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Systemic risk in a mean-field model of interbank lending with

self-exciting shocks

Anastasia Borovykh∗ Andrea Pascucci† Stefano La Rovere‡

June 11, 2018

Abstract

In this paper we consider a mean-field model of interacting diffusions for the monetary reserves in

which the reserves are subjected to a self- and cross-exciting shock. This is motivated by the financial

acceleration and fire sales observed in the market. We derive a mean-field limit using a weak convergence

analysis and find an explicit measure-valued process associated with a large interbanking system. We

define systemic risk indicators and derive, using the limiting process, several law of large numbers results

and verify these numerically. We conclude that self-exciting shocks increase the systemic risk in the

network and their presence in interbank networks should not be ignored.

Keywords: Systemic risk, Hawkes process, interacting jump diffusion, interbank lending, weak convergence

1 Introduction

An important financial issue is understanding the risk in financial systems with interacting entities. Many

previous research focuses on contagion through interbank lending agreements, however contagion can occur

through multiple other channels, e.g. linked balance sheets that may result in fire sales (see e.g. Capponi and

Larsson [7] and Chen et al. [9]) and the so-called financial acceleration. In Cont et al. [10] the authors argue

that one should not ignore the compounded effect of both correlated market events and default contagion,

since it can make the network considerably more vulnerable to default cascades. Motivated by the above

mentioned research, we choose to model the effects of the self-exciting fire sales as well as the financial

acceleration by including a self- and cross-exciting Hawkes process, as introduced in Hawkes [21], in the

dynamics for the monetary reserve of the bank and combine this with the default propagation through

interbank lending agreements to study the robustness of the network.

Modelling the financial network can be done using a so-called mean-field model. Here the matrix of

interbank borrowing/lending activities is exogenously specified and the dynamics of the banks’ monetary

reserves depend on stochastic idiosyncratic events and on an interaction term, modelled through an empirical
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distribution of the system states, which captures the type of interaction with the other nodes in the system.

One way of studying these interacting systems is by investigating the behaviour of the system as the number

of nodes approaches infinity (i.e. propagation of chaos). In Bo and Capponi [4] the authors consider

an interacting model of the monetary reserve processes where the drift term represents interbank short-

time lending and the monetary reserve is additionally subjected to a banking sector indicator which drives

additional in-/out-flows of cash. By means of a detailed weak-convergence analysis they conclude that the

underlying limit state process has purely diffusive dynamics and the contribution of the banking sector

jump process is reflected only in the drift. In Nadtochiy and Shkolnikov [23] the authors use the mean-field

approach with an interaction through hitting times in estimating systemic failure.

The large limit behavior of a system has also been studied in a portfolio setting. By means of a weak

converence analysis of Giesecke et al. [17] study the behavior of the default intensity in a large portfolio

where the intensity is subjected to additional sources of clustering through exposure to a systematic risk

factor and a contagion term. The law of large numbers (LLN) result is proven under the assumption that the

systematic risk vanishes in the large-portfolio limit. In Giesecke et al. [18] the authors extend the previous

result for general diffusion dynamics for the systemic risk factor without the vanishing assumption, producing

a stochastic PDE for this density in the limit, as opposed to a PDE. In Spiliopoulos et al. [28] the LLN result

is extended by proving a central limit theorem (CLT) in a similar setting, thus quantifying the fluctuations

of the empirical measure (and thereby also the loss from default) around its large portfolio limits. In Bush

et al. [6] the large portfolio limit for assets following a correlated diffusion is shown to approach a measure

whose density satisfies an SPDE, while in Hambly and Kolliopoulos [20] a similar result is proven for a

stochastic volatility model for the asset price. Finally, Sirignano and Giesecke [26] and Sirignano et al. [27]

use mean-field and large portfolio approximation methods for the analysis of large pools of loans.

The aim of our paper is to investigate the systemic risk in a network when incorporating both self-

and cross-exciting shocks as well as interbank lending in the monetary reserve process of the bank. The

excitement comes from the effect that past movements in both the asset value of the bank itself as well as

that of its neighbors have on the current variations in its asset value. These effects are modelled using a

Hawkes process. Self-exciting processes have previously been used in portfolio credit risk computation from

a top-down approach, see Aı̈t-Sahalia et al. [1], Errais et al. [15] and Cvitanić et al. [12]. In this work we

model the monetary reserve process of a bank through a mean-field interaction diffusion with an additional

Hawkes distributed jump term. We study the behavior of the system as the number of nodes approaches

infinity by deriving the weak limit of the empirical measure of this interacting system.

In particular our convergence result is based on the analysis of Delattre et al. [14], where the authors show

that the intensity of a Hawkes process in the limit of a fully connected network tends to behave as that of a

non-homogeneous Poisson process. We show that the underlying limit process for the monetary reserves of

the nodes has purely diffusive dynamics and the effect of the Hawkes process is reflected in a time-dependent

drift coefficient. Then we define several risk indicators and use the weak convergence analysis to derive the

law of large numbers approximations to explicitly show the effects of the Hawkes process on the risk in a

large interbank network. In the numerical section we then compare the LLN aproximations with the actual

values simulated through a Monte-Carlo method and conclude that in a model of interbank networks, the
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default risk is indeed higher when we incorporate the self- and cross-exciting shocks.

The rest of the paper is structured as follows: in Section 2 we define the Hawkes process and give a

motivation for incorporating it in the interbank network. In Section 3 we introduce the mean-field model for

the log-monetary reserve process and study through simulations the effects of incorporating the self-exciting

jump intensity and in particular compare it to the independent Poisson intensity. In Section 4 we derive

the weak convergence of the empirical mean of monetary reserves, explicitly characterize the weak limit

measure-valued process and provide several results for extensions of the model. Finally, in Section 5 we

derive several measures of systemic risk in the network and numerically validate the accuracy of the derived

limiting process.

2 The framework

2.1 Motivation

A known source of systemic risk in financial networks is the propagation of default due to interbank exposures

such as loans, where the failure of a borrowing node to repay its loans, may consequently cause a loss in

liquidity of the lenders as well, in this way propagating the default through the network. Besides interbank

exposures, another common cause of default propagation are fire sales. If one institution decides to liquidate

a large part of its assets, depressing the price, this causes a loss at the institutions holding the same assets,

creating a cross-exciting spiral across the institutions. Therefore, institutions that do not have mutual

counterparty exposure can still suffer financial distress if they have holdings of common assets on their

balance sheets. As illustrated by Glasserman and Young [19], the effects from these so-called fire sales can

be even greater than the contagion effects due to counterparty exposures.

A self-exciting effect present in financial networks is known as financial acceleration and refers to the

fact that current variations in the asset side of the balance sheet depend on past variations in the assets

themselves. In other words, a shock affecting the banks portfolio can cause creditors to claim their funds

back or tighten the credit conditions, in this way causing an additional shock for the bank.

As has been mentioned in Cont et al. [10], while interbank lending itself may not be a significant cause of

default propagation, it is important to account for both the correlated effects of default contagion through

lending agreements as well as exposure to common market events. Here, we choose to model the correlated

effects of the fire sales, financial acceleration and the interbank lending structure on both the default prop-

agation as well as overall loss in the network through a Hawkes counting process. The shocks affecting the

portfolio of the institution arrive conditional on the infinite history of previous shocks to both the institutions

own assets as well as those of the other nodes in the network provided that they share common assets.

2.2 Hawkes processes

Specific types of events that are observed in time do not always arrive in evenly spaced intervals, but can

show signs of clustering, e.g. the arrival of trades in an order book, or the contagious default of financial

institutions. Therefore, assuming that these events happen independently is not a valid assumption. A
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Hawkes process (HP), also known as a self-exciting process, has an intensity function whose current value,

unlike in the Poisson process, is influenced by past events. In particular, if an arrival causes the conditional

intensity to increase, the process is said to be self-exciting, causing a temporal clustering of arrivals. Hawkes

processes can be used for modelling credit default events in a portfolio of securities, as has been done in

e.g. Errais et al. [15] or for modelling asset prices using a mutually exciting jump component to model the

contagion of financial shocks over different markets (Aı̈t-Sahalia et al. [1]). An overview of other applications

of Hawkes processes in finance, in particular in modelling the market microstructure, can be found in e.g.

Bacry et al. [3].

Let (Ω,F ,F,P) be a complete filtered probability space where the filtration F = (Ft)t≥0 satisfies the usual

condition. Hawkes processes (Hawkes [21]) are a class of multi-variate counting processes (N1
t , ..., N

M
t )t≥0

characterized by a stochastic intensity vector (λ1
t , ..., λ

M
t )t≥0 which describes the Ft-conditional mean jump

rate per unit of time, where Ft is the filtration generated by (N i)1≤i≤M up to time t. Consider the set of

nodes IM := {1, . . . ,M}. Define the kernel g(t) = (gi,j(t), (i, j) ∈ IM × IM ) with gi,j(t) : R+ → R and the

constant intensity µ = (µi, i ∈ IM ) with µi ∈ R+.

Definition 2.1 (Hawkes process). A linear Hawkes process with parameters (g, µ) is a family of Ft-adapted

counting processes (N i
t )i∈IM ,t≥0 such that:

1. almost surely for all i 6= j, (N i
t )t≥0 and (N j

t )t≥0 never jump simultaneously,

2. for every i ∈ IM , the compensator Λit of N i
t has the form Λit =

∫ t
0
λisds, where the intensity process

(λit)t≥0 is given by

λit = µi +

M∑
j=1

∫
[0,t[

gi,j(t− s)dN j
s . (2.1)

In other words, gi,j denotes the influence of an event of type j on the arrival of i: each previous event dN j
s

raises the jump intensity (λit)i∈IM of its neighbors through the function gi,j . The compensated jump process

Nt −
∫ t

0
λsds is a Ft-local martingale. For g a positive and a decreasing function of time t, the influence of

a jump decreases and tends to 0 as time evolves.

Following Proposition 3 in Delattre et al. [14], one can rewrite the Hawkes process in the sense of Definition

2.1 as a Poisson-driven SDE with the i.i.d. family of Ft-Poisson measures (πi(ds, dz), i ∈ IM ) with intensity

measure (ds, dz):

N i
t =

∫ t

0

∫ ∞
0

1
{z≤µt+

M∑
j=1

∫
[0,s[

gi,j(t−s)dNj
s}
πi(ds, dz). (2.2)

Next we state a well-posedness result, based on Theorem 6 in Delattre et al. [14]:

Lemma 2.2 (Existence and uniqueness). Let gi,j be locally integrable for all (i, j) ∈ IM × IM ; there exists

a pathwise unique Hawkes process (N i
t )i∈IM ,t≥0, such that

M∑
i=1

E[N i
t ] <∞ for all t ≥ 0.
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By introducing the pair {tk, nk}Kt

k=1, where tk denotes the time of event k, nk ∈ IM is the event type and

Kt =
M∑
i=1

N i
t is total number of event arrivals up to time t, we can rewrite the intensity as

λit = µi +

Kt∑
k=1

gi,nk(t− tk), i ∈ IM .

A common choice for gi,j(t) is an exponential decay function defined as

gi,j(t) = αi,je−β
it,

so that λit jumps by αi,j when a shock in j occurs, and then decays back towards the mean level µi at speed

βi. Note that this function satisfies the local integrability property, i.e. gi,j ∈ L1
loc(R+). If gi,j is exponential

then the couple (Nt, λt) is a Markov process [3]. The simulation of a Hawkes process can be done using what

is known as Ogata’s modified thinning algorithm, see for more details Ogata [24] and Daley and Vere-Jones

[13].

If the Hawkes process (N i
t )i∈IM ,t≥0 satisfies certain conditions, we have the following stationarity result

(see Brémaud and Massoulié [5] and Bacry and Muzy [2] for details), which will come in useful in the further

sections.

Proposition 2.3. Suppose that the matrix Φ with entries
∫∞

0
|gi,j(t)|dt has a spectral radius strictly less than

one. Then there exists a unique multi-variate Hawkes process (N i
t )t≥0 for i ∈ IM with stationary increments

and the associated intensity as in (2.1) is a stationary process. Moreover we have E[|λt|2] <∞.

Furthermore, we remark here that a multi-dimensional Hawkes process with stationary increments is

uniquely defined by its first- and second-order statistics (Bacry and Muzy [2]).

3 The mean-field model

In this section we define the mean-field model for the log-monetary reserves of each of the nodes in the

model. The interaction between the nodes is defined through the drift term and additionally we consider

the reserve process to be subjected to a self- and cross-exciting Hawkes distributed shock.

3.1 Definition

Define Ft = σ((W i
s , N

i
s), 0 ≤ s ≤ t, i ∈ N). Assume that, for i ∈ IM the log-monetary reserves of the i-th

bank satisfies the following stochastic differential equation (SDE)

dXi
t =

ai

M

M∑
k=1

(Xk
t −Xi

t)dt+ σidW i
t + cidN i

t ,

with Xi
0 ∈ R+ the initial reserves for each bank and where ai ≥ 0, σi ≥ 0 and ci := ĉi/M < 0 are constants

for each i ∈ IM . The process W (t) = {W i
t }Mi=1 is a M -dimensional Brownian motion, and Nt = {N i

t}Mi=1 is

the vector of Hawkes processes with self-exciting intensity λit as defined in 2.2. With the drift term defined
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in this way, if bank k has more (less) log-monetary reserves than bank i, i.e. Xk
t > Xi

t (Xk
t < Xi

t), bank k

is assumed to lend (borrow) a proportion of the surplus to (deficit from) bank i, with proportionality factor

ai/M . A jump in the Hawkes process i affects the corresponding Xi
t through the proportionality factor ci and

increases the intensity λjt for j ∈ IM if gi,j(t) 6= 0. In this way the jump activity varies over time resulting

in a clustering of the arrival of the jumps and the shocks propagate through the network in a contagious

manner through the contagion function gi,j(t). We thus interpret the jump term cidN i
t as a self- and cross-

exciting negative effect that occurs due to financial acceleration and fire sales, resulting in a decrease in

a banks monetary reserve. In Bo and Capponi [4] the authors considered a similar mean-field model for

the monetary reserves but assumed the jumps to occur at independent Poisson distributed random times.

However, not accounting for the clustering effect of the jumps might cause a significant underestimation of

the systemic risk present in the network. We define a default level D ≤ 0 and say that bank i is in a default

state at time T if its log-monetary reserve reached the level D at time T . We remark that in our model even

if bank i has defaulted, i.e. its monetary reserve reaches a negative level, it continues to participate in the

interbank activities borrowing from the counterparties until it e.g. reaches a positive reserve level again. In

other words, the level of monetary reserves takes in values in R. We will work in the following setting:

Assumption 3.4 (Parameters). We collect the parameters associated with the dynamics of the i-th mone-

tary reserve process i ∈ IM as

pi := (ai, σi, ci) ∈ (R+ × R+ × R−).

We denote by δx the Dirac-delta measure centered at x and we set

qM =
1

M

M∑
i=1

δpi , ϕM0 =
1

M

M∑
i=1

δXi
0
.

We assume lim
M→∞

qM = δp∗ , i.e. pi → p∗ := (a, σ, c) as i → ∞ and lim
M→∞

ϕM0 = δx, i.e. Xi
0 → x as i → ∞.

We take the exponential decay function for the contagion

gi,j(t− s) =
1

M
g(t− s) :=

1

M
αe−β(t−s),

which is a locally square-integrable function with α, β ∈ R+. Finally, the parameters are assumed to all be

bounded by a constant Cp.

We remark here that the results developed in this paper hold also for more general distributions, i.e.

lim
M→∞

qM = q and lim
M→∞

ϕM0 = ϕ0, but for simplicity of the results we assume the parameter vector converges

to a constant vector.

Defining the reserve average as

X̄t =
1

M

M∑
i=1

Xi
t ,

we can rewrite the SDE as a mean-field interaction SDE

dXi
t = ai(X̄t −Xi

t)dt+ σidW i
t + cidN i

t . (3.3)

From (3.3) we see that the processes (Xi
t) are mean-reverting to their ensemble average (X̄t) at rate ai.
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Lemma 3.5. There exists a unique solution (X1
t , ..., X

M
t ) to the system of SDEs given by (3.3) for i ∈ IM .

Proof. The proof is similar to Theorem 9.1 in Ikeda and Watanabe [22]. Define Y it to be the solution of

the SDE (3.3) without jumps. By Example 2 in Cox et al. [11], we know that the SDE has a unique strong

solution (Y 1
t , ..., Y

M
t ). By definition of a Hawkes process we have that N1, ..., NM never jump simultaneously:

this implies the existence of an increasing sequence of jump times (τn)n∈N such that lim
n→∞

τn = +∞. Then

we can define

X
(i,1)
t :=

Y it , 0 ≤ t < τ1,

Y iτ1− + 1k=ic
i, t = τ1, if there is a jump in Nk.

(3.4)

From Lemma 2.2, we know that there exists a unique Hawkes process (N i
t )t≥0 for i ∈ IM , thus we can say

that X
(i,1)
t is the unique solution to (3.3) for t ∈ [0, τ1]. Then we define X̄

(i,2)
t on t ∈ [0, τ2 − τ1] similar to

(3.4) using as initial state X̄i
0 := X

(i,2)
τ1 and driving factors W̄ i

t := W i
t+τ1 −W

i
τ1 and N̄ i

t := N i
t+τ1 − N

i
τ1 .

Then we set

Xi
t :=

X
i,1
t , 0 ≤ t < τ1,

X̄
(i,2)
t−τ1 τ1 ≤ t ≤ τ2.

So that Xi
t , t ∈ [0, τ2] is the unique solution to (3.3). Iterating the above process, we have that Xi

t is

determined uniquely on the time interval [0, τn] for each n ∈ N.

3.2 Simulation

Consider, for the sake of illustration, the following SDE

dXi
t = a(X̄t −Xi

t)dt+ σdW̃ i
t + cdN i

t ,

with W̃ i
t := ρW 0

t +
√

1− ρ2W i
t , where W i

t , i = 0, ...,M are independent Brownian motions and W 0
t represents

common noise (similar to the setting in Carmona et al. [8]). We keep the parameters of the constant intensity

and the excitation function gi,j = αi,je−β
it fixed at µi = 10/M , βi = 2/M and αi,j = 2/M and the initial

reserve value is set at X0 = 0.

Table 3.1: Parameters corresponding to the various scenarios of the realizations of (Xi
t , i = 1, ..., 10).

Scenario a σ c ρ

No lending, independent BMs 0 1 0 0.2

Lending, independent BMs 10 1 0 0

No lending, correlated BMs 0 1 0 0.2

Lending and correlated BMs 10 1 0 0.2

Lending, correlated BMs and Poisson jumps 10 1 0.2 0.2

Lending, correlated BMs and Hawkes jumps 10 1 0.2 0.2
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Figure 3.1: One realization of (Xi
t , i = 1, ..., 10), t = 1, ...100 with no lending and independent Brownian

motions (left), lending and correlated Brownian motions (center) and lending, correlated Brownian motions

and the Hawkes distributed jump (with the jump times shown as dots) (right).

We consider several scenarios of the monetary reserve process denoted in Table 3.1. In Figure 3.1 we see

that the trajectories generated by the correlated Brownian motions with lending are more grouped than the

ones generated by independent Brownian motions without lending. The Hawkes shock, as expected, causes

much more trajectories to reach the default level, due to it being an additional source of default propagation.

Consider the default level D = −0.7. In Figure 3.2 we show the distributions of the number of defaults

defined as P

(
M∑
i=1

(
min

0≤t≤T
Xi
t ≤ D

)
= n

)
, for the independent Brownian motion case, the dependent case

and the cases including a Poisson process and a Hawkes process. We observe that the mean-field interbank

lending causes most of the probability mass to be set around zero defaults, as opposed to the no lending

case when the density function is centered at 5 defaults. However, the lending component also adds a

non-negligible probability of all nodes defaulting at once. The correlation between the Brownian motions

affects the loss distribution only slightly. As expected, adding the self-exciting and clustering Hawkes process

increases the tail-risk even more so that the probability of all nodes reaching a default state rises significantly.
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Figure 3.2: The distribution of the number of defautls in several different scenarios, as explained in Table 3.1.

The parameters in the Monte Carlo simulated based on a discretized Euler-Maruyama scheme are M = 10,

T = 1, 10000 simulations and 100 time steps.

3.3 Dependency

As we have already seen in Figure 3.2, the Hawkes process increases the probability of multiple defaults

occuring at the same time more than an independent Poisson process does. It is therefore of interest to

study the dependence structure between the nodes in more detail. As is standard in multi-variate statistics,

see Poon et al. [25], a tool for assessing the (not necessarily linear) dependency between variables is the

measure p(q) given by

p(q) = P
(
Xi > F−1

Xi (q)|Xj > F−1
Xj (q)

)
, i, j ∈ IM ,

the probability of one of the variables Xi being above the qth quantile of its marginal distribution FXi

conditional on the other variable Xj being above its qth quantile. To remove the influence of marginal

aspects it is typical to transform the data to a common marginal distribution, with e.g. a transformation

to unit Fréchet marginals (for details we refer to the methodology in Poon et al. [25]). In the presence

of a dependence between two nodes in our model, the probability of default of one firm conditional of the

default of the other will be significant. When computing the systemic risk present in interconnected financial

networks, quantifying this dependence is clearly of key importance. Note that in our model we have two key

dependencies present:

• Dependence through the drift term: a high X1
t results in a change in X1

s and X2
s for s > t due to the

interbank loans.

• Dependence through the Hawkes process: if ∆X1
t << 0 represents the occurence of a jump at time t,

then the likelihood of ∆X1
s << 0 and ∆X2

s << 0 for s > t increases. We remark that the likelihood of

seeing the shock decreases with a larger s due to the mean-reverting excitation function gi,j i, j ∈ {1, 2}.
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Figure 3.3 shows the scatter plots for both an independent Poisson jump and a Hawkes jump. Already here

we see that the Hawkes jump seems to reflect a more strong dependency in the tails. In Figure 3.4 we plot

the measure p(q) (for the left tail) compared to the 1 − q function representing independence, for several

different parameter sets. We see that the Hawkes process shows significantly more dependence between the

two nodes for all quantiles compared to the Poisson process. In particular, we note that having only a jump

term in the monetary reserve process results in a significant tail probability, where the tail probability of

the Hawkes process is considerably higher than that of the Poisson process. This is to be expected since

the self-exciting nature of the jumps causes the extreme events in one node to influence extreme events in

the other node. Furthermore, incorporating the independent Brownian motion seems to reduce the tail risk

almost to zero, while adding the interbank loans in turn causes a slight increase in the tail risk, due to the

additional source of default propagation.

Figure 3.3: Scatter plots of X1
t and X2

t (M = 2) showcasing the dependence structure between the nodes in

the presence of a Poisson jump (left) and a Hawkes jump (right).

Figure 3.4: The measure p(q) quantifying the dependence of X1
t and X2

t (M = 2) with Poisson and Hawkes

jumps for the case of no Brownian motion, no interbank lending but only jumps (left, σ = 0, a = 0 and

c = −1), Brownian motion, no lending and jumps (center, σ = 0.1, a = 0 and c = −1) and Brownian

motion, lending and jumps (right, σ = 0.1, a = 0.5 and c = −1). The other parameters in the Monte Carlo

simulation based on a Euler-Maruyama scheme are T = 1, 500 simulations, 100 time steps, Xi
0 = 0, ρ = 0,

with µi = 0.1, βi = 1.2, αi,j = 1.2.
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4 Mean-field limit

We derive theoretical mean-field limits for the monetary reserve process with a Hawkes jump term to show

the effects of considering this additional type of contagion on the total losses in the network in the case of the

number of nodes tending to infinity. Our derivations are based on Carmona et al. [8] and Bo and Capponi

[4]. In other words, we want to understand the behavior of the distribution of the process Xt = (Xi
t), i ∈ IM

as in (3.3) when M → ∞. Let the vector (pi, Xi
t) take on values in the space O := (R+ × R+ × R−) × R.

Define the sequence of empirical measures as

νMt :=
1

M

M∑
i=1

δ(pi,Xi
t), t ≥ 0, (4.5)

on the Borel space B(O). In other words we keep track of the empirical distribution of the type, intensity

and monetary reserve for all nodes. Let S = P(O); the collection of Borel probability measures on O. Then

(νMt )t≥0 is an element of the Skorokhod space DS [0,∞), i.e. it can be viewed as an S-valued right-continuous,

left-hand limited stochastic process. For any smooth function f(p, x) ∈ C∞(O) defined for (p, x) ∈ O define

the integral w.r.t. the measure ν by

ν(f) :=

∫
O
f(p, x)ν(dp× dx), (4.6)

so that

νMt (f) =
1

M

M∑
i=1

f(pi, Xi
t), t ≥ 0. (4.7)

Then we have X̄t = νMt (I) where I(x) = x.

We want to understand the dynamics for νMt for large M . In deriving the limit of the process νMt for

M →∞ we use an argument similar to Bo and Capponi [4] and Giesecke et al. [17]. In particular, the focus

here is on identifying the limiting dynamics, using the result of Delattre et al. [14] on the behavior of Hawkes

processes in a large system. We identify the limit through the generator of the limiting martingale problem

in Section 4.1, and subsequently in Section 4.2 we identify the limit process.

4.1 Weak convergence

We want to use the martingale problem to show that νMt converges to a limiting process. For notational

convenience we will write f(Xi
t) := f(pi, Xi

t). By the definition of a Hawkes process we have that for all

i 6= j, (N i
t )t≥0 and (N j

t )t≥0 never jump simultaneously and a jump in one of the processes dN i
t results in

only Xi
t having a jump of size ci. Therefore, applying Itô’s formula gives

df(Xi
t) =ai∂xf(Xi

t)[ν
M
t (I)−Xi

t ]dt+
1

2
(σi)2∂xxf(Xi

t)dt+ σi∂xf(Xi
t)dW

i
t

+ (f(Xi
t− + ci)− f(Xi

t−))dN i
t ,

Then we have, using the definition of νMt in (4.7),

νMt (f) =νM0 (f) +

∫ t

0

νMs (L1f)νMs (I)ds−
∫ t

0

νMs (L2f)ds+
1

M

M∑
i=1

∫ t

0

σi∂xf(Xi
s)dW

i
s (4.8)
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+

∫ t

0

νMs (L3f)ds+
1

M

M∑
i=1

∫ t

0

(
f(Xi

t− + ci)− f(Xi
t−)
)
dN i

s,

where we have defined the operators L∗ acting on f(pi, Xi
t) as

L1f(p, x) := a∂xf(p, x), L2f(p, x) := ax∂xf(p, x), L3f(p, x) =
1

2
σ2∂xxf(p, x),

so that

νMt (L1f) =
1

M

M∑
i=1

ai∂xf(pi, Xi
t), νMt (L2f) =

1

M

M∑
i=1

aiXi
t∂xf(pi, Xi

t), νMt (L3f) =
1

M

M∑
i=1

1

2
(σi)2∂xxf(pi, Xi

t).

Define for any smooth function ϕ ∈ C∞(RN ) with N ∈ N and Borel measure ν ∈ S

Φ(ν) = ϕ(ν(f)), (4.9)

with f = (f1, ..., fN ) for fn ∈ C∞(O), n = 1, ..., N and ν(f) := (ν(f1), ..., ν(fN )) ∈ RN . Let S be the

collection of bounded measurable functions Φ on S. Then S separates S and it thus suffices to show

convergence of the martingale problem for those functions. Then, by applying Itô’s formula to ϕ(νMt (f))

and using the fact that dÑ i
t := dN i

t − λitdt and dW i
t are martingales and Xt− and λt− are predictable, we

find for 0 ≤ t < u

Φ(νMu ) = Φ(νMt ) +

∫ u

t

(
CMs +DMs + JMs

)
ds+Mu −Mt,

where (Mt)t≥0 is an initial mean-zero martingale and

CMt :=

N∑
n=1

∂ϕ(νMt (f))

∂fn

(
νMt (L1fn)νMt (I)− νMt (L2fn) + νMt (L3fn)

)
,

DMt :=
1

2M2

N∑
n,l=1

∂2ϕ(νMt (f))

∂fn∂fl

M∑
i=1

(
(σi)2 ∂fn(Xi

t)

∂x

∂fl(X
i
t)

∂x

)

JMt :=

M∑
i=1

[
ϕ(νMt (f) + JM,i

t (f))− ϕ(νMt (f))
]
λit,

where JM,i
t (f) = (JM,i

t (f1), ..., JM,i
t (fN )) and

JM,i
t (f) :=

1

M
(f(Xi

s− + ci)− f(Xi
s)).

We will need the following result given in Theorem 8 in Delattre et al. [14]:

Theorem 4.6 (Propagation of chaos result for the Hawkes process). Consider the Hawkes process in the

sense of (2.2). For each M ≥ 1 consider the complete graph with nodes IM . Let g : [0,∞)→ R be a locally

square-integrable function and set gi,j = M−1g for all i, j ∈ IM . Define the limit equation

N̄t =

∫ t

0

∫ ∞
0

1{z≤(µt+
∫ s
0
g(t−s)dE[N̄s])}π(ds, dz), (4.10)
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where π(ds, dz) is a Poisson measure on [0,∞)× [0,∞) with intensity measure dsdz. Then we have dE[N̄t] =

λ̄tdt and

λ̄t := µ+

∫ t

0

g(t− s)dE[N̄s]. (4.11)

In other words N̄ = (N̄t)t≥0 is an inhomogeneous Poisson process with intensity λ̄t. Let N̄ i
t be an i.i.d.

family of solutions to (4.10) for i ∈ IM . Define ∆i
M (t) =

∫ t
0
|d(N̄ i

u −N i
u)| and δM (t) = E[∆i

M (t)]. Note that

this δM (t) does not depend on i due to exchangeability of both N̄ i
t and N i

t . Then,

δM (t) =

∫ t

0

E
[∣∣λ̄t − λit∣∣] ds,

and for t ∈ [0, T ] we have

lim
M→∞

δM (t) = 0.

In other words, when all nodes interact in the same way in the limit of the number of nodes going to

infinity, the Hawkes process reduces to an inhomogeoneous Poisson process and we have for any i ∈ IM the

following limit

lim
M→∞

E
[∫ u

t

|λis − λ̄s|ds
]

= 0. (4.12)

The task is now to find the generator of the limiting martingale problem which we will use to determine

the process governing the dynamics of the monetary reserves in the limit, see e.g. Theorem 8.2 Chapter 4 of

Ethier and Kurtz [16]. For this we will use (4.12) and define a Taylor-based simplification of JMt as

J̃Mt :=

N∑
n=1

∂ϕ(νMt (f))

∂xn

[
1

M

M∑
i=1

λ̄t
∂fn(Xi

t)

∂x
ci

]
.

Using the triangle inequality we have

E
[∫ u

t

|JMs − J̃Ms |ds
]

≤ E

[∫ u

t

∣∣∣∣∣
M∑
i=1

[
ϕ(νMs (f) + JM,i

s (f))− ϕ(νMt (f))
]
λis −

M∑
i=1

[
N∑
n=1

∂ϕ(νMs (f))

∂xn
JM,i
s (f)

]
λis

∣∣∣∣∣ ds
]

+ E

[∫ u

t

∣∣∣∣∣
M∑
i=1

[
N∑
n=1

∂ϕ(νMs (f))

∂xn
JM,i
s (f)

]
λis −

M∑
i=1

[
N∑
n=1

∂ϕ(νMs (f))

∂xn
J̃M,i
s (f)

]
λis

∣∣∣∣∣ ds
]

+ E

[∫ u

t

∣∣∣∣∣
M∑
i=1

[
N∑
n=1

∂ϕ(νMs (f))

∂xn
J̃M,i
s (f)

]
λis −

M∑
i=1

[
N∑
n=1

∂ϕ(νMs (f))

∂xn
J̃M,i
s (f)

]
λ̄s

∣∣∣∣∣ ds
]
.

Applying a Taylor expansion to f ∈ C∞(O) and using the boundedness of its derivatives and the definition

ci = ĉi/M , we find

JM,i
t (f) ' J̃M,i

t (f), (4.13)
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where aM ' bM means lim
M→∞

|aM − bM | = 0 and

J̃M,i
t (f) :=

1

M

∂f(Xi
t)

∂x
ci.

Similarly, using the Taylor expansion of ϕ ∈ C∞(RN ) we have

ϕ(νMt (f) + JM,i
t (f))− ϕ(νMt (f)) '

N∑
n=1

∂ϕ(νMt (f))

∂xn
JM,i
t (f). (4.14)

Using the finiteness of λit from Proposition 2.3, equations (4.14) and (4.13), the boundedness of the

derivatives of f ∈ C∞(O) by their supremum, i.e. ||f || = sup
(p,x)∈O

|f(p, x)| and the bounds on the intensity

given in (4.12) we have that

lim
M→∞

E
[∫ u

t

|JMs − J̃Ms |ds
]

= 0.

Similarly we have

lim
M→∞

E
[∫ u

t

|DMs |ds
]

= 0.

Define the operator A acting on the function Φ(ν) defined in (4.9), as

AΦ(ν) :=

N∑
n=1

∂ϕ(νMt (f))

∂fn

(
νMt (L1fn)νMt (I)− νMt (L2fn) + νMt (L3fn) + νMt (L4fn)

)
, (4.15)

where L4 := cλ̄t∂x. Then we have the following result:

Lemma 4.7 (Limiting martingale problem). For any Φ ∈ S and 0 ≤ t1 ≤ ... ≤ tm+1 ≤ ∞, with m ∈ N and

Ψj ∈ L∞(S) we have that A is the generator of the limiting martingale problem, i.e.

lim
M→∞

E

(Φ(νMtm+1
)− Φ(νMtm)−

∫ tm+1

tm

AΦ(νMu )du

) m∏
j=1

Ψj(ν
M
tj )

 = 0. (4.16)

4.2 Limiting process

Given the limiting martingale problem (4.16) and assuming the existence and uniqueness of a limit point,

we want to find the limiting process νt that satisfies equation (4.16). Let p = (p∗, x). Define the following

measure-valued process by

νt(A) := P(Xt(p) ∈ A), (4.17)

where A ∈ B(R) and the underlying limiting state process X(p) = (Xt(p))t≥0 is a diffusion with time-varying

coefficients given by

Xt(p) = x+

∫ t

0

(
a (Q1(s)−Xs(p)) + cλ̄s

)
ds+ σ

∫ t

0

dWs, t ≥ 0, (4.18)
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with λ̄t is defined in (4.11) and

Q1(t) = x+ c

∫ t

0

λ̄sds. (4.19)

Notice that Q1(t) satisfies the integral equation

Q1(t) = e−at
(
x+

∫ t

0

eas
(
aQ1(s) + cλ̄s

)
ds

)
.

Using the definition of ν in (4.17) we have that

νt(I) =

∫
O
xνt(dx) = E [Xt(p)] ,

where the underlying state process Xt(p) is given by (4.18). Notice that

E [Xt(p)] = e−at
(
x+

∫ t

0

eas(aQ1(s) + cλ̄s)

)
ds,

from which it follows that

Q1(t) = νt(I), (4.20)

where I(x) = x. We now prove that δν indeed satisfies the martingale problem in Lemma 4.7:

Theorem 4.8 (Limiting process). The empirical measure-valued process νM admits the weak convergence

νM → ν, as M →∞, where ν is defined as in (4.17). Furthermore, νM (I)→ Q1.

Proof. Using the standard analysis of weak convergence as in Chapter 3 of Ethier and Kurtz [16], the weak

convergence νM → ν as M →∞ follows from Lemma 4.7 and Lemmas A.2, A.3 and uniqueness of the limit

point. In other words, if we define QM := P(νM ∈ B(DS [0,∞))), we have that QM converges to the solution

Q of the martingale problem generated by A in (4.15). Next we show that the we have Q = δν , i.e. the

limit measure-valued process ν can indeed be represented as in (4.17). We have for f ∈ C∞(O) using the

definition in (4.6) that

νt(f) = E[f(Xt(p))]. (4.21)

On the other hand, from (4.18) and using Itô’s lemma, we have

f(Xt(p)) =f(x) +

∫ t

0

∂f

∂x
(Xs(p))(aQ1(s)− aXs(p) + cλ̄s)ds+

σ2

2

∫ t

0

∂2f

∂x2
(Xs(p))ds

+ σ

∫ t

0

∂f

∂x
(Xs(p))dWs.

Then recalling the definition of the operators L∗ and the equality Q1(t) = νt(I) from (4.20) we have

∂

∂t
E[f(Xt(p))] =

1

2
E
[
σ2∂xxf(Xt(p))

]
+Q1(t)E[a∂xf(Xt(p))] + E[cλ̄t∂xf(Xt(p))]

− E[aXs(p)∂xf(Xt(p))]
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=E[L3f(Xt(p))] + νt(I)E[L1f(Xt(p))] + E[L4f(Xt(p))]− E[L2f(Xt(p))].

So that, using (4.21) we find

dΦ(νt)

dt
=

N∑
n=1

∂ϕ

∂xn
(νt(f))

dνt(fn)

dt

=

N∑
n=1

∂ϕ

∂xn

(
νt(L3f) + νt(L1f)νt(I) + νt(L4f)− νt(L2f)

)
= AΦ(νt).

So that for all functions Φ(·) of the form (4.9) we have

Φ(νt) = Φ(νs) +

∫ t

s

AΦ(νu)du, 0 ≤ s < t <∞,

and hence δν satisfies the martingale problem generated by A.

In other words, the propagation of chaos result from Theorem 4.8 tells us that the empirical mean νM

converges to a measure ν whose underlying process Xt(p) reflects the Hawkes process through a time-

dependent drift.

4.3 Extensions of the model

In this section we shortly present results for several possible extensions of results presented in Section 4. In

particular we derive the limiting empirical distribution when including a compound Hawkes process in the

monetary reserve model considered in (3.3); a systematic risk factor, where the derivation is based on the

result from Giesecke et al. [18]; and furthermore prove a central limit theorem based on Spiliopoulos et al.

[28] which quantifies the fluctuation of the empirical distribution around its large system limit.

4.3.1 Compound Hawkes process

If we include a compound Hawkes process in the initial log-monetary reserve SDE, i.e.

dXi
t =

ai

M

M∑
k=1

(Xk
t −Xi

t)dt+ σidW i
t + cidSit ,

where

Sit =

Ni
t∑

j=1

Zij ,

where Z is an i.i.d. random variable with distribution function F , independent of N i
t and W i

t , such that

lim
M→∞

1
M

M∑
i=1

δZi
·

= y. Then the limiting process is given by

Xt(p) = x+

∫ t

0

(
a (Q1(s)−Xs(p)) + cyλ̄s

)
ds+ σ

∫ t

0

dWs, t ≥ 0.
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4.3.2 Systematic risk factor exposure

Similar to the analysis of Giesecke et al. [18] we can show that considering a non-vanishing systematic

risk factor common to all the nodes in the system, we obtain a non-deterministic limiting behavior. Let

Vt = σ(Vs, 0 ≤ s ≤ t) and Ft = σ((Vs, N
i
s,W

i
s), 0 ≤ s ≤ t, i ∈ N). Consider the following model for the

log-monetary reserves

dXi
t = ai(X̄t −Xi

t)dt+ σidW i
t + cidN i

t + βidYt,

dYt = b0(Yt)dt+ σ0(Yt)dVt, Y0 = y0,

where Vt is a standard Brownian motion independent of W i
t and N i

t . In other words, W i
t represents a source

of risk which is idiosyncratic to a specific name, while Yt is a systematic risk factor driven by a Brownian

motion that is common to all the nodes in the network with the parameter βi representing the sensitivity

of node i to the Y . The systematic risk factor causes correlated changes in the monetary reserve process

and thus acts as an additional source of clustering. As usual assume pi := (ai, σi, ci, βi)→ p∗ := (a, σ, c, β).

Following the derivation in Giesecke et al. [18] and defining Φ(y, ν) = ϕ1(y)ϕ2(ν(f)), and applying Itô’s

lemma as in the derivations for the original model we obtain for 0 ≤ t < u

Φ(Yu, ν
M
u ) = Φ(Yt, ν

M
t ) +

∫ u

t

(ϕ1(Ys)CMs + ϕ1(Ys)DMs + ϕ1(Ys)JMs + BM,1
s )ds+

∫ u

t

BM,2dVs +Mu −Mt,

where we have defined

BM,1
t :=ϕ1(Yt)

N∑
n=1

∂ϕ2(νMt (f))

∂fn
νMt (L5

Yt
fn) + ϕ2(ν(f))

(
b0(Yt)∂yϕ1(Yt) +

1

2
σ2

0(Yt)∂yyϕ1(Yt)

)

+ ∂yϕ1(Yt)

N∑
n=1

∂ϕ2(ν(f))

∂fn
σ0(y)νMt (L6

Yt
fn)

BM,2
t :=ϕ1(Yt)

N∑
n=1

∂ϕ2(νMt (f))

∂fn
νMt (L6

Yt
fn) + σ0(Yt)∂yϕ1(Yt)ϕ2(ν(f)),

with L5
yf(p, x) := βib0(y)∂xf(p, x) + 1

2 (βi)2σ2
0(y)∂xf(p, x) and L6

yf(p, x) := βiσ0(y)∂xf(p, x). Taking the

limit of M →∞, using the limits derived in Section 4.1 and the vanishing of the martingale in the limit (see

also Lemma 7.2 in [18]) and defining

νt(f) = E[f(Xt(p)|Vt],

with

Xt(p) = x+

∫ t

0

(
a (νt(I)−Xs(p)) + cλ̄s

)
ds+ σ

∫ t

0

dWs + β

∫ t

0

dYs,

we obtain for the limiting process νt the following SPDE

dνt(f(Xt)) =
(
νt(L1f(Xt))νt(I)− νt(L2f(Xt)) + νt(L3f(Xt)) + νt(L4f(Xt)) + νt(L5

Yt
f(Xt))

)
dt

+ νt(L6
Yt
f(Xt))dVt,
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where we use Lemma B.1 and B.2 in Giesecke et al. [18] to show that E
[∫ t

0
XsdVs|Vt

]
=
∫ t

0
E[Xs|Vs]dVs.

The systematic risk factor thus does not vanish in the limit, and results in the stochastic partial differential

equation for the limiting process of the empirical measure, instead of the deterministic behavior in the

original model.

4.3.3 A Central Limit Theorem result

Consider again the model defined in (3.3). In order to improve the first-order approximation of νMt given in

(4.17), we can analyze the fluctuations of νM around its large system limit ν. Following Spiliopoulos et al.

[28] define

ΞMt =
√
M(νMt − νt).

The signed-measure-valued process ΞM weakly converges to the fluctuation limit Ξ̄ in an appropriate space

(in particular the convergence is considered in weighted Sobolev spaces in which the sequence ΞM , M ∈ N
can be shown to be relatively compact; for discussion on this space, as well as the existence and uniqueness

of the limiting point, we refer to Sections 7,8 and 9 in Spiliopoulos et al. [28]). We start by deriving an

expression for ΞMt . Some terms in this expression will vanish in the limit of M →∞, and using the tightness

of the processes (see Section 8 in Spiliopoulos et al. [28]) and continuity of the operators in the expression

for ΞM we can pass to the limit and find the expression that the limiting fluctuation process satisfies.

Subtracting νt from νMt we find

dΞMt (f) =
(
νMt (L1f)ΞMt (I) + νt(I)ΞMt (L1f)− ΞMt (L2f) + ΞMt (L3f) + ΞMt (L4f)

)
dt+ dMM

t (f)

+
√
M

1

M

M∑
i=1

(f(Xi
t + ci)− f(Xi

t))dÑt −
√
M

1

M

M∑
i=1

ci
∂f

∂x
Ñ i
t

+
√
M

(
1

M

M∑
i=1

(f(Xi
t + ci)− f(Xi

t))λ
i
t − νMt (L4f)

)
dt,

where the martingale term is defined as

MM
t (f) =

√
M

(
1

M

M∑
i=1

∫ t

0

σi∂xfdW
i
s +

∫ t

0

1

M

M∑
i=1

ci
∂f

∂x
dÑ i

s

)
.

Using the limiting expressions for the Hawkes jump term and a Taylor approximation from Section 4.1, we

have

√
M

∣∣∣∣ 1

M

M∑
i=1

(f(Xi
t + ci)− f(Xi

t))−
1

M

M∑
i=1

ci
∂f

∂x

∣∣∣∣ ≤ K2

M
√
M

∥∥∥∥∂2f

∂x2

∥∥∥∥ . (4.22)

Thus one can show by taking the limit M → ∞, using (4.22) and Assumption 3.4 that the sequence

{ΞMt , t ∈ [0, T ]}M∈N converges in distribution to the limit point {Ξt ∈ [0, T ]} that satisfies

Ξt(f) = Ξ0(f) +

∫ t

0

(
νMs (L1f)Ξs(I) + νs(I)Ξs(L1f)− Ξs(L2f) + Ξs(L3f) + Ξs(L4f)

)
ds+Mt(f),
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where {Mt, t ∈ [0, T ]} is the distribution valued, continuous square integrable martingale with a deterministic

quadratic variation to which the sequence {MM
t , t ∈ [0, T ]}M∈N converges in distribution (note: unlike in

the LLN cases, the martingale term does not vanish in the CLT scaling case). By a martingale CLT (see

7.1.4 in Ethier and Kurtz [16]) M is Gaussian. This implies the following second-order approximation

νMt
d
≈ νt + 1√

M
Ξt, giving a more accurate approximation for finite banking systems.

5 Systemic risk in a large network

In this section we introduce several systemic risk indicators to quantify the risk in our network and to

show the particular dependence of the risk on the underlying parameters. We first remark on the difference

between the monetary reserve with a Hawkes process and one with an independent Poisson process:

Remark 5.9 (Independent Poisson process versus Hawkes process). Consider an independent Poisson pro-

cess with intensity µ. It is straightforward to see that

λ̄t := µ+

∫ t

0

αe−β(t−s)λ̄sds ≥ µ,

since we assume α, β ≥ 0. Therefore, for c < 0 we have that Q1(t) ≤ Q̃1(t), with Q1 and Q̃1 being the

averages from a Poisson jump with intensity λt and a jump with intensity µ respectively. Thus, in the limit

M → ∞, using νM (I) → Q1(t), we have as expected that the Hawkes process increases the default risk in

the network.

5.1 Risk indicators

Here we show how one can measure the systemic risk in a large network using the limiting dynamics Xt(p).

We propose to compute systemic risk in the mean-field model based on the fraction of banks that have

transitioned from a normal to a defaulted state. We define the risk indicator as the expected value of the

fraction of banks that throughout time t ∈ [0, T ] have dropped below the default level D,

SRM :=
1

M

M∑
i=1

1{
min

0≤t≤T
Xi

t≤D
}.

Note that from Theorem 4.8 we have lim
M→∞

νMt = νt for a continuous function f of Xi
t . For the indicator

function over t ∈ [0, T ] we consider the approximate relationship to hold

lim
M→∞

SRM ≈ E

[
1{

min
0≤t≤T

Xt(p)≤D
}] ,

in which the average over the indicator function of the M monetary reserve processes is thus replaced by

the indicator of the limiting process.

Furthermore, similar to Bo and Capponi [4] we can define the average distance to default as

ADDM (t) := E

[
1

M

M∑
i=1

Xi
t

]
.
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Note that (νMt ;M ∈ R) is uniformly integrable, i.e. for each t ≥ 0

sup
M∈N

E
[∣∣νMt (I)

∣∣2] <∞,
the proof of which is similar to the proof of Lemma A.1 in Appendix A and Lemma B.2 in Bo and Capponi

[4]. Then for the average distance to default indicator we use the following limiting result

lim
M→∞

ADDM (t) = Q1(t)

with Q1(t) as in (4.20). Note that in the case of independent Poisson jumps with intensity λ, the limit of the

ADD indicator is given by lim
M→∞

ADDM (t) = x + cλt. This is in contrast to the case of the Hawkes jumps

for which we have lim
M→∞

ADDM (t) = x+ c
∫ t

0
λ̄sds.

5.2 Numerical results

We set M = 300, i.e. sufficiently large, and analyze how our approximation formulas for the various indicators

of systemic risk compare to the corresponding Monte-Carlo estimate. The latter is obtained by simulating

M interacting processes Xi
t , i ∈ IM using an Euler approximation of (3.3).

Remark 5.10 (Computation of λ̄t). Define the partition of [0, T ] as 0 = t0 < t1 < ... < tK = T with

∆t := ti − ti−1. Then we approximate the integral in (4.11) as

λ̄ti+1 ≈ λ̄ti + ∆tg(∆t)λ̄ti ,

and λ̄0 := µ. Using the approximated λ̄t we compute Q1(t) as

Q1(ti+1) ≈ Q1(ti) + ∆tcλ̄ti ,

where Q1(0) = x.

Table 5.1: Monte Carlo estimates versus the LLN approximation for the systemic risk indicators with

µ = 0.01, α = 1, β = 1.2, a = 0.5, σ = 0.5, ĉ = −0.2 and D = 0.

Monte Carlo Approximation

x0 SR ADD(T ) SR ADD(T )

0.002 0.945 0.007 0.949 0.007

0.1 0.821 0.096 0.816 0.096

0.2 0.658 0.197 0.652 0.197

0.5 0.252 0.497 0.261 0.497

0.8 0.057 0.797 0.058 0.797

1 0.016 0.998 0.017 0.997
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Table 5.2: Monte Carlo estimates versus the LLN approximation for the systemic risk indicators with

µ = 0.05, α = 1, β = 1.2, a = 0.5, σ = 0.5, ĉ = −0.2 and D = 0.

Monte Carlo Approximation

x0 SR ADD(T ) SR ADD(T )

0.01 0.947 -0.005 0.946 -0.007

0.1 0.826 0.085 0.830 0.083

0.2 0.669 0.186 0.653 0.183

0.5 0.262 0.486 0.269 0.483

0.8 0.061 0.785 0.061 0.783

1 0.017 0.985 0.016 0.0.983

In Table 5.1 and 5.2 we present the results for our approximation and the Monte-Carlo estimates for

5000 simulations, 100 time steps, T = 1 and M = 300. As expected the systemic risk in the network, as

quantified by both SR and ADD, decreases as the initial monetary reserve value increases. Furthermore, a

higher mean jump intensity µ results in a less stable network. In Figure 5.2 we show the LLN estimates for

the systemic risk and the average distance to default for the Hawkes and Poisson process for different values

of the initial reserve x0. Our claims of the Hawkes process adding an additional default risk in the model are

verified also in these numerical results, as the systemic risk indicator for the Hawkes process is considerably

larger, while the average monetary reserves are consistently lower than for an independent Poisson process.

Therefore, the self- and cross-exciting shock modelled through the Hawkes process is an additional form of

contagion in the network, resulting in the network being more prone to a systemic risk event.

Figure 5.1: LLN estimates for the systemic risk (L) and LLN estimates for the average distance to default

(R) at time T = 1 with µ = 0.2, α = 1.2, β = 1.2, a = 0.5, σ = 0.5, c = −1 and D = 0 for a independent

Poisson process and the Hawkes process for x0 ∈ [0, 1]
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5.2.1 Calibrating the model

Calibration of the model considered in (3.3) with heterogeneous coefficients, in particular for the large

banking system, is a complex task. In Aı̈t-Sahalia et al. [1] the authors considered a calibration for a Hawkes

diffusion model used to model asset returns and developed method of moments estimates for the parameters

of the model. Even after making simplifying assumptions on the intensity, the model was fitted only on pairs

of assets. The calibration of the mean-field SDE with Hawkes jumps for a large number of banks is therefore

besides the scope of this paper and left for further research. However, the limiting expression derived in

Section 4.2 can be used to derive a simple and efficient way of calibrating the model. In particular, we can

calibrate the average distance to default given by Q1(t) in (4.19) by fitting it to an average of a sufficiently

large number of assets, resulting in the calibrated parameters x, c, µ, α and β. In particular, consider the

asset price as a proxy for the monetary reserve process and consider the average of the components of the

S&P500 index over the period of 2008-07-14 until 2008-10-21. Calibrating the deterministic expression for

Q1(t) to the actual average distance to default we obtain the following set of parameters: µ = 0.3, x = 1300,

α = 0.07, β = 0.11 and c = −1.6. It can be argued that the the assumption of regularity of the parameters

in the limit (see Assumption 3.4) is too strong and disenables calibrating to actual excitation. Nevertheless,

using this simple and efficient way of calibrating the model, we see from the left-hand side of Figure 5.2

that contagion is sufficiently captured; in particular note that the Poisson process is unable to model the

necessary contagion as seen from the right-hand side of Figure 5.2, while the SDE with the Hawkes process

provides a much better fit.

Figure 5.2: Calibrated model for Q1 on the S&P500 data showing excitation effects (L) and the average of

5000 simulated SDE paths of Xt(p) (R)

6 Conclusion

In this paper we have studied the effects of considering an additional self-exciting and clustering shock that

impacts the monetary reserve or asset value of the nodes of the interbank system. The nodes are assumed

22



to interact through the drift, and additionally are subjected to a Hawkes-distributed shock. In this way the

jump activity varies over time resulting in jump clustering and the shocks propagate through the network

in a contagious manner. This allows us to model both default propagation due to interbank loans as well as

propagation due to linked balance sheets and financial acceleration. We started with a numerical analysis of

the interbank model in which we showed that the Hawkes jumps results in a non-negligible tail-probability of

multiple defaults occuring at the same time. We then considered the effects of the Hawkes process in a mean-

field interaction model for the monetary reserve process and derived a weak convergence of the empirical mean

to a measure whose underlying process reflects the Hawkes process through a time-dependent drift term.

Finally we defined several risk indicators and their LLN approximations which can be used for quantifying

the risk in large systems and showed that the LLN estimates perform accurately compared to Monte-Carlo

simulations. We conclude that the clustering Hawkes jumps result in an additional and important source of

default propagation in the network and should not be ignored.
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A Proofs

The next Lemma is a boundedness result of the moment estimate of the log-monetary reserve process.

Lemma A.1. For n = 1, 2 and T ≥ 0 we have

sup
0≤t≤T, M∈N

1

M

M∑
i=1

E
[∣∣Xi

t

∣∣n] < +∞.

Proof. Let n ∈ {1, 2}. Recall the constant Cp bounding the parameters (pi, Xi
0) from assumption 3.4. From

Itô’s formula we have

E
[
|Xi

t |n
]

=E
[
|Xi

0|n
]

+ aiE
[∫ t

0

n|Xi
s|n−1(X̄s −Xi

s)ds

]
+

1

2
(σi)2E

[∫ t

0

n(n− 1)|Xi
s|n−2

]
+ σiE

[∫ t

0

n|Xi
s|n−1dW i

s

]
+ E

[∫ t

0

[
|Xi

s + ci|n − |Xi
s|n
]
dN i

s

]
.

Using Young’s inequality we have

ainXi
t

n−1
X̄t − ain|Xi

t |n−1Xi
t ≤ ai

n

M

M∑
k=1

|Xi
t |n−1|Xk

t | − ain|Xi
t |n

≤ Cp
1

M

M∑
k=1

|Xk
t |n + (2n− 1)Cp|Xi

t |n.

Applying Young’s inequality twice yields

n(n− 1)

2
(σi)2|Xi

t |n−2 ≤ n(n− 1)

2

(
n− 2

n− 1
|Xi

t |n−1 +
1

n− 1
(σi)2n

)

23



≤ n(n− 1)

2

(
n− 2

n
|Xi

t |n +
1

n
+

1

n− 1
Cp

)
.

Finally, using Young’s inequality and Proposition 2.3 there exists a constant Cn independent of M such that

E
[∫ t

0

[
|Xi

s + ci|n − |Xi
s|n
]
dN i

s

]
= E

[∫ t

0

[
|Xi

s + ci|n − |Xi
s|n
]
λisds

]
≤ 1

2
E
[∫ t

0

|ciXi
s|2(n−1) + |ci|2nds

]
+

1

2
E
[∫ t

0

(λis)
2ds

]
≤ Cn(1 + E

[∫ t

0

|Xi
s|nds

]
.

The statement then follows from applying Gronwall’s Lemma and the fact that the limiting constants are

independent of M .

In order to conclude weak convergence of the empirical measure νMt to νt we need to determine the

limiting martingale problem (as done in Section 4.1), show uniqueness of the limit point and its existence

(i.e. tightness of the sequence of measure-valued processes). We provide here a sketch of the proof for

the latter. We have to prove that the sequence of measure-valued processes {νM}M∈N defined by (4.5) are

relatively compact when viewed as a sequence of random processes on the Skorokhod space DS([0,∞]), the

collection of càdlàg functions from [0,∞) to S. This is necessary to ensure that the laws of νM have at least

one limit point (see also Chapter 2 and 3 of Ethier and Kurtz [16]). The complication arising from using a

Hawkes process is the feedback loop in the intensity, however due to Theorem 4.6 we know that the intensity

is bounded and thus the system will not explode. The relative compactness will be implied by the following

two Lemmas: Lemma A.2 on compact containment and Lemma A.3 on the regularity of the νM ’s.

Lemma A.2. For every T > 0 and any smooth function f ∈ C∞(O), we have

lim
m→∞

sup
M∈N

P
(

sup
0≤t≤T

|νMt (f)| ≥ m
)

= 0.

Proof. From (4.8) we have the following decomposition

νMt (f) = νM0 (f) +AMt +BMt + CMt +DM
t , (1.23)

where we have defined

AMt :=
1

M

∫ t

0

M∑
i=1

ai∂xf(Xi
s)(ν

M
s (I)−Xi

s)ds, (1.24)

BMt :=
1

2M

∫ t

0

M∑
i=1

(σi)2∂xxf(Xi
s)ds,

CMt :=
1

M

∫ t

0

M∑
i=1

(
σi∂xf(Xi

s)dW
i
s

)
,

DM
t :=

∫ t

0

[
1

M

M∑
i=1

(f(Xi
s + ci)− f(Xi

s−))

]
dN i

s.
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Then we need to bound E
[

sup
0≤t≤T

|(·)Mt |
]

for each of the terms defined above. Denote for f ∈ C∞(O) the

supremum norm with ||f || = sup
(p,x)∈O

|f(p, x)|. We will use the dominating constant Cp from assumption 3.4.

For AMt , BMt , CMt the estimates are similar to Bo and Capponi [4] and we omit the details here and just

give the estimates

E
[

sup
0≤t≤T

|AMt |
]
≤ Cp

∥∥∥∥∂f∂x
∥∥∥∥ ∫ T

0

1

M

M∑
i=1

E
[
|Xi

s|2
]
ds+ Cp

∥∥∥∥∂f∂x
∥∥∥∥ ,

E
[

sup
0≤t≤T

|BMt |
]
≤ Cp

2

∥∥∥∥∂2f

∂x2

∥∥∥∥T,
E
[

sup
0≤t≤T

|CMt |
]
≤ CTCp

∥∥∥∥∂f∂x
∥∥∥∥ (T + 1).

Then we have by the mean-value theorem and using Proposition 2.3 which implies the existence of a constant

Cλ such that E[λit] < Cλ that

E
[

sup
0≤t≤T

|DM
t |
]
≤

M∑
i=1

E

[∫ T

0

1

M
|f(Xi

s + ci)− f(Xi
s−)|dN i

s

]

≤
∥∥∥∥∂f∂x

∥∥∥∥ 1

M

M∑
i=1

ci
∫ T

0

E[λis]ds

≤
∥∥∥∥∂f∂x

∥∥∥∥CpCλT.
Using Lemma A.1, we can find a positive constant C such that

sup
M∈N

E
[

sup
0≤t≤T

∣∣νMt (f)
∣∣] < C.

Define Et[·] := E[·|Ft].

Lemma A.3. Let h(x, y) = |x−y|∧1 for any x, y ∈ E. Then there exists a positive random variable HM (γ)

with lim
γ→0

sup
M∈N

E[HM (γ)] = 0 such that for all 0 ≤ t ≤ T , 0 ≤ u ≤ γ and 0 ≤ v ≤ γ ∧ 1, we have

Et
[
h2(νMt+u(f), νMt (f))h2(νMt (f), νMt−v(f)

]
≤ Et[HM (γ)],

where the function f ∈ C∞(O).

Proof. We have from (1.23)

(νMt+u − νMt )(f) = AMt+u −AMt +BMt+u −BMt + CMt+u − CMt +MM
t+u −MM

t + PMt+u − Pt,

where AMt , BMt , CMt are defined in (1.24) and

MM
t :=

∫ t

0

[
1

M

M∑
i=1

(f(Xi
s + ci)− f(Xi

s−))

]
dÑ i

s,
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PMt :=

∫ t

0

[
1

M

M∑
i=1

(f(Xi
s + ci)− f(Xi

s−))

]
λisds,

where we have used the fact that the compensated counting process Ñ i
t := N i

t −
∫ t

0
λisds is a Ft-local

martingale. We have

h2
(
νMt+u(f), νMt (f)

)
≤16

[ ∣∣AMt+u −AMt ∣∣2 +
∣∣BMt+u −BMt ∣∣2 +

∣∣CMt+u − CMt ∣∣2
+
∣∣MM

t+u −MM
t

∣∣2 +
∣∣PMt+u − PMt ∣∣2 ].

Let 0 ≤ u ≤ γ. For the bounds on the first three differences we refer to Lemma 3.5 in Bo and Capponi [4].

For the fourth difference, using the martingale property and Itô Isometry for the martingale (MM
t ) with

quadratic variation [Ñt, Ñt] = Nt, the mean-value theorem, Assumption 3.4 and Proposition 2.3, and the

bound (6.1) in Giesecke et al. [17] we find

Et
[∣∣MM

t+u −MM
t

∣∣2] = Et
[∣∣MM

t+u

∣∣2 − ∣∣MM
t

∣∣2]
=

M∑
i=1

Et
[∫ t+u

t

1

M

∣∣f(Xi
s + ci)− f(Xi

s−)
∣∣2 dN i

s

]

=

M∑
i=1

Et
[∫ t+u

t

1

M

∣∣f(Xi
s + ci)− f(Xi

s−)
∣∣2 λisds]

≤ Cp
∥∥∥∥∂f∂x

∥∥∥∥2
1

M

M∑
i=1

Et
[∫ t+u

t

λisdt

]

≤ Cp
1

2

∥∥∥∥∂f∂x
∥∥∥∥2

γ
1
4

1

M

M∑
i=1

E

[
1 +

∫ T

0

(λis)
2dt

]
.

With the mean-value theorem and Assumption 3.4 we find

∣∣PMt+u − PMt ∣∣ =

∣∣∣∣∣
M∑
i=1

∫ t+u

t

[
1

M
(f(Xi

s + ci)− f(Xi
s−))

]
λisds

∣∣∣∣∣
≤ Cp

∥∥∥∥∂f∂x
∥∥∥∥ 1

M

M∑
i=1

∫ t+u

t

|λis|ds

≤ Cp
1

2

∥∥∥∥∂f∂x
∥∥∥∥ γ 1

4
1

M

M∑
i=1

(
1 +

∫ T

0

(λis)
2dt

)
.

Then using Lemma A.1 and Proposition 2.3 we can finish the proof.

Then if uniqueness of the limit point νt holds (see e.g. the proof of Lemma C.1 in [4]), we can thus

conclude that the sequence νMt converges weakly to the limit point νt and we thus conclude that weak

convergence holds.
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