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Abstract. Various valuation adjustments (XVAs) can be written in terms of nonlinear partial integro-differential
equations equivalent to forward-backward SDEs (FBSDEs). In this paper we develop a Fourier-
based method for solving FBSDEs in order to efficiently and accurately price Bermudan derivatives,
including options and swaptions, with XVA under the flexible dynamics of a local Lévy model: this
framework includes a local volatility function and a local jump measure. Due to the unavailability
of the characteristic function for such processes, we use an asymptotic approximation based on the
adjoint formulation of the problem.
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1. Introduction. After the financial crisis in 2007, it was recognized that counterparty
credit risk (CCR) poses a substantial risk for financial institutions. In 2010 in the Basel
III framework an additional capital charge requirement, called credit valuation adjustment
(CVA), was introduced to cover the risk of losses on a counterparty default event for over-
the-counter (OTC) uncollateralized derivatives. The CVA is the expected loss arising from a
default by the counterparty and can be defined as the difference between the risky value and
the current risk-free value of a derivatives contract. CVA is calculated and hedged in the same
way as derivatives by many banks; therefore having efficient ways of calculating the value and
the Greeks of these adjustments is important.

One common way of pricing CVA is to use the concept of expected exposure, defined as
the mean of the exposure distribution at a future date. Calculating these exposures typically
involves computationally time-consuming Monte Carlo procedures, like nested Monte Carlo
schemes or the more efficient least squares Monte Carlo method (LSM) [17]. Recently the
stochastic grid bundling method [14] was introduced as an improvement of the standard LSM.
This method was extended to pricing CVA for Bermudan options in [10]. Another recently
introduced alternative is the so-called finite-differences Monte Carlo method (FDMC) [6].
The FDMC method uses the scenario generation from the Monte Carlo method combined
with finite-difference option valuation.
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252 A. BOROVYKH, A. PASCUCCI, AND C. W. OOSTERLEE

Besides CVA, many other valuation adjustments, collectively called XVA, have been in-
troduced in option pricing in recent years, causing a change in way derivatives contracts are
priced. For instance, a company’s own credit risk is taken into account with a debt value
adjustment (DVA). The DVA is the expected gain that will be experienced by the bank in the
event that the bank defaults on its portfolio of derivatives with a counterparty. To reduce the
credit risk in a derivatives contract, the parties can include a credit support annex (CSA),
requiring one or both of the parties to post collateral. Valuation of derivatives under CSA
was first done in [21]. A margin valuation adjustment (MVA) arises when the parties are
required to post an initial margin. In this case the cost of posting the initial margin to the
counterparty over the length of the contract is known as MVA. Funding value adjustments
(FVA) can be interpreted as a funding cost or benefit associated to the hedge of market risk
of an uncollateralized transaction through a collateralized market. While there is still a de-
bate going on about whether to include or exclude this adjustment (see [13] and [12] for an
in-depth overview of the arguments), most dealers now seem to indeed take into account the
FVA. The capital value adjustment (KVA) refers to the cost of funding the additional capital
that is required for derivative trades. This capital acts as a buffer against unexpected losses
and thus, as argued in [11], has to be included in derivative pricing.

For pricing in the presence of XVA, one needs to redefine the pricing partial differential
equation (PDE) by constructing a hedging portfolio with cashflows that are consistent with the
additional funding requirements. This has been done for unilateral CCR in [21] and bilateral
CCR and XVA in [3] and extended to stochastic rates in [15]. This results in a nonlinear
option valuation PDE.

Nonlinear PDEs can be solved by, e.g., finite-difference methods or the LSM for solving
the corresponding backward stochastic differential equation (BSDE). In [22] an efficient for-
ward simulation algorithm that gives the solution of the nonlinear PDE as the optimum over
solutions of related but linear PDEs is introduced, with the computational cost being of the
same order as one forward Monte Carlo simulation. The downside of these numerical methods
is the computational time that is required to reach an accurate solution. An efficient alter-
native might be to use Fourier methods for solving the (non-)linear PDE or related BSDE,
such as the COS method, as was introduced in [8], extended to Bermudan options in [9] and
to BSDEs in [23]. In certain cases the efficiency of these methods is further increased due to
the ability to additionally use the fast Fourier transform (FFT).

In this paper we consider an exponential Lévy-type model with a state-dependent jump
measure and propose an efficient Fourier-based method to solve for Bermudan derivatives,
including options and swaptions, with XVA. We derive, in the presence of state-dependent
jumps, a nonlinear partial integro-differential equation (PIDE) and its corresponding BSDE
for an OTC derivative between a bank B and its counterparty C in the presence of CCR,
bilateral collateralization, MVA, FVA, and KVA, by setting up a hedging portfolio in which
we focus on hedging the default risks and take into account the different rates associated with
different types of lending. We extend the Fourier-based method known as the BCOS method,
developed in [23], to solve the BSDE under Lévy models with nonconstant coefficients. As
this method requires the knowledge of the characteristic function of the forward process,
which, in the case of the Lévy process with variable coefficients, is not known, we will use
an approximation of the characteristic function obtained by the adjoint expansion method
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developed in [19], [18] and extended to the defaultable Lévy process with a state-dependent
jump measure in [2]. Compared to other state-of-the-art methods for calculating XVAs, like
Monte Carlo methods and PDE solvers, our method is more efficient and/or flexible. The
efficiency is due to both the availability of the characteristic function in closed form through
the adjoint expansion method and the fast convergence of the COS method. Furthermore we
propose an alternative Fourier-based method for explicitly pricing the CVA term in case of
unilateral CCR for Bermudan derivatives under the local Lévy model. The advantage of this
method is that it allows us to use the FFT, resulting in a fast and efficient calculation. The
Greeks, used for hedging CVA, can be computed at almost no additional cost.

The rest of the paper is structured as follows. In section 2 we introduce the Lévy models
with nonconstant coefficients. In section 3 we derive the nonlinear PIDE and corresponding
BSDE for pricing contracts under XVA. In section 4 we propose the Fourier-based method for
solving this BSDE and in section 5.1 this method is extended to pricing Bermudan contracts.
In section 5.2 an alternative FFT-based method for pricing and hedging the CVA term is
proposed and section 6 presents numerical examples validating the accuracy and efficiency of
the proposed methods.

2. The model. We consider a defaultable asset St whose risk-neutral dynamics are given by

St = 1{t<ζ}e
Xt ,

dXt = µ(t,Xt)dt+ σ(t,Xt)dWt +

∫
R
qdÑt(t,Xt−, dq),

dÑt(t,Xt−, dq) = dNt(t,Xt−, dq)− a(t,Xt−)ν(dq)dt,(1)

ζ = inf

{
t ≥ 0 :

∫ t

0
γ(s,Xs)ds ≥ ε

}
,

where dÑt(t,Xt−, dq) is a compensated random measure with state-dependent Lévy measure

ν(t,Xt−, dq) = a(t,Xt−)ν(dq).

The default time ζ of St is defined in a canonical way as the first arrival time of a doubly
stochastic Poisson process with local intensity function γ(t, x) ≥ 0 and ε ∼ Exp(1) and is
independent of Xt. This way of modeling default is also considered in a diffusive setting in [5]
and for exponential Lévy models in [4]. Thus, our model includes a local volatility function,
a local jump measure, and a default probability which is dependent on the underlying. We
define the filtration at time t of the market observer to be Gt = FXt ∨ FDt , where FXt is the
filtration generated by X up to time t and FDt := σ({ζ ≤ u}, u ≤ t), for t ≥ 0, is the filtration
of the default. Using this definition of default, the probability of default is

PD(t) := P(ζ ≤ t) = 1− E
[
e−

∫ t
0 γ(s,Xs)ds

]
.(2)

We assume furthermore ∫
R
e|q|a(t, x)ν(dq) <∞.
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Imposing that the discounted asset price S̃t := e−rtSt is a G-martingale under the risk-neutral
measure, we get the following restriction on the drift coefficient:

µ(t, x) = γ(t, x) + r − σ2(t, x)

2
− a(t, x)

∫
R
ν(dq)(eq − 1− q),(3)

with r being the risk-free (collateralized) rate. Throughout the paper we assume deterministic,
constant interest rates, while the derivations can easily be extended to time-dependent rates.
The integro-differential operator of the process is given by (see, e.g., [20])

Lu(t, x) = ∂tu(t, x) + µ(t, x)∂xu(t, x)− γ(t, x)u(t, x) +
σ2(t, x)

2
∂xxu(t, x)

+ a(t, x)

∫
R
ν(dq)(u(t, x+ q)− u(t, x)− q∂xu(t, x)).(4)

3. XVA computation. Consider a bank B and its counterparty C, both of which might
default. Assume they enter into a contract paying Φ(St) at maturity. Let φ(x) = Φ(ex), and
assume the risk-neutral dynamics of the underlying as in (1) with the drift given by (3). Define
û(t, x) to be the value to the bank of the (default risky) portfolio with valuation adjustments
referred to as XVA and u(t, x) to be the risk-free value. Note that the difference between
these two values is called the total valuation adjustment and in our setting this consists of

TVA := û(t, x)− u(t, x) = CVA + DVA + KVA + MVA + FVA.(5)

The risk-free value u(t, x) solves a linear PIDE:

Lu(t, x) = ru(t, x),

u(T, x) = φ(x),

where L is given in (4). Assuming the dynamics in (1), this linear PIDE can be solved with
the methods presented in [2].

3.1. Derivative pricing under CCR and bilateral CSA agreements. In [3], the authors
derive an extension to the Black–Scholes PDE in the presence of a bilateral counterparty risk
in a jump-to-default model with the underlying being a diffusion, using replication arguments
that include the funding costs. In [15] this derivation is extended to a multivariate diffusion
setting with stochastic rates in the presence of CCR, assuming that both parties B and C
are subject to default. To mitigate the CCR, both parties exchange collateral consisting
of the initial margin and the variation margin. The parties are obliged to hold regulatory
capital, the cost of which is the KVA, and face the costs of funding uncollateralized positions
through collateralized markets, known as FVA. Both [3] and [15] extend the approach of [21],
in which unilateral collateralization was considered. We extend their approach to derive the
value of û(t, x) when the underlying follows the jump diffusion defined in (1). We assume a
one-dimensional underlying diffusion and consider all rates to be deterministic and, for ease
of notation, constant. We specify different rates, defined in Table 1, for different types of
lending.
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Table 1
Definitions of the rates used throughout the paper.

Rate Definition Rate Definition

r the risk-free rate rR the rate received on funding secured by the
underlying asset

rD the dividend rate in case the stock pays
dividends

rF the rate received on unsecured funding

rB the yield on a bond of the bank B rC the yield on the bond of the counterparty C
λB λB := rB − r λC λC := rC − r
λF λF := rF − r RB the recovery rate of the bank
RC the recovery rate of the counterparty

Assume that the parties B and C enter into a derivative contract on the spot asset that
pays the bank B the amount φ(XT ) at maturity T . The value of this derivative to the bank
at time t is denoted by û(t, x,J B,J C) and depends on the value of the underlying X and the
default states J B and J C of the bank B and counterparty C, respectively. Define ITC to be
the initial margin posted by the bank to the counterparty, IFC the initial margin posted by
the counterparty to the bank, and IV (t) the variation margin on which a rate rI is paid or
received. The initial margin is constant throughout the duration of the contract. Let K(t) be
the regulatory capital on which a rate of rK is paid/received.

The cashflows are viewed from the perspective of the bank B. At the default time of either
the counterparty or the bank, the value of the derivative to the bank û(t, x) is determined
with a mark-to-market rule M , which may be equal to either the derivative value û(t, x, 0, 0)
prior to default or the risk-free derivative value u(t, x), depending on the specifications in the
ISDA master agreement. Denote by τB and τC the random default times of the bank and
the counterparty, respectively. We will use the notation x+ = max(x, 0) and x− = min(x, 0).
In a situation in which the counterparty defaults, the bank is already in the possession of
IV + IFC . If the outstanding value M − (IV + IFC) is negative, the bank has to pay the
full amount (M − IV − IFC)−, while if the contract has a positive value to the bank, it will
recover only RC(M − IV − IFC)+. Using a similar argument in case the bank defaults, we
find the boundary conditions

θBt := û(t, x, 1, 0) = IV (t)− ITC + (M − IV (t) + ITC)+ +RB(M − IV (t) + ITC)−,

θCt := û(t, x, 0, 1) = IV (t) + IFC +RC(M − IV (t)− IFC)+ + (M − IV (t)− IFC)−,

so that the portfolio value at default is given by

θτ = 1τC<τBθ
C
τ + 1τB<τCθ

B
τ

with τ = min(τB, τC). Further we introduce the default risky, zero-recovery, zero-coupon
bonds (ZCBs) PB and PC with respective maturities TB and TC with face value one if the
issuer has not defaulted, and zero otherwise. Assume the dynamics for PBt and PCt to be
given by PBt = 1{τB>t}e

rBt and PCt = 1{τC>t}e
rCt, so that

dPBt = rBP
B
t dt− PBt−dJ Bt ,

dPCt = rCP
C
t dt− PCt−dJ Ct ,
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with J Bt = 1τB≤t and J Ct = 1τC≤t, where the default times τB and τC are defined in a
canonical way as the first arrival time of a doubly stochastic Poisson process with intensity
functions γB and γC , respectively (see also the definition of the defaultable asset in (1)). We
define the market interest rates for B and C to be rB = r + γB and rC = r + γC , so that
by the usual arguments (see, for instance, [16, section 2.2]) the discounted bonds e−rtPBt and
e−rtPCt are martingales under the risk-neutral measure.

We construct a hedging portfolio consisting of the shorted derivative, αC units of PC , αB
units of PB and g units of cash:

Π(t) = −û(t, x) + αB(t)PBt + αC(t)PCt + g(t).

In other words, since we assume both the underlying asset process and the tradeable bonds
PB and PC to be risk-neutral, we focus on hedging the risk arising from the defaults of both
B and C by means of the default-risky bonds.

If the value of the derivative is positive to B, it will incur a cost at the counterparties’
default. To hedge this, B shorts PC , i.e., αC ≤ 0. If we assume B can borrow the bond
close to the risk-free rate r (i.e., no haircut) through a repurchase agreement, it will incur
financing costs of rαC(t)PCt dt. The cashflows from the collateralization follow from the rate
rTC received and rFC paid on the initial margin and the rate rI paid or received on the
collateral, depending on whether IV > 0, and the bank receives collateral, or IV < 0, and
the bank pays collateral, respectively. From holding the regulatory capital we incur a cost
of rKK(t). Finally, the rates r and rF are respectively received or paid on the surplus cash
in the account. This cash consists of the gap between the shorted derivative value and the
collateral and the cost of buying αB bonds PB in order for B to hedge its own default, i.e.,
−û(t, x)− IV (t) + ITC − αB(t)PBt . Thus, the total change in the cash account is given by

dg(t) = [−rαC(t)PCt + rTCITC − rFCIFC − rIIV (t)− rKK(t)

+ r(−û(t, x)− IV (t) + ITC − αB(t)PBt )+λF (−û(t, x)− IV (t) + ITC−αB(t)PBt )−]dt.

Note that this is in contrast with the change in cash in a portfolio without the XVA arising
from the different types of funding, i.e., where we assume the cash in the portfolio simply
earns the risk-free rate

dg(t) = −rû(t, x)dt.

Assuming the portfolio is self-financing we have

dΠ(t) =− dû(t, x) + αB(t)dPBt + αC(t)dPCt + dg(t).

Applying Itô’s lemma to û(t, x) gives us

dû(t, x) = Lû(t, x)dt+ σ(t, x)∂xû(t, x)dWt +

∫
R

(û(t, x+ q)− û(t, x))dÑ(t, x, dq)

− (θB − û(t, x))dJ Bt − (θC − û(t, x))dJ Ct ,

with the operator L as in (4). Thus, we find
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dΠ =− Lû(t, x)dt− σ(t, x)∂xû(t, x)dWt −
∫
R

(û(t, x+ q)− û(t, x))dÑ(t, x, dq)

+ (θB − û(t, x))dJ Bt + (θC − û(t, x))dJ Ct − αB(t)PBt−dJ Bt − αC(t)PCt−dJ Ct
+ [αB(t)λBP

B
t + αC(t)λCP

C
t + (rTC + r)ITC − rFCIFC − (rI + r)IV (t)

− rKK(t) + rû(t, x) + λF (−û(t, x)− IV (t) + ITC − αB(t)PBt )−]dt.

By choosing

αB = −θ
B − û(t, x)

PB
, αC = −θ

C − û(t, x)

PC
,

we hedge the jump-to-default risk in the hedging portfolio, i.e.,

dΠ =− Lû(t, x)dt+ σ(t, x)∂xû(t, x)dWt −
∫
R

(û(t, x+ q)− û(t, x))dÑ(t,Xt−, dq)

+ [−(θB − û(t, x))λB − (θC − û(t, x))λC + (rTC + r)ITC − rFCIFC − (rI + r)IV (t)

− rKK(t) + rû(t, x) + λF (θB − IV (t) + ITC)−]dt.

Then, using the fact that the portfolio has to satisfy the martingale condition in the risk-
neutral world, i.e., E[dΠ] = 0, we find the nonlinear pricing PIDE to be

Lû(t, x) =f(t, x, û(t, x)),(6)

where we have defined

f(t, x, û(t, x)) =− (θB(t)− û(t, x))λB − (θC(t)− û(t, x))λC + (rTC + r)ITC − rFCIFC

− (rI + r)IV (t)− rKK(t) + rû(t, x) + λF (θB − IV (t) + ITC)−.

3.2. BSDE representation. In this section we will cast the PIDE in (6) in the form of
a BSDE. In the methods where we make use of BSDEs we assume γ(t, x) = 0. We begin by
recalling the nonlinear Feynman–Kac theorem in the presence of jumps; see Theorem 4.2.1
in [7].

Theorem 1 (nonlinear Feynman–Kac theorem). Consider Xt as in (1). We assume µ, σ,
and a to be Lipschitz continuous in x and additionally |a(t, x)| ≤ K. Consider the BSDE

Yt = φ(XT ) +

∫ T

t
f

(
s,Xs, Ys, Zs, a(s,Xs−)

∫
R
Vs(q)δ(q)ν(dq)

)
ds−

∫ T

t
ZsdWs

−
∫ T

t

∫
R
Vs(q)dÑs(s,Xs, q),(7)

where the generator f is continuous and satisfies the Lipschitz condition in the space vari-
ables, δ is a measurable, bounded function, and the terminal condition φ(x) is measurable and
Lipschitz continuous. Consider the nonlinear PIDE{

Lu(t, x) = f(t, x, u(t, x), ∂xu(t, x)σ(t, x), a(t, x)
∫
R(u(t, x+ q)− u(t, x))δ(q)ν(dq)),

u(T, x) = ψ(x).
(8)
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If the PIDE in (8) has a solution u(t, x) ∈ C1,2, the FBSDE in (7) has a unique solution
(Yt, Zt, Vt(q)) that can be represented as

Y t,x
s = u(s,Xt,x

s ),

Zt,xs = ∂xu(s,Xt,x
s )σ(s,Xt,x

s ),

V t,x
s (q) = u(s,Xt,x

s + q)− u(s,Xt,x
s ), q ∈ R,

for all s ∈ [t, T ], where Y is a continuous, real-valued, and adapted process and where the
control processes Z and V are continuous, real-valued, and predictable.

In our case, the BSDE corresponding to the PIDE in (6) reads

Yt = φ(XT ) +

∫ T

t
f(s,Xs, Ys)ds−

∫ T

t
ZsdWs −

∫ T

t

∫
R
Vs(q)dÑ(s,Xs, dq),(9)

where we have defined the driver function to be

f(t, x, y) =− λB(θB − y)− λC(θC − y) + (rTC + r)ITC − rFCIFC − (rI + r)IV (t)

− rKK(t) + ry + λF (θB − IV (t) + ITC)−.

3.3. A simplified driver function. Following [11], one can derive that the KVA is a func-
tion of trade properties (i.e., maturity, strike) and/or the exposure at default, which in turn
is a function of the portfolio value, so that the cost of holding the capital can be rewritten as
rKK(t) = rKc1û(t, x), with c1 being a function of the trade properties. The collateral is paid
when the portfolio has a negative value and received when the collateral has a positive value.
Assuming the collateral is a multiple of the portfolio value we have IV (t) = c2û(t, x), where
c2 is some constant. Then, the driver function is simply a function of the portfolio value.

Remark 2. Note that in the case of “no collateralization” or “perfect collateralization,”
the driver function reduces to f(t, û(t, x)) = ru(t) max(û(t, x), 0), for a function ru here left
unspecified. In this case the BSDE is similar to the one considered in [22].

4. Solving FBSDEs. In this section we extend the BCOS method from [23] to solving
FBSDEs under local Lévy models with variable coefficients and jumps (without default, i.e.,
γ(t, x) = 0). The conditional expectations resulting from the discretization of the FBSDE
are approximated using the COS method. This requires the characteristic function, which we
approximate using the adjoint expansion method of [19] and [2].

4.1. Discretization of the BSDE. Consider the forward process Xt as in (1) and the
BSDE Yt as in (9) with a more general driver function f(t, x, y, z). Define a partition 0 =
t0 < t1 < · · · < tN = T of [0, T ] with a fixed time step ∆t = tn+1 − tn, for n = N − 1, . . . 0.
Rewriting the set of FBSDEs we find

Xn+1 =Xn +

∫ tn+1

tn

µ(s,Xs)ds+

∫ tn+1

tn

σ(s,Xs)dWs +

∫ tn+1

tn

∫
R
qdÑs(s,Xs−, dq),

Yn =Yn+1 +

∫ tn+1

tn

f (s,Xs, Ys, Zs) ds−
∫ tn+1

tn

ZsdWs −
∫ tn+1

tn

∫
R
Vs(q)dÑs(s,Xs−, dq).(10)
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One can obtain an approximation of the process Yt by taking conditional expectations with
respect to the underlying filtration Gn, using the independence of Wt and Ñt(t,Xt−, dq) and
by approximating the integrals that appear with a theta-method, as first done in [24] and
extended to BSDEs with jumps in [23]:

Yn ≈ En[Yn+1] + ∆tθ1f (tn, Xn, Yn, Zn) + ∆t(1− θ1)En [f (tn+1, Xn+1, Yn+1, Zn+1)] .

Let ∆Ws := Ws −Wn for tn ≤ s ≤ tn+1. Multiplying both sides of (10) by ∆Wn+1, taking
conditional expectations, and applying the theta-method gives

Zn ≈ −θ−12 (1− θ2)En[Zn+1] +
1

∆t
θ−12 En[Yn+1∆Wn+1]

+ θ−12 (1− θ2)En [f (tn+1, Xn+1, Yn+1, Zn+1) ∆Wn+1] .

Since in our scheme the terminal values are functions of time t and the Markov process X, it
is easily seen that there exist deterministic functions y(tn, x) and z(tn, x) so that

Yn = y(tn, Xn), Zn = z(tn, Xn).

The functions y(tn, x) and z(tn, x) are obtained in a backward manner using the scheme

y(tN , x) = φ(x), z(tN , x) = ∂xφ(x)σ(tN , x)

for n = N − 1, . . . , 0:

y(tn, x) = En[y(tn+1, Xn+1)] + ∆tθ1f (tn, x) + ∆t(1− θ1)En [f(tn+1, Xn+1)] ,(11)

z(tn, x) = −1− θ2
θ2

En[z(tn+1, Xn+1)] +
1

∆t
θ−12 En[y(tn+1, Xn+1)∆Wn+1]

+
1− θ2
θ2

En [f(tn+1, Xn+1)∆Wn+1] ,(12)

where we have simplified notation with

f(t,Xt) := f (t,Xt, y(t,Xt), z(t,Xt)) .

In the case θ1 > 0 we obtain an implicit dependence on y(tn, x) in (11) and we use P Picard
iterations starting with initial guess En[y(tn+1, Xn+1)] to determine y(tn, x).

4.2. The characteristic function. Is it well-known (see, for instance, [16, section 2.2])
that the risk-free predefault price u(t, x) of a European option on the defaultable asset St
with maturity T and payoff φ(XT ) is given by

u(t, x) = 1{ζ>t}e
−r(T−t)E

[
e−

∫ T
t γ(s,Xs)dsφ(XT )|Xt

]
, t ≤ T,

in the measure corresponding to the dynamics in (1). Thus, in order to compute the price of
an option, we must evaluate functions of the form

v(t, x) := E
[
e−

∫ T
t γ(s,Xs)dsφ(XT )|Xt = x

]
.(13)
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Under standard assumptions, by the Feynman–Kac theorem, v can be expressed as the classical
solution of the following Cauchy problem:{

Lv(t, x) = 0, t ∈ [0, T [, x ∈ R,
v(T, x) = φ(x), x ∈ R,

(14)

with L as in (4).
The function v in (13) can be represented as an integral with respect to the transition

distribution of the defaultable log-price process logSt:

v(t, x) =

∫
R
φ(y)Γ(t, x;T, dy),

where Γ(t, x;T, dy) is the Green’s function of the PIDE in (14) and we say that its Fourier
transform

Γ̂(t, x;T, ξ) := F(Γ(t, x;T, ·))(ξ) :=

∫
R
eiξyΓ(t, x;T, dy), ξ ∈ R,

is the characteristic function of logS. Following [19] and [2] we expand the state-dependent
coefficients

s(t, x) :=
σ2(t, x)

2
, µ(t, x), γ(t, x), a(t, x),

around some point x̄. The coefficients s(t, x), γ(t, x), and a(t, x) are assumed to be continu-
ously differentiable with respect to x up to order n ∈ N.

Introduce the nth-order approximation of L in (4):

Ln = L0 +
n∑
k=1

(
(x− x̄)kµk(t) + (x− x̄)ksk(t)∂xx − (x− x̄)kγk(t)

+

∫
R

(x− x̄)kak(t)ν(dq)(eq∂x − 1− q∂x)

)
,

where

L0 = ∂t + µ0(t)∂x + s0(t)∂xx − γ0(t) +

∫
R
a0(t)ν(dq)(eq∂x − 1− q∂x)

and

sk =
∂kxs(·, x̄)

k!
, γk =

∂kxγ(·, x̄)

k!
, µk(dq) =

∂kxµ(·, x̄)

k!
, ak =

∂kxa(·, x̄)

k!
, k ≥ 0.

The basepoint x̄ is a constant parameter which can be chosen freely. In general the simplest
choice is x̄ = x (the value of the underlying at initial time t).

Assume for a moment that L0 has a fundamental solution G0(t, x;T, y) that is defined as
the solution of the Cauchy problem{

L0G
0(t, x;T, y) = 0, t ∈ [0, T [, x ∈ R,

G0(T, ·;T, y) = δy.
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In this case we define the nth-order approximation of Γ as

Γ(n)(t, x;T, y) =

n∑
k=0

Gk(t, x;T, y),

where, for any k ≥ 1 and (T, y), Gk(·, ·;T, y) is defined recursively through the following
Cauchy problem:L0G

k(t, x;T, y) = −
k∑

h=1

(Lh − Lh−1)Gk−h(t, x;T, y), t ∈ [0, T [, x ∈ R,

Gk(T, x;T, y) = 0, x ∈ R.

Notice that

Lk − Lk−1 = (x− x̄)kµh(t)∂x + (x− x̄)ksk(t)∂xx − (x− x̄)kγk(t)

+

∫
R

(x− x̄)kak(t)ν(dq)(eq∂x − 1− q∂x).

Correspondingly, the nth-order approximation of the characteristic function Γ̂ is defined to be

Γ̂(n)(t, x;T, ξ) =

n∑
k=0

F
(
Gk(t, x;T, ·)

)
(ξ) :=

n∑
k=0

Ĝk(t, x;T, ξ), ξ ∈ R.

Now, by transforming the simplified Cauchy problems into adjoint problems and solving these
in the Fourier space we find

Ĝ0(t, x;T, ξ) = eiξxe
∫ T
t ψ(s,ξ)ds,

Ĝk(t, x;T, ξ) = −
∫ T

t
e
∫ T
s ψ(τ,ξ)dτF

(
k∑

h=1

(
L̃
(s,·)
h (s)− L̃(s,·)

h−1(s)
)
Gk−h(t, x; s, ·)

)
(ξ)ds,

with

ψ(t, ξ) = iξµ0(t) + s0(t)ξ
2 +

∫
R
a0ν(t, dq)(eizξ − 1− izξ),

L̃
(t,y)
h (t)− L̃(t,y)

h−1(t) = µh(t)h(y − x̄)h−1 + µh(t)(y − x̄)h∂y − γh(t)(y − x̄)h

+ sh(t)h(h− 1)(y − x̄)h−2 + sh(t)(y − x̄)h−1 (2h∂y + (y − x̄)∂yy)

+

∫
R
ah(t)ν̄(dq)

(
(y+q−x̄)heq∂y−(y−x̄)h−q

(
h(y−x̄)h−1−(y−x̄)h∂y

))
,

where ν̄(dq) = ν(−dq).
Remark 3. After some algebraic manipulations it can be shown (see [2]) that the charac-

teristic function approximation of order n is a function of the form

(15) Γ̂(n)(t, x;T, ξ) := eiξx
n∑
k=0

(x− x̄)kgn,k(t, T, ξ),
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where the coefficients gn,k, with 0 ≤ k ≤ n, depend only on t, T , and ξ, but not on x. The
approximation formula can thus always be split into a sum of products of functions depending
only on ξ and functions that are linear combinations of (x− x̄)meiξx, m ∈ N0.

Remark 4 (error estimates for the approximated characteristic function). Similar to the deriva-
tion in [2], one can derive the error bounds for the characteristic function approximation. Let
n = 0, 1 and assume the coefficients s(t, x), γ(t, x), and a(t, x) are continuously differentiable
with bounded derivatives up to order n. For the nth-order approximation Γ(n)(t, x;T, ξ), for
any x̄ ∈ R, ∣∣∣Γ(t, x;T, ξ)− Γ(n)(t, x;T, ξ)

∣∣∣ ≤ C(T, ξ)((T − t)2 + (T − t)(x− x̄))
n+1
2 .

Note that if x̄ = x, the bound reduces to C(T, ξ)(T − t)n+1.

4.3. The COS formulae. The conditional expectations are approximated using the COS
method, which was developed in [9] and applied to FBSDEs with jumps in [23]. The con-
ditional expectations arising in (11)–(12) are all of the form En[h(tn+1, Xn+1)] or En[h(tn+1,
Xn+1)∆Wn+1]. The COS formula for the first type of conditional expectation reads

Exn[h(tn+1, Xn+1)] ≈
J−1∑′

j=0

Hj(tn+1)Re

(
Γ̂

(
tn, x; tn+1,

jπ

b− a

)
exp

(
ijπ
−a
b− a

))
,

where Σ′ denotes an ordinary summation with the first term weighted by one-half, J > 0
is the number of Fourier-cosine coefficients we use, Hj(tn+1) denotes the jth Fourier-cosine
coefficients of the function h(tn+1, x), and Γ̂ (tn, x; tn+1, ξ) is the conditional characteristic
function of the process Xn+1 given Xn = x. For the second type of conditional expectation,
using integration by parts, we obtain

Exn[h(tn+1, Xn+1)∆Wn]

≈ ∆tσ(tn, x)

J−1∑′

j=0

Hj(tn+1)Re

(
i
jπ

b− a
Γ̂

(
tn, x; tn+1,

jπ

b− a

)
exp

(
ijπ
−a
b− a

))
.

See [23] for the full derivations.

Remark 5. Note that these formulas are obtained by using an Euler approximation of the
forward process and using the second-order approximation of the characteristic function of the
actual process. We have found this to be more exact than using the characteristic function
of the Euler process, which is equivalent to using just the 0th-order approximation of the
characteristic function.

Finally we need to approximate the Fourier-cosine coefficients Hj(tn+1) of h(tn+1, x) at
time points tn, where n = 0, . . . , N . The Fourier-cosine coefficient of h at time tn+1 is
defined by

Hj(tn+1) =
2

b− a

∫ b

a
h(tn+1, x) cos

(
jπ
x− a
b− a

)
dx.
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Due to the structure of the approximated characteristic function of the local Lévy process
(see (15)), the coefficients of the functions z(tn+1, x) and the explicit part of y(tn+1, x) can
be computed using the FFT algorithm, as we do in Appendix A, because of the matrix in
(23) being of a certain form with constant diagonals. In order to determine Fj(tn+1), the
Fourier-cosine coefficient of the function

f (tn+1, x, y(tn+1, x), z(tn+1, x)) ,

due to the intricate dependence on the functions z and y we choose to approximate the integral
in Fj by a discrete Fourier-cosine transform (DCT). For the DCT we compute the integrand,
and thus the functions z(tn+1, x) and y(tn+1, x), on an equidistant x-grid. Note that in this
case we can easily approximate all Fourier-cosine coefficients with a DCT (instead of the
FFT). If we take J grid points defined by xi := a+ (i+ 1

2) b−aJ and ∆x = b−a
J we find, using

the midpoint integration rule, the approximation

Hj(tn+1) ≈
2

J

J−1∑′

i=0

h(tn+1, xi) cos

(
jπ

2i+ 1

2J

)
,

which can be calculated using the DCT algorithm, with a computational complexity of
O(J log J).

Remark 6. We define the truncation range [a, b] as follows:

[a, b] :=

[
c1 − L

√
c2 +

√
c4, c1 + L

√
c2 +

√
c4

]
,(16)

where cn is the nth cumulant of log-price process logS, as proposed in [8]. The cumulants are
calculated using the 0th-order approximation of the characteristic function.

5. XVA computation for Bermudan derivatives. The method in section 4 allows us
to compute the XVA as in (5), consisting of CVA, DVA, MVA, KVA, and FVA. In this
section, we apply this method to computing Bermudan derivative values with XVA. The
resulting method—the solution of the nonlinear XVA PDE through a BSDE-type method—
is an efficient alternative to finite-difference methods as well as to the Monte Carlo based
method developed in [22]. The efficiency is due to both the availability of the characteristic
function in closed form through the adjoint expansion method and the fast convergence of
the COS method. Furthermore, in finite-difference methods complications may arise in the
implementation of the scheme for jump diffusions. Since our proposed method works in the
Fourier space, the jump component is easily handled by means of an additional term in the
characteristic function and does not cause any further difficulties.

For the CVA component in the XVA we develop an alternative method, which due to the
ability of the FFT results in a particularly efficient computation.

5.1. XVA computation. Consider an OTC derivative contract between the bank B and
the counterparty C on the underlying asset St given by (1) with γ(t, x) = 0 with a Bermudan-
type exercise possibility: there is a finite set of so-called exercise moments {t1, . . . , tM} prior
to the maturity, with 0 ≤ t1 < t2 < · · · < tM = T . The payoff from the point of view
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of bank B is given by φ(tm, Xtm). Denote û(t, x) to be the risky Bermudan option value
and c(t, x) the continuation value. By the dynamic programming approach, the value for
a Bermudan derivative with XVA and M exercise dates t1, . . . , tM can be expressed by a
backward recursion as

û(tM , x) = φ(tM , x),

and the continuation value solves the nonlinear PIDE defined in (6),
{
Lc(t, x) = f(t, x, c(t, x)), t ∈ [tm−1, tm[,

c(tm, x) = û(tm, x),

û(tm−1, x) = max{Φ(tm−1, x), c(tm−1, x)}, m ∈ {2, . . . ,M}.

The derivative value is set to be û(t, x) = c(t, x) for t ∈]tm−1, tm[, and, if t1 > 0, also for
t ∈ [0, t1[. The payoff function might take on various forms:

1. (Portfolio) Following [22], we can consider Xt to be the process of a portfolio which
can take on both positive and negative values. Then, when exercised at time tm, bank
B receives the portfolio so that φ(tm, x) = ex.

2. (Bermudan option) In case the Bermudan contract is an option, the option value to the
bank cannot have a negative value for the bank. At the same time, in case of default
of the bank itself, the counterparty loses nothing. In this case the framework simplifies
to one with unilateral collateralization and default risk and the payoff at time tm, if
exercised, is given by φ(tm, x) = (K − ex)+ for a put and φ(tm, x) = (ex −K)+ for a
call with K being the strike price.

3. (Bermudan swaptions) A Bermudan swaption is an option in which the holder, bank
B, has the right to exercise and enter into an underlying swap with fixed end date
tM+1. If the swaption is exercised at time tm the underlying swap starts with payment
dates Tm = {tm+1, ..., tM+1}. Working under the forward measure corresponding to
the last reset date tM , the payoff function is given by

φ(tm, x) = NS

(
M∑
k=m

P (tm, tk+1, x)

P (tm, tM )
∆t

)
max(cp(S(tm, Tm, x)−K), 0),

where NS is the notional, cp = 1 for a payer swaption and cp = −1 for a receiver
swaption, P (tm, tk, x) is the price of a ZCB conditional on Xtm = x, and S(tm, Tm, x)
is the forward swap rate given by

S(tm, Tm, x) =

(
1− P (tm, tm+1, x)

P (tm, tM , x)

)/( M∑
k=m

P (tm, tk+1, x)

P (tm, tM , x)
∆t

)
.

To solve for the continuation value we define a partition with N steps tm−1 = t0,m < t1,m <
t2,m < · · · < tn,m < · · · < tN,m = tm between two exercise dates tm−1 and tm, with fixed time
step ∆tn := tn+1,m− tn,m. Applying the method developed in section 4, we find the following
time iteration for the continuation value: At time tN,m set

c(tN,m, x) = û(tm, x); for n = N − 1, . . . , 0 compute
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c(tn,m, x) ≈ ∆tnθ1f(tn,m, x, c(tn,m, x)) +

J−1∑′

j=0

Ψj(x)(Cj(tn+1,m) + ∆tn(1− θ1)Fj(tn+1,m)),

(17)

where we have defined

Ψj(x) = Re

(
Γ̂

(
tn,m, x; tn+1,m,

jπ

b− a

)
exp

(
ijπ
−a
b− a

))
,

and the Fourier-cosine coefficients are given by

Cj(tn+1,m) =
2

b− a

∫ b

a
c(tn+1,m, x) cos

(
jπ
x− a
b− a

)
dx,

Fj(tn+1,m) =
2

b− a

∫ b

a
f(tn+1,m, x, c(tn+1,m, x)) cos

(
jπ
x− a
b− a

)
dx.

In order to determine the function c(tn, x), we will perform P Picard iterations. To evaluate
the coefficients with a DCT we need to compute the integrands c(tn+1,m, x) and f(tn+1,m,
x, c(tn+1,m, x)) on the equidistant x-grid with xi for i = 0, . . . , J −1. In order to compute this
at each time step tn,m we thus need to evaluate c(tn,m, x) on the x-grid with J equidistant
points using formula (17). The matrix-vector product in the formula results in a computational
time of order O(J2).

Remark 7 (convergence of the Picard iterations). A Picard iteration is used to find the
fixed-point c of c = ∆tθ1f(tn,m, x, c) + h(tn,m, x), where f(t, x, c) and h(t, x) are respectively
the implicit and explicit parts of the equation. Due to the computational domain of c(t, x)
being bounded by [a, b], we can thus say that f(t, x, c(t, x)) is also bounded. If the driver
function f(t, x, c) is Lipschitz continuous in c, i.e., ∃ LLipz such that |f(t, x, c1)− f(t, x, c2)| ≤
LLipz|c1 − c2|, and ∆tn is small enough such that ∆tθ1L

Lipz < 1, a unique fixed-point exists
and the Picard iterations converge toward that point for any initial guess. In particular, for
the XVA case the nonlinearity is of the form f(t, x, c) = −rmax(c, 0), and this is Lipschitz
continuous with LLipz = 1. Thus for ∆t sufficiently small, the Picard iteration converges to a
unique fixed-point.

The total algorithm for computing the value of a Bermudan contract with XVA can be
summarized as in the algorithm in Figure 1. The total computational time for the algorithm
is of order

O(M ·N(J + J2 + PJ + J log2 J)),(18)

consisting of the computation for M ·N times the computation of the characteristic function
on the x-grid (due to the availability of the analytical approximation) of O(J), computation
of the matrix-vector multiplications in the formulas for c(tn,m, x) and z(tn,m, x) of O(J2),
initialization of the Picard method with En[c(tn+1, Xn+1] in O(J2) operations, computation
of the P Picard approximations for c(tn,m, x) in O(PJ), and computing the Fourier coefficients
Fj(tn) and Cj(tn) with the DCT in O(J log2 J) operations.
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1. Define the x-grid with J grid points given by xi = a+(i+ 1
2) b−aJ for i = 0, . . . , J−1.

2. Calculate the final exercise date values c(tN,M , x) = û(tM , x) on the x-grid and
compute the terminal coefficients Cj(tM ) and Fj(tM ) using the DCT.

3. Recursively for the exercise dates m = M − 1, . . . , 0 do:
(a) For time steps n = N − 1, . . . , 0 do:

i. Compute c(tn,m, x) using formula (17) and use this to determine
f(tn,m, x, c(tn,m, x)) on the x-grid.

ii. Subsequently, use these to determine Fj(tn,m) and Cj(tn,m) using the
DCT.

(b) Compute the new terminal condition c(tN,m−1, x) =
max{φ(t0,m, x), c(t0,m, x)} (either analytically or numerically) and
the corresponding Fourier-cosine coefficient.

4. Finally û(t0, x0) = c(t0,0, x0).

Figure 1. Bermudan derivative valuation with XVA.

5.2. An alternative for CVA computation. In this section we present an efficient alterna-
tive way of calculating the CVA term in (5) in the case of unilateral CCR using a Fourier-based
method. Due to the ability of using the FFT this method is considerably faster for computing
the CVA than the method presented in section 5.1. We use the definition of CVA at time t
given by

CVA(t) = û(t,Xt)− u(t,Xt),

where u(t,Xt) is as usual the default-free value of the Bermudan option (γ(t, x) = 0), while
û(t,Xt) is the value including default (γ(t, x) 6= 0). We consider the model as defined in
(1). We will compute u(t,Xt) and û(t,Xt) using the COS method and the approximation
of the characteristic function (as derived in section 4.3), without default and with default,
respectively. In case of a default the payoff becomes zero. Note that the risky option value
û(t, x) computed with the characteristic function for a defaultable underlying corresponds
exactly to the option value in which the counterparty might default, with the probablity of
default, PD(t), defined as in (2). Thus, in this case we have unilateral CCR and ζ = τC , the
default time of the counterparty.

Using the definition of the defaultable St, it is well-known (see, for instance, [16, section
2.2]) that the risky no-arbitrage value of the Bermudan option on the defaultable asset St at
time t is given by

û (t,Xt) = 1{ζ>t} sup
τ∈{t1,...,tM}

E
[
e−

∫ τ
t (r+γ(s,Xs))dsφ(τ,Xτ )|Xt

]
.

Remark 8 (wrong-way risk). By allowing the dependence of the default intensity on the
underlying, a simplified form of wrong-way risk is already incorporated into the CVA valuation.

For a Bermudan put option with strike price K, we simply have φ(t, x) = (K − x)+.
By the dynamic programming approach, the option value can be expressed by a backward
recursion as
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û(tM , x) = 1{ζ>tM}max(φ(tM , x), 0)

and

c(t, x) = E
[
e
∫ tm
t (r+γ(s,Xs))dsû(tm, Xtm)|Xt = x

]
, t ∈ [tm−1, tm[,

û(tm−1, x) = 1{ζ>tm−1}max{φ(tm−1, x), c(tm−1, x)}, m ∈ {2, . . . ,M}.(19)

Thus to find the risky option price û(t,Xt) one uses the defaultable asset with γ(t, x) rep-
resenting the default intensity of the counterparty and in order to get the default-free value
u(t,Xt) one uses the default-free asset by setting γ(t, x) = 0. The CVA adjustment is cal-
culated as the difference between the two. Both û(t, x) and u(t, x) are calculated using the
approximated characteristic function and the COS method applied to the continuation value
[2]. Due to the characteristic function being of the form (15), we are able to use the FFT in
the matrix-vector multiplication when computing the continuation values of the Bermudan
option with and without default, reducing this operation from O(J2) to O(J log2 J). For more
details, we refer to Appendix A. The total complexity of the calculation of the CVA value for
a Bermudan option with M exercise dates is then O(MJ log2 J). Comparing this to (18), in
which the most time-consuming operations were indeed the matrix-vector products of order
O(J2) that resulted from the computation of the functions on the x-grid of size J , we conclude
that the method for CVA computation is indeed significantly faster due to the ability of using
the FFT.

5.2.1. Hedging CVA. In practice CVA is hedged and thus practitioners require efficient
ways to compute the sensitivity of the CVA with respect to the underlying. The widely used
bump-and-revalue method, while resulting in precise calculations, might be slow to compute.
Using the Fourier-based approach we find explicit formulas allowing for an easy computation
of the first- and second-order derivatives of the CVA with respect to the underlying. For the
first-order and second-order Greeks we have

∆ = e−r(t1−t0)
J−1∑′

j=0

Re

(
eijπ

x−a
b−a

(
ijπ

b− a
gdn,0

(
t0, t1,

jπ

b− a

)
+ gdn,1

(
t0, t1,

jπ

b− a

)))
V d
j (t1)

− e−r(t1−t0)
J−1∑′

j=0

Re

(
eijπ

x−a
b−a

(
ijπ

b− a
grn,0

(
t0, t1,

jπ

b− a

)
+ grn,1

(
t0, t1,

jπ

b− a

)))
V r
j (t1),

∂∆

∂X
= e−r(t1−t0)

J−1∑′

j=0

Re

(
eijπ

x−a
b−a

(
− ijπ

b− a
gdn,0

(
t0, t1,

jπ

b− a

)
− gdn,1

(
t0, t1,

jπ

b− a

)

+ 2
ijπ

b−a
gdn,1

(
t0, t1,

jπ

b−a

)
+

(
ijπ

b−a

)2

gdn,0

(
t0, t1,

jπ

b−a

)
+2gdn,2

(
t0, t1,

jπ

b−a

)))
V d
j (t1)

− e−r(t1−t0)
J−1∑′

j=0

Re

(
eijπ

x−a
b−a

(
− ijπ

b− a
grn,0

(
t0, t1,

jπ

b− a

)
− grn,1

(
t0, t1,

jπ

b− a

)
− 2

ijπ

b−a
grn,1

(
t0, t1,

jπ

b−a

)
+

(
ijπ

b−a

)2

grn,0

(
t0, t1,

jπ

b−a

)
+2grn,2

(
t0, t1,

jπ

b−a

)))
Vj(t1)

r,
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where V d
k and V r

k are the Fourier-cosine coefficients with the defaultable and default-free
characteristic function terms, gdn,h and grn,h, respectively.

6. Numerical experiments. In this section we present numerical examples to justify the
accuracy of the methods in practice. We compute the XVA with the method presented in
section 5.1 and the CVA in the case of unilateral CCR with the method from section 5.2,
which we show is more efficient for cases in which one only needs to compute the CVA. We
compare the results of solving the BSDE with the COS method and the adjoint expansion
of the characteristic function to the values obtained by using a least-squares Monte Carlo
method for computing the conditional expected values in the BSDE as done in, e.g., [1].

The computer used in the experiments has an Intel Core i7 CPU with a 2.2 GHz processor.
We use the second-order approximation of the characteristic function. We have found this to be
sufficiently accurate by numerical experiments and theoretical error estimates. The formulas
for the second-order approximation are simple, making the methods easy to implement.

6.1. A numerical example for XVA. Here, we check the accuracy of the method from
section 5.1. We will compute the Bermudan option value with XVA using a simplified driver
function given by f(t, û(t, x)) = −rmax(û(t, x), 0). Our method is easily extendible to the
driver function in section 3.2. Consider Xt to be a portfolio process and the payoff, if exercised
at time tm, to be given by Φ(tm, x) = x. In this case the value we can receive at every exercise
date is the value of the portfolio. Consider the model in section 2 without default, with a local
jump measure and a local volatility function with CEV-like dynamics and Gaussian jumps
defined by

σ(x) = beβx,(20)

ν(x, dq) = λeβx
1√

2πδ2
exp

(
−(q −m)2

2δ2

)
dq.(21)

We assume the following parameters in (20)–(21), unless otherwise mentioned: b = 0.15,
β = −2, λ = 0.2, δ = 0.2, m = −0.2, r = 0.1, K = 1, and X0 = 0 (so that S0 = 1). In the
LSM the number of time steps is taken to be 100 and we simulate 105 paths. In the COS
method we take J = 256, θ1 = 0.5 and N = 10, M = 10, making the total number of time
steps N ·M = 100. The truncation range is determined as in (16) with L = 10. Due to the
state-dependent coefficients in the underlying dynamics in (20)–(21) we use the approximated
characteristic function as derived in section 4.2 with the second-order approximation, i.e.,
Γ̂(2)(t, x;T, ξ), and take x̄ = x, where x = {xi}J−1i=0 . Note that we thus compute the values,
including those of the characteristic function, on the complete x-grid. In the final iteration
when computing û(t0, X0) we use x̄ = X0.

In Table 2 we analyze the error in the approximation of û(t0, X0) with S0 = 0.4 for different
values of the discretization parameter N and the number of grid points (and Fourier-cosine
coefficients) J . We compare the approximated COS value to the 95% confidence interval
obtained by an LSM. Accurate results are quickly obtained for small values of both J and N .
In Figure 2 we plot the upper bound of the 95% confidence interval of the absolute error in the
approximation for varying J and N . We observe approximately a linear convergence and note
that the error stops decreasing at some point for increasing values of J and N . This can be
due to the error being dominated by the approximated characteristic function. In particular
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Table 2
The 95% confidence interval of the absolute error in the COS approximation of û(0, X0) with S0 = 0.4

compared to an LSM for varying parameters J and N.

N = 1 N = 10 N = 20 N = 30

J = 8 6.4E-03−6.9E-03 4.3E-03−4.8E-03 4.9E-03−5.3E-03 5.3E-03−5.8E-03
J = 16 2.3E-03−2.7E-03 8.8E-04−1.3E-03 6.2E-04−1.1E-03 5.4E-04−9.2E-04
J = 32 1.7E-03−2.0E-03 4.2E-04−8.3E-04 2.4E-04−6.3E-04 1.6E04−5.8E-04
J = 64 1.4E-03−1.9E-03 2.2E-04−6.5E-04 1.6E-04−2.3E-04 1.2E-04−2.9E-04
J = 128 1.7E-04−6.0E-04 2.1E-04−6.6E-04 2.3E-04−6.5E-04 1.9E-04−6.1E-04
J = 256 2.1E-04−6.6E-04 3.7E-04−7.7E-04 1.5E-04−5.7E-04 1.2E-04−3.1E-04

Figure 2. Convergence of the upper bound of the 95% confidence interval of the absolute error in the COS
approximation û(0, X0) with S0 = 0.4 compared to an LSM for varying parameters J and N .

Table 3
A Bermudan put option with XVA (10 exercise dates, expiry T = 0.5, 1) in the CEV-like model for the

second-order approximation of the characteristic function, and an LSM comparison.

Maturity T S0 MC value with XVA COS value with XVA

0.5 0 0.03770−0.03838 0.03809
0.2 0.2326−0.2330 0.2320
0.4 0.4251−0.4254 0.4243
0.6 0.6169−0.6171 0.6158
0.8 0.8077−0.8079 0.8069
1 1.000−1.000 1.0000

1 0 0.07374−0.07453 0.07228
0.2 0.2611−0.2617 0.2606
0.4 0.4461−0.4465 0.4454
0.6 0.6288−0.6291 0.6288
0.8 0.8126−0.8129 0.8113
1 1.001−1.001 1.000

we observe that J = 32 and N = 10 seem to be sufficient parameters to achieve a satisfactory
accuracy in the approximation.

The results for û(t0, X0) of the COS approximation method compared to a 95% confi-
dence interval of the value obtained through an LSM are presented in Table 3. These results
show that our method is able to solve nonlinear PIDEs accurately. The CPU time of the
approximating method depends on the number of time steps M · N and is approximately
5 · (N ·M) ms.D
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Table 4
CVA for a Bermudan put option (10 exercise dates, expiry T = 0.5, 1) in the CEV-like model for the

second-order approximation of the characteristic function, and an LSM comparison.

Maturity T strike K MC CVA COS CVA

0.5 0.6 4.200 · 10−4 − 4.807 · 10−4 1.113 · 10−4

0.8 0.001525−0.001609 9.869·10−4

1 0.01254−0.01273 0.01138
1.2 0.005908−0.005931 0.005937
1.4 0.006657−0.06758 0.006898
1.6 0.007795−0.008008 0.007883

1 0.6 8.673E-04−9.574E-04 4.463E-04
0.8 0.005817−0.006040 0.003535
1 0.02023−0.02054 0.01882
1.2 0.01221−0.01222 0.1272
1.4 0.01378−0.01391 0.01360
1.6 0.01532−0.01502 0.01554

Figure 3. Optimal exercise boundary for a Bermudan put option (10 exercise dates, expiry T = 1) in the
CEV-like model with varying default c = 0, 0.1, 0.2.

6.2. A numerical example for CVA. In this section we validate the accuracy of the
method presented in section 5.2 and compute the CVA in the case of unilateral CCR under the
model dynamics given in section 2 with a local jump measure and a local volatility function
with CEV-like dynamics, Gaussian jumps defined as in (21), and a local default function
γ(x) = ceβx. We assume the same parameters as in section 6.2, except r = 0.05, and we
take c = 0.1 in the default function. In the LSM the number of time steps is taken to be
100 and we simulate 105 paths. In the COS method we take L = 10 and J = 100. Again,
due to the state-dependent coefficients in the underlying dynamics we use the approximated
characteristic function as derived in section 4.2 with the second-order approximation, i.e.,
Γ̂(2)(t, x;T, ξ), and take x̄ = X0.

The results for the CVA valuation with the FFT-based method and with the LSM are
presented in Table 4. The CPU time of the LSM is at least 5 times the CPU time of the
approximating method, which for M exercise dates is approximately 3 · M ms, thus more
efficient than the computation of the XVA with the method in section 5.1. The optimal exercise
boundary in Figure 3 shows that the exercise region becomes larger when the probability ofD
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default increases; this is to be expected: in case of the default probability being greater, the
option of exercising early is more valuable and used more often.

7. Conclusion. In this paper we considered pricing Bermudan derivatives under the pres-
ence of XVA, consisting of CVA, DVA, MVA, FVA, and KVA. We derived the replicating
portfolio with cashflows corresponding to the different rates for different types of lending.
This resulted in the PIDE in (6) and its corresponding BSDE (9). We proposed to solve the
BSDE using a Fourier-cosine method for the resulting conditional expectations and an adjoint
expansion method for determining an approximation of the characteristic function of the local
Lévy model in (1). This approach was extended to Bermudan option pricing in section 5.1. In
section 5.2 we presented an alternative for computing the CVA term in the case of unilateral
collateralization (as is the case when the derivative is an option) without the use of BSDEs.
This results in an even more efficient method due to the ability to use the FFT. We verified the
accuracy of both methods in sections 6.1 and 6.2 by comparing it to an LSM and concluded
that the method from section 5.1 is able to achieve a rapid convergence and gives for small
values of the discretization parameters an accurate result. The alternative method for CVA
computation from section 5.2 is indeed more efficient than the BSDE method for computing
just the CVA term.

Appendix A. The COS formulae. Let, as usual, J denote the number of Fourier-cosine
coefficients. Remembering that the expected value c(t, x) in (19) can be rewritten in integral
form, we have

c(t, x) = e−r(tm−t)
∫
R
v(tm, y)Γ(t, x; tm, dy), t ∈ [tm−1, tm[,

where v(tm, y) can be either u(tm, y) or û(tm, y). Then we use the Fourier-cosine expansion
to get the approximation

ĉ(t, x) = e−r(tm−t)
J−1∑′

j=0

Re

(
e−ijπ

a
b−a Γ̂

(
t, x; tm,

jπ

b− a

))
Vj(tm), t ∈ [tm−1, tm[,(22)

Vj(tm) =
2

b− a

∫ b

a
cos

(
jπ
y − a
b− a

)
max{φ(tm, y), c(tm, y)}dy,

with φ(t, x) = (K − ex)+.
We can recover the coefficients (Vj(tm))j=0,1,...,J−1 from (Vj(tm+1))j=0,1,...,J−1. To this end,

we split the integral in the definition of Vj(tm) into two parts using the early-exercise point
x∗m, which is the point where the continuation value is equal to the payoff, i.e., c(tm, x

∗
m) =

φ(tm, x
∗
m); this point can easily be found by using the Newton method. Thus, we have

Vj(tm) = Fj(tm, x
∗
m) + Cj(tm, x

∗
m), m = M − 1,M − 2, . . . , 1,

where

Fj(tm, x
∗
m) :=

2

b− a

∫ x∗m

a
φ(tm, y) cos

(
jπ
y − a
b− a

)
dy,

Cj(tm, x
∗
m) :=

2

b− a

∫ b

x∗m

c(tm, y) cos

(
jπ
y − a
b− a

)
dy,

and Vj(tM ) = Fj(tM , logK).D
ow

nl
oa

de
d 

07
/1

9/
18

 to
 1

92
.1

6.
19

1.
14

0.
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

272 A. BOROVYKH, A. PASCUCCI, AND C. W. OOSTERLEE

The coefficients Fj(tm, x
∗
m) can be computed analytically using x∗m ≤ logK and, by insert-

ing the approximation (22) for the continuation value into the formula for Cj(tm, x
∗
m), have

the following coefficients Ĉj for m = M − 1,M − 2, . . . , 1:

Ĉj(tm, x
∗
m) =

2e−r(tm+1−tm)

b− a

·
J−1∑′

k=0

Vk(tm+1)

∫ b

x∗m

Re

(
e−ikπ

a
b−a Γ̂

(
tm, x; tm+1,

kπ

b− a

))
cos

(
jπ
x− a
b− a

)
dx.

From (15) we know that the nth-order approximation of the characteristic function is of the
form

Γ̂(n)(tm, x; tm+1, ξ) = eiξx
n∑
h=0

(x− x̄)hgn,h(tm, tm+1, ξ),

where the coefficients gn,h(t, T, ξ), with 0 ≤ k ≤ n, depend only on t, T , and ξ but not on x.

Remark 9 (the defaultable and default-free characteristic functions). To find u(t, x) we use

Γ̂r(tm, x; tm+1, ξ) := eiξx
n∑
h=0

(x− x̄)hgrn,h(tm, tm+1, ξ),

the characteristic function with γ(t, x) = 0. For û(t, x) we use

Γ̂d(tm, x; tm+1, ξ) := eiξx
n∑
h=0

(x− x̄)hgdn,h(tm, tm+1, ξ),

where γ(t, x) is chosen to be some specified function.

Using (15) we can write the Fourier coefficients of the continuation value in vectorized
form as

Ĉ(tm, x
∗
m) =

n∑
h=0

e−r(tm+1−tm)Re
(
V(tm+1)Mh(x∗m, b)Λ

h
)
,

where V(tm+1) is the vector [V0(tm+1), . . . , VJ−1(tm+1)]
T andMh(x∗m, b)Λ

h is a matrix-matrix
product with Mh a matrix with elements {Mh

k,j}
J−1
k,j=0 defined as

Mh
k,j(x

∗
m, b) :=

2

b− a

∫ b

x∗m

eijπ
x−a
b−a (x− x̄)h cos

(
kπ
x− a
b− a

)
dx,(23)

and Λh is a diagonal matrix with elements

gn,h

(
tm, tm+1,

jπ

b− a

)
, j = 0, . . . , J − 1.

One can show (see [2]) that the resulting matrix Mh is a sum of a Hankel and a Toeplitz
matrix and thus the resulting matrix vector product can be calculated using an FFT.
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D
ow

nl
oa

de
d 

07
/1

9/
18

 to
 1

92
.1

6.
19

1.
14

0.
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

EFFICIENT XVA COMPUTATION UNDER LOCAL LÉVY MODELS 273
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