the cores */

ret = cpu_down(cpu_kv[i]);

/* error handling ... */

}

return 0;

}

Listing 1. System call definition for pm_coredown().

SYSCALL_DEFINE2(pm_coreup, unsigned int *,

cpu_v, unsigned int, N)

{

int i,ret;

unsigned int cpu_kv[_NC];

if (copy_from_user(cpu_kv, cpu_v,

sizeof(int) * N))

return -EFAULT;

for(i=0; i<N; i++) {

/* bring on the cores */

ret = cpu_up(cpu_kv[i]);

/* error handling ... */

}

return 0;

}

Listing 2. System call definition for pm_coreup().

An example of the interaction between application (user-

space) is schematized in Figure 4. The example considers an

application that requires to switch off 6 cores and bring them

back online after a kernel has executed.

slave #1

slave #2

slave #3

slave #4

slave #5

slave #6

core #1

core #2

core #m

.
.

.

pm_coredown pm_coreup
User-space

Kernel

time

≈ ≈ ≈

_coredown(#1)
_coredown(#2)

_coredown(#6)

_coreup(#1)
_coreup(#2)

_coreup(#6)

application

system calls

Fig. 4. APIs interaction between application (User-space) and OS Kernel.

 130

 140

 150

 160

 170

 180

 0 500 1000 1500 2000

P
o

w
e
r

(W
)

time (s)

Fig. 5. Total power reduction through the power management APIs. Test:
shutdown of 95 out of 96 cores, with a sleep of 10 seconds in between.

V. EXPERIMENTAL RESULTS

In this section we show a characterization of the APIs in

terms of power and timing.

A. APIs Power Characterization

To show the potential of our approach we created a simple

user-space application that deploys our APIs to sequentially

switch off all cores (except core0) and then later switch them

back on. The code of the application is reported below.

#define _GNU_SOURCE

#include <unistd.h>

#include <stdio.h>

#include <sched.h>

#include <sys/syscall.h>

int main(int argc, char *argv[])

{

unsigned int i, N = 95;

long error;

/* sched affinity on core0 ... */

/* shutdown */

for(i=1; i<=N; i++) {

error = pm_coredown(&i,1);

/* error handling ... */

sleep(10);

}

sleep(20);

/* wakeup */

for(i=1; i<=N; i++) {

error = pm_coreup(&i,1);

/* error handling ...*/

sleep(10);

}

return 0;

}

Listing 3. Synthetic benchmark with sequential cores shut-
down for power characterization.

The application first loops over each core and shuts them

down by means of the pm_coredown API. The API takes as

input a pointer to a list of cores ID to be switched off (i

in this case) and the length of the list (N). After switching

off one core the application slepdf for 10 seconds. When all

the 95 cores have been switched off, the application restarts

 30

 35

 40

 45

 50

 55

 60

 0 500 1000 1500 2000

P
o

w
e
r

(W
)

time (s)

socket 1

socket 0

Fig. 6. Power reduction per socket through the power management APIs.
Test: shutdown of 95 out of 96 cores, with a sleep of 10 seconds in between.

one after the other through the pm_coreup API. By executing

in the user-space, this mechanism allow the programmer to

decide on-line which cores to use and which not. Figure 5

shows the execution of the synthetic benchmark in terms of

power consumption of the entire node. As we can notice from

Figure 5 the total power decreases from 181W to below 140W.

Figure 6 instead shows the separate power consumption of

the ThunderX sockets.

The application first shuts down the cores in socket#0 and

then in socket#1 (whose cores have a higher logical ID).

From the same figure we can notice that both the two sockets

consume similar power and that APIs are capable of saving

≈ 20W for each of them.

Table I reports the power measured for the node in idle,

i.e. when all the core are in C1-state, and when they are

progressively shut down. For each of the different cases we

report the real measured node-level power consumption and

the power consumption per-socket. It can be seen that the SoC

accounts for the 60% of the total power consumption in idle.

The table shows that this amount can be effectively reduced

thanks to the introduced power management mechanisms.

Indeed as the number of core per-socket gets switched off

by our mechanism, each socket consumes up to the 35% less

while the node power reduces of the 11% when 48 cores out

of 95 are switched off and up to 23% when only one core for

the entire node is kept on. We plan to improve these results

in future works by extending the energy-efficiency APIs with

system level power-gating techniques to enable the user to

dynamically switch-off additional peripherals in each socket

and parts of the memory subsystem.

B. APIs Time Characterization

In this section we characterize the performance of the

energy-aware APIs in terms of transitions costs. As previously

introduced, and supported by other works [23], the Linux

Kernel Hotplug mechanism implements several operations to

logically detach and reconnect a core from the OS. This is

visible in terms of timing overheads for each pm_coreup

and pm_coredown transition. In addition internals calls in

the cpu_up() and cpu_down() mechanisms internal to the

cores shut down
0 (idle) 1 2 4 8 16 32 48 95

Power Socket #0 (W) 54.0 53.60 53.21 52.42 50.83 47.67 41.33 35.00 -
savings (%) - 0.73% 1.47% 2.93% 5.86% 11.73% 23.46% 35.19% -

Power Socket #1 (W) 55.50 55.10 54.71 53.92 52.33 49.17 42.83 36.50 -
savings (%) - 0.71% 1.43% 2.85% 5.71% 11.41% 22.82% 34.23% -

Total Power (W) 181.57 181.12 180.66 179.76 177.95 174.34 167.12 159.89 138.67
savings (%) - 0.25% 0.50% 0.99% 1.99% 3.98% 7.96% 11.94% 23.63%

TABLE I
POWER CHARACTERIZATION OF THE DUAL-SOCKET SOC BY MEANS OF THE POWER MANAGEMENT APIS.

 0

 10

 20

 30

 40

 50

 60

 70

 80

pm_coredown pm_coreup

T
im

e
 (

m
s

)

cpu_maps_update
cpu_notify
synchronize_sched
synchronize_rcu
__stop_machine
cpu_notify_nofail

2.4%

3.8%

44.3%

49.1%

97.1%

2.5%

Fig. 7. Time breakdown for pm_coredown and pm_coreup.

Linux Kernel, the Hotplug mechanisms uses locks to serialize

subsequent calls to the Linux Hotplug functionalities. This

becomes severe when a large numbers of cores need to be

switched on or off. A recent work from Panneerselvam et al.

[23] investigates and proposes a lightweight reconfiguration

mechanism for the Linux OS. For this reason, in this section

we investigate the current performance of the proposed APIs

with the standard Linux Hotplug mechanism and then we

project the achievable performance using the results in [23].

Figure 7 shows with different bars the average time taken by

the pm_coreup and pm_coredown system calls, when switch-

ing off 95 cores out of 96. The stacked bars report the time

breakdown spent on the different CPU Hotplug calls. It can be

noticed that pm_coredown takes significantly higher time to

execute when compared to the pm_coreup, totaling in average

75.6ms compared to 47.8ms. In addition each of them shows

a significant biased overheads towards specific subroutines.

Namely the cpu notify nofail and synchronize rcu which in

sum accounts for the 89% of pm_coredown overheads and

cpu notify for the pm_coreup which accounts for its 92% of

overhead. It must be noted that none of these three functions

include the setting of the internal registers which is accounted

in the remaining overheads. This results demystifies the myth

that sees power management practice bounded by the HW

transition time in between power management states.

The work from Panneerselvam et al. [23] introduces Bolt,

a fast reconfiguration mechanism for OS. The functionality

of Bolt is similar to hotplug in getting the system from one

stable state to another stable after offlining the processors.

However, Bolt aims at offering stability with a very low latency

and is built by refactoring the existing hotplug infrastructure.

Bolt achieves low latency by separating hotplug notifications

into critical and non-critical operations. The former needs

to be handled synchronously to ensure correctness of the

system whereas the latter could be removed from the critical

path and performed after the CPU goes online/offline. As we

can see from the results for the ARM architecture, Bolt can

achieve a 13x speedup for offline and almost 22x for offline.

By projecting the scalability results to the number of cores

in Cavium ThunderX, we can achieve with the Bolt Bulk

Interface the results summarized in Table II.

From this projection the energy efficient APIs can obtain

an extremely efficient scalability, being able to shut down the

95 out of 96 cores in ≈ 15ms. and bring them up online in

≈ 26ms. With these achievable transitions time we believe that

the designed energy-efficiency APIs can be effectively coupled

with parallel applications to reduce their energy consumption

during weak scaling and serial phases as well as to reduce the

cpu power when accelerators are empowered.

NUMBER OF CORES SHUT DOWN SYNCHRONOUSLY

1 2 3 4 8 16 32 48 95

pm_coredown (ms) 3.32 3.63 3.75 3.87 4.38 5.37 7.38 9.38 15.06

pm_coreup (ms) 1.26 2.09 2.35 2.62 3.68 5.80 10.05 14.29 26.33

TABLE II
PM_COREDOWN AND PM_COREUP PROJECTION (TIME IN MILLISECONDS), ACCORDING TO [23].

VI. CONCLUSION

The increasing number of cores integrated in the same

silicon die has led to computing nodes with fine grained

power management capabilities. The Cavium ThunderX SoCs

features 48 ARMv8 processors in the same silicon die with

per-core power gating capabilities. In this paper we present

the first computing node based on dual socket ARMv8 many-

core SoCs together with a novel user-space power management

APIs to unleash the potential of fine-grain power management

allowing the user to dynamically switching on and off pro-

cessing elements within its application. This has been done

thanks to two novel system calls which extend the Linux

Kernel CPU hotplug subsystem. Thanks to that we empirically

demonstrate that the linux CPU hotplug system can be used

as an enabling framework for exposing this low-level power

management mechanisms to the user-space. Our results show

that this mechanism can lead up to a ≈ 35% of power

reduction in the CPU logic and up to ≈ 24% of idle power

reduction at the node level. Moreover we quantified the time

granularity at which this mechanism can operate, showing that

even if in todays OSs this mechanism does not scale with the

integrated number of cores, already presented solutions allow

us to accurately estimate the final impact.

We believe that the proposed energy-efficient APIs can be

effectively in increasing the energy-efficiency of today systems

during serial workload phases and accelerators one. In future

works we will evaluate their effectiveness in real scientific

applications and relevant workload as well as we will improve

their power-reduction performance by coupling them with

system-level power saving mechanisms.

ACKNOWLEDGMENT

This work was commissioned by CINECA acting on its own

behalf and on behalf of CSC - Tieeteen Tietotekniikan Keskus

Oy, EPCC (University of Edinburgh), Forschungszentrum Jlich

GmbH and GENCI. The views expressed in this publication

are those of the author(s) and not necessarily those of the

aforementioned entities. Additionally it was partially sup-

ported by the FP7 ERC Advance project MULTITHERMAN

(g.a. 291125), by the EU H2020 FETHPC project Exanode

(g.a. 671578) and by the YINS RTD project (no. 20NA21

150939), evaluated by the Swiss NSF and funded by Nano-

Tera.ch with Swiss Confederation financing. Authors would

like to acknowledge Cavium for the technical support.

REFERENCES

[1] J. Hsu, “When will we have an exascale supercomputer? [news],” IEEE

Spectrum, vol. 52, pp. 13–16, January 2015.
[2] J. J. Dongarra, H. W. Meuer, and E. Strohmaier, “Top500 supercomputer

sites.”
[3] I. Hewlett-Packard, “Microsoft, phoenix, and toshiba. advanced config-

uration and power interface specification,” 2004.
[4] Unified EFI Inc., “Advanced configuration and power interface specifi-

cation, version 6.1.”
http://www.uefi.org/sites/default/files/resources/ACPI 6 1.pdf, 2016.

[5] D. Hackenberg, R. Schone, T. Ilsche, D. Molka, J. Schuchart, and
R. Geyer, “An energy efficiency feature survey of the intel haswell
processor,” in Parallel and Distributed Processing Symposium Workshop

(IPDPSW), 2015 IEEE International, pp. 896–904, IEEE, 2015.

[6] ARM Ltd., “Arm architecture reference manual armv8 (arm ddi
0487a.h),” 2015.

[7] P. Macken, M. Degrauwe, M. Van Paemel, and H. Oguey, “A voltage
reduction technique for digital systems,” in Solid-State Circuits Con-

ference, 1990. Digest of Technical Papers. 37th ISSCC., 1990 IEEE

International, pp. 238–239, IEEE, 1990.
[8] K. B. Ferreira, P. Bridges, and R. Brightwell, “Characterizing application

sensitivity to os interference using kernel-level noise injection,” in
Proceedings of the 2008 ACM/IEEE conference on Supercomputing,
p. 19, IEEE Press, 2008.

[9] T. Hoefler, T. Schneider, and A. Lumsdaine, “Characterizing the in-
fluence of system noise on large-scale applications by simulation,” in
Proceedings of the 2010 ACM/IEEE International Conference for High

Performance Computing, Networking, Storage and Analysis, SC ’10,
(Washington, DC, USA), pp. 1–11, IEEE Computer Society, 2010.

[10] H. Akkan, M. Lang, and L. Liebrock, “Understanding and isolating the
noise in the linux kernel,” International Journal of High Performance

Computing Applications, p. 1094342013477892, 2013.
[11] J. Howard, S. Dighe, Y. Hoskote, S. Vangal, D. Finan, G. Ruhl,

D. Jenkins, H. Wilson, N. Borkar, G. Schrom, et al., “A 48-core ia-
32 message-passing processor with dvfs in 45nm cmos,” in Solid-State

Circuits Conference Digest of Technical Papers (ISSCC), 2010 IEEE

International, pp. 108–109, IEEE, 2010.
[12] J. Jeffers and J. Reinders, Intel Xeon Phi Coprocessor High-performance

Programming. Newnes, 2013.
[13] M. Dehyadegari, A. Marongiu, M. R. Kakoee, L. Benini, S. Moham-

madi, and N. Yazdani, “A tightly-coupled multi-core cluster with shared-
memory hw accelerators,” in Embedded Computer Systems (SAMOS),

2012 International Conference on, pp. 96–103, July 2012.
[14] S. Anthony, “Intel unveils 72-core x86 knights landing cpu for exascale

supercomputing,” 2013.
[15] P. Burgio, A. Marongiu, D. Heller, C. Chavet, P. Coussy, and L. Benini,

“Openmp-based synergistic parallelization and hw acceleration for on-
chip shared-memory clusters,” in Digital System Design (DSD), 2012

15th Euromicro Conference on, pp. 751–758, Sept 2012.
[16] Cavium Inc., “Thunderx arm processors.”

https://www.cavium.com/ThunderX ARM Processors.html, 2015.
[17] Applied Micro Circuits Corp., “X-gene.”

https://www.apm.com/products/data-center/x-gene-family/x-gene, 2015.
[18] N. Rajovic, P. M. Carpenter, I. Gelado, N. Puzovic, A. Ramirez, and

M. Valero, “Supercomputing with commodity cpus: Are mobile socs
ready for hpc?,” in High Performance Computing, Networking, Storage

and Analysis (SC), 2013 International Conference for, pp. 1–12, IEEE,
2013.

[19] F. Fraternali, A. Bartolini, C. Cavazzoni, G. Tecchiolli, and L. Benini,
“Quantifying the impact of variability on the energy efficiency for a
next-generation ultra-green supercomputer,” in Low Power Electronics

and Design (ISLPED), 2014 IEEE/ACM International Symposium on,
pp. 295–298, IEEE, 2014.

[20] A. Auweter, A. Bode, M. Brehm, L. Brochard, N. Hammer, H. Huber,
R. Panda, F. Thomas, and T. Wilde, “A case study of energy aware
scheduling on supermuc,” in Supercomputing, pp. 394–409, Springer,
2014.

[21] L. Benini, A. Bogliolo, and G. De Micheli, “A survey of design
techniques for system-level dynamic power management,” Very Large

Scale Integration (VLSI) Systems, IEEE Transactions on, vol. 8, no. 3,
pp. 299–316, 2000.

[22] G. Zellweger, S. Gerber, K. Kourtis, and T. Roscoe, “Decoupling
cores, kernels, and operating systems,” in 11th USENIX Symposium on

Operating Systems Design and Implementation (OSDI 14), pp. 17–31,
2014.

[23] S. Panneerselvam, M. Swift, and N. S. Kim, “Bolt: Faster reconfiguration
in operating systems,” in 2015 USENIX Annual Technical Conference

(USENIX ATC 15), pp. 511–516, 2015.

