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Abstract

We study the chaotic-like behavior of cosmological simulations by quantifying how minute perturbations grow
over time and manifest as macroscopic differences in galaxy properties. When we run pairs of “shadow”
simulations that are identical except for random minute initial displacements to particle positions (e.g., of order
10 pc7- ), the results diverge from each other at the individual galaxy level (while the statistical properties of the
ensemble of galaxies are unchanged). After cosmological times, the global properties of pairs of “shadow” galaxies
that are matched between the simulations differ from each other, generally at a level of ∼2–25%, depending on the
considered physical quantity. We perform these experiments using cosmological volumes of h25 50 Mpc 3( – )
evolved either purely with dark matter, or with baryons and star formation but no feedback, or else using the full
feedback model of the IllustrisTNG project. The runs cover four resolution levels spanning a factor of 512 in mass.
We find that, without feedback, the differences between shadow galaxies generally become smaller as the
resolution increases—but with the IllustrisTNG model, the results mostly converge toward a “floor.” This hints at
the role of feedback in setting the chaotic properties of galaxy formation. Importantly, we compare the macroscopic
differences between shadow galaxies to the overall scatter in various galaxy scaling relations, and conclude that,
for the star formation-mass and the Tully–Fisher relations, the butterfly effect in our simulations contributes
significantly to the overall scatter. We find that our results are robust to whether random numbers are used in the
subgrid models or not. We discuss the implications for galaxy formation theory in general and for cosmological
simulations in particular.

Key words: chaos – cosmology: theory – galaxies: evolution – galaxies: formation – hydrodynamics – methods:
numerical

1. Introduction

Cosmological simulations are the most general tool for
theoretical studies of galaxy formation. Significant progress is
continuously being made on their physical fidelity, numerical
accuracy, and computing power—and as a result, also on their
realism. However, several factors hinder the prospect of
accurately simulating our universe. One well-known limitation
stems from small scales: the need to model processes occurring
on scales below the resolution of any given simulation using
approximations (usually called “subgrid” models). Another
limitation that is widely appreciated originates from large
scales: our ignorance regarding the initial conditions of
cosmological systems, whether our own Galaxy or our universe
as a whole (often referred to as “cosmic variance”). In this
work, we consider for the first time the possible consequences
of a limitation that, in some sense, is a combination of the two:
our ignorance about initial conditions on small rather than large
scales.

The butterfly effect is the phenomenon whereby a dynamical
system evolves in a macroscopically different manner due to a
minute change in initial conditions. Systems that possess this
property are often loosely referred to as chaotic. In this work,
we use the term “chaotic-like” to refer to phenomena related to

the butterfly effect. A more formal definition of a chaotic
system may involve the existence of a positive Lyapunov
exponent, namely the exponential divergence of trajectories
that are initially only infinitesimally separated. In regimes
where we do identify an exponential growth of initially small
differences, we refer to the timescale associated with this
growth as the Lyapunov timescale, but in many cases, the
divergence we observe is not exponential and is therefore
“chaotic-like.” Simulations that start from almost identical
initial conditions are referred to here, following standard
nomenclature in the context of chaos studies, as “shadow”
simulations, and matched systems within these simulations,
such as particles or galaxies, are also referred to as “shadow”
versions of each other.
Chaotic-like systems can be found in diverse contexts in

astrophysics. Examples include the dynamics of planetary
systems (Laskar 1989), N-body systems such as star clusters or
dark matter halos (Heggie 1991; El-Zant et al. 2018) as well as
galactic disks and bars (Fux 2001; Sellwood & Debattista
2009), star formation in turbulent molecular clouds (Adams
2004; Bate et al. 2010), and the orbits of satellite galaxies,
stellar streams, and halo stars (Maffione et al. 2015; Price-
Whelan et al. 2016a, 2016b). Here, we study the butterfly effect
in a context that has hitherto been largely neglected: the galaxy
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formation process from cosmological initial conditions in the
ΛCDM paradigm. To this end, we employ state-of-the-art
cosmological hydrodynamical simulations and study the
growth over cosmological timescales of minute perturbations
applied to them. We also discuss the applicability of our results
and conclusions beyond the realm of simulations, namely for
the real universe.

Chaotic-like sensitivity to initial conditions in cosmological
systems, as a phenomenon related to and yet distinct from other
discreteness effects (e.g., Romeo et al. 2008; van den Bosch &
Ogiya 2018), has been considered in a few cases before, dating
back to Suto (1991). For example, Thiébaut et al. (2008)
measured the characteristic growth (Lyapunov) timescales of
small differences between initial conditions in sets of otherwise
identical cosmological pure N-body boxes. They found that
chaos-like behavior appears on small, non-linear scales, but is
absent on large, linear scales. Interestingly, some—but not all
—global properties of dark matter halos were found to be
robust and stable to these magnified differences on the particle
level. Thiébaut et al. (2008) identified several global halo
properties that differed significantly between shadow versions
of the same halos, such as spin and orientation of the velocity
dispersion tensor. El-Zant et al. (2018) recently found that
global properties of non-cosmological, equilibrium spherical N-
body systems show an initial exponential growth of errors but
then a saturation that converges toward zero as the number of
particles is increased toward the collisionless limit. The direct
relevance of this result to the case of halos developing from
cosmological initial conditions is unknown and merits further
research (see also Benhaiem et al. 2018). Kaurov (2017) found
that small-scale modifications to cosmological initial conditions
propagate to much larger scales by the epoch of reionization,
dramatically affecting simulation results such as the escape
fraction. In this paper, we perform measurements that are
similar in spirit to those of Thiébaut et al. (2008), but on
cosmological simulations that include baryons, hydrodynamics,
and galaxy formation models, and using different methods for
introducing differences and measuring their growth.

Recently, while this paper was in preparation, Keller et al.
(2019) investigated chaotic-like behavior seeded by roundoff
errors in gravito-hydrodynamical simulations of a few
individual galaxies, both from idealized and from cosmological
initial conditions. With the codes they used, GASOLINE2
(Wadsley et al. 2017) and RAMSES (Teyssier 2002), repeated
runs of the same setup resulted in different outcomes. They
showed that the results of these different runs have normal
distributions. In cases where the difference between two such
shadow simulations grows to large values (even up to order
unity), which often are associated with galaxy mergers, it tends
to later converge back to the mean, a behavior they interpret as
a result of negative feedback loops and global physical
constraints on the system. They conclude that, in order to
determine the degree to which the results from simulations with
different physical models truly differ from one another, the
measured differences between them must be assessed with the
butterfly effect in mind, namely with respect to differences that
would occur merely by repeating runs with the same model.

In this work, we quantify the differences between shadow
hydrodynamical simulations of galaxies in the cosmological
context. In contrast with Keller et al. (2019), who have studied
just a few individual galaxies and a large number of shadow
simulations for each of them, we use “large-scale” (tens of

Mpc) cosmological boxes that contain thousands of galaxies,
and use a small number of shadow simulations for each set of
initial conditions. This allows us to quantify the average
magnitude of the butterfly effect for a statistically representa-
tive galaxy population. In addition, we study how galaxies
move due to the butterfly effect in parameter spaces combining
several physical quantities that are related to each other through
“scaling relations,” and thereby quantify how much of the
scatter in those relations is affected by the butterfly effect. The
width, or scatter, in scaling relations is often considered to be
no less fundamental than their shape parameters, such as mean
normalization and slope. For example, McGaugh (2012) and
McGaugh & Schombert (2015) consider the very small scatter
in the Tully–Fisher relation between galaxy luminosity and
rotation speed (Tully & Fisher 1977) as evidence toward
modified gravity. The scatter around the mean relation between
galaxy mass and star formation rate (SFR) has also been
studied extensively (e.g., Tacchella et al. 2016; Matthee &
Schaye 2018), and it is believed to encode a variety of key
processes in galaxy formation.
This paper is organized as follows. Section 2 describes the

simulations we use and the analysis methods applied to them.
Section 3 presents results for several individual galaxy
properties from hydrodynamical cosmological simulations.
Section 4 lays out the main results of this work, which concern
several combinations of properties, namely scaling relations.
Section 5 contains a summary and an extensive discussion.
Finally, Appendix A briefly presents results from dark matter-
only cosmological simulations, and Appendix B discusses
several special sets of simulations run for numerical verification
purposes.

2. Methods

2.1. Simulations

2.1.1. Code and Setup

We employ the MPI-parallel Tree-PM-moving-mesh code
AREPO (Springel 2010) to run three series of cosmological
simulations, distinguished by different sets of physical
components and models they include. Specifically, the DM-
only series represents pure N-body simulations of cold dark
matter; the No-feedback series adds baryons, hydrodynamics,
radiative cooling, and star formation, utilizing the methods
presented in Vogelsberger et al. (2012); and the TNG series
employs a more comprehensive treatment of the physics of
galaxy formation, including in particular supermassive black
holes as well as various feedback processes, utilizing the same
models (Weinberger et al. 2017; Pillepich et al. 2018a) used for
the IllustrisTNG project (Marinacci et al. 2018; Naiman et al.
2018; Nelson et al. 2018; Pillepich et al. 2018b; Springel et al.
2018).
Each of these series is comprised of simulations at four

resolution levels, the basic parameters of which are provided in
Table 1. The naming convention we use to distinguish the
resolution levels is related to the spatial resolution. The ò=1
resolution level, for example, is similar to (but slightly worse
than) the Illustris simulation (Genel et al. 2014; Vogelsberger
et al. 2014a, 2014b), while the ò=0.5 level has a mass
resolution that is nearly five times better than Illustris. For the
higher resolution levels, we are limited by computational power
to volumes of h25 Mpc 3( ) , but we can afford to run larger
volumes of h50 Mpc 3( ) for the lower resolution levels, which
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is helpful for statistical power. The initial conditions for some
of our cosmological boxes have been generated with N-GenIC
(Springel et al. 2005) and are adopted from Vogelsberger et al.
(2013), and some were generated with MUSIC (Hahn &
Abel 2011) especially for this study. We uniformly use a
ΛCDM cosmology with h=0.704, σ8=0.809, ns=0.963,
Ωm=0.2726, and (except for the DM-only series) Ωb=
0.0456.

2.1.2. Creating Shadow Simulations Using Minute Perturbations

Each cosmological box is first evolved from its initial
conditions at z=127 down to some final redshift, producing
several snapshots at intermediate times. These snapshots are
then used as initial conditions for what we call sets of shadow
simulations, up to a unique minute perturbation that is applied
to each of the shadow simulations in the set (described in the
next paragraph). A set consisting of Ns simulations then
contains N N 1 2s s -!( )! pairs of shadow simulations, for which
the setup and initial conditions are identical up to a minute
perturbation. An overview of these sets is provided in Table 2,
including the number of simulations and pairs in each set, as
well as the perturbation (namely, initial) redshift and the final
one. In most cases, unless otherwise noted, the shadow
simulations produce snapshots at prescribed times starting
8 10 yr5´ after their initial time (namely, the time the
perturbations are introduced) in intervals increasing by a factor
of two up to 4 10 yr8´ past the perturbation time.9 This
achieves high time resolution for following the early stages of
the evolution of the perturbations. Thereafter, the snapshot
separation is approximately equal in the logarithm of the
cosmological scale factor. The total number of snapshots
written by each shadow simulation between z=5 and z=0 is
∼30. In addition to the sets presented in Table 2, several
special sets have been run for numerical verification reasons.
These are described and discussed in Appendix B.

The “minute perturbation” applied to every simulation in
every set is, in most cases (unless noted otherwise),
implemented as a displacement in the position of each and
every particle in the snapshot that serves as the common initial

conditions of the set. These displacements are applied only
once, immediately after reading the snapshot data into memory
and before any calculations are done to evolve the system.
These displacements are applied in all three Cartesian spatial
directions, and their magnitudes in each direction are x ri i,
where ri is the coordinate of the particle in the Cartesian
direction i and xi is drawn from a uniform distribution between
(unless noted otherwise) −5×10−15 and 5×10−15. Because
particle positions are handled with double precision floating
points whose significand has a precision of 53 bits or ≈16
decimal digits, this range of possible displacements spanning
10−14×ri translates into ∼100 possible values for the
displacement of any given particle along each Cartesian axis.
With this design choice of limiting the displacements to a

constant, small number of bits representing the position of each
particle, the typical physical size of the displacement scales
with the position in the box ri. Given the box sizes we use, the
maximal particle coordinates are on the order of tens of Mpc,
and the displacements are hence at most of order 10 pc7-

(comoving). The alternative possible design choice of keeping
a constant physical displacement size across the box rather than
a constant relative displacement size would be inconsequential
to the results we present, for two reasons: first, for the vast
majority of particles (except very close to the origin where all
three ri are much smaller than the box size, or where all three xi
happen to be =1), the magnitudes of the initial displacements
are within the same order of magnitude; second, our results are
largely insensitive to the magnitude of the initial perturbations,
as demonstrated in Appendix B.1.

2.1.3. Discussion of Numerical Nuisance Parameters

Other than the application of a unique realization of
displacements to each simulation, all shadow simulations in a
given set are evolved identically, in terms of, e.g.,the Linux
kernel, the executable,10 the number of compute cores and
MPI11 tasks, the random number generator,12 and so on.13 We
choose to directly introduce explicit perturbations so that we
have full control over them. However, we could have
introduced them in a less explicit way by, for example,
running each shadow simulation using a different number of

Table 1
Properties of the Different Simulation Resolution Levels used in this Study

Resolution Dark Matter Gravitational Baryonic Dark Matter Box Size Number of
Level Softening [comoving h kpc1- ] Particle Mass h M1-

[ ] Particle Mass h M1-
[ ] h Mpc1 3-[( ) ] Dark Matter Particles

ò=4 4.0 9.4 107´ 4.7 108´ 503 2563

ò=2 2.0 1.2 107´ 5.9 107´ 503 5123

ò=1 1.0 1.5 106´ 7.3 106´ 253 5123

ò=0.5 0.5 1.8 105´ 9.2 105´ 253 10243

Note. Our simulations are comprised of four resolution levels that span a factor of 8 in spatial resolution and 512 in mass resolution. Throughout the paper, they are
referred to using the notation in the left-most column, based on their spatial resolution. In comparison to the IllustrisTNG simulations, the ò=1 level is similar to
(slightly worse than) the resolution of the TNG100, and so is the ò=2 level with respect to TNG300. In addition to dark matter particles, whose number is provided in
the right-most column, the initial conditions of hydrodynamical simulations include an identical number of gas cells.

9 Because snapshots can only be written by our code at time steps when all
particles are active, the snapshot times cannot be prescribed exactly, but are
rounded to those special time steps. This implies that simulations with lower
resolutions have a lesser ability to produce snapshots at very fine intervals.
Accordingly, only the ò=0.5 resolution level simulations can produce a
snapshot as early as 8 10 yr5´ after their initial time, whereas the first
snapshot is only written 5 10 yr6´ into the run for the ò = 4 resolution level.
This can easily be changed by imposing a maximum time step, but that also
undesirably affects the integration itself, as shown in Appendix B, and is
therefore not done in the main body of this work.

10 Compiled using gcc with the strong optimization configuration -O3, unless
noted otherwise.
11 Message Passing Interface.
12 Specifically, we employ the gsl_rng_ranlxd1 random number
generator from the GNU Scientific Library (gsl-2.3) with a seed of
42+r, where r denotes the MPI rank, unless noted otherwise.
13 This does not, however, include the specific nodes on which the
computation is done.
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MPI tasks. Such a choice would immediately introduce a
different realization of round-off errors in the force calculation
due to a different order of summation, generating a very similar
outcome to perturbations we introduce “by hand” close to the
machine-precision level. The number of MPI tasks hence
effectively serves as a nuisance parameter that modifies the
results of a simulation through the arbitrary realization of
round-off errors. Given that any specific order of summation is
arbitrary, no emergent sequence of round-off errors (and hence
evolution of the system) is more correct than any other
(whether and in what sense the ensemble of solutions to the
system represents the true physical solution is a different
question; see, e.g., Boekholt & Portegies Zwart (2015) and
Portegies Zwart & Boekholt (2018)). This is true even with the
simplest set of physics, namely in pure N-body simulations, as
well as in pure hydrodynamical simulations, let alone in a
combined gravity and hydrodynamics case.

It is worth commenting, however, that when we use the exact
same setup, keeping all factors described above fixed, and do
not introduce any perturbation, namely running “the same
simulation” more than once, our code produces results that are
binary identical, remaining so even over integrations of billions
of years of cosmic time.14 This is achieved by a deterministic
order of operations that is independent of machine noise, such
as communication speeds between different nodes, providing a
deterministic emergent sequence of round-off errors. It is

nevertheless important to realize that this feature of exact
reproducibility has nothing to do with accuracy: the reprodu-
cible realization of round-off errors with a particular setup
of our code is arbitrary, and is no more accurate than any other
one. For example, the different arbitrary realization of round-
off errors that our exact same code and setup would obtain
if only the number of MPI tasks was modified is just as correct.
In our simulations that also include star formation on top of

gravity and hydrodynamics, there is an additional nuisance
parameter that is worth discussing: the seed for the random
number generator. Random numbers are used in our model in
the star formation and feedback process to determine where
stars will form or galactic winds be launched (Springel &
Hernquist 2003). This is necessary because the timescales
associated with these processes are of order ∼10Myr–1 Gyr,
while simulation time steps can be as short as 0.1–1Myr.
Therefore, star-forming gas cells typically have very low
probabilities during individual time steps to be converted into
stellar or “wind” particles. The realization of these probabilities
into actual star formation or wind-launching events is
controlled by random numbers. With a fixed seed for the
random number generator, two identical setups result in
identical results. However, if the seed for the random number
generator is modified, a different sequence of random numbers
is generated and stars will form at different times and positions.
This will also be the case if the same seed, and hence random
number sequence, is used but with a time or cell offset between
two simulations. It is important to realize that differences in
round-off errors, or the introduction of minute displacements as

Table 2
An Overview of the Simulation Suite Used in this Study

Series Resolution Level
Number of Sets

(volumes)
Number of
Simulations

Resulting Number of
Pairs Perturbation z Final z

DM-only ò=4 1 3 3 5 0
ò=2 1 3 3 5 0
ò=1 1 3 3 5 0
ò=0.5 1 2 1 5 0

No-feedback ò=4 1 3 3 5 0
ò=2 1 2 1 5 0
ò=1 1 3 3 5 0
ò=0.5 2 4+3 6+3 5 0.5

TNG model ò=4 1 3 3 5 0
ò=2 1 2 1 5 0
ò=1 1 3 3 5 0
ò=0.5 1 2 1 5 0

No-feedback; no random
numbers

ò=4 1 2 1 5 0

ò=2 1 2 1 5 0
ò=1 1 2 1 5 0

TNG model; no random
numbers

ò=4 1 2 1 5 0

ò=2 1 2 1 5 0
ò=1 1 2 1 5 0

Note. We use three series of simulations (first column), each with a different physical model: simulations including only dark matter (DM-only), simulations with
baryons and star formation (No-feedback), and simulations with a full galaxy formation model (TNG model). In each series, there are four resolution levels (second
column), most of which employ a single cosmological box, except for the high-resolution No-feedback case that uses two distinct boxes, providing two sets of shadow
simulations (third column). The total number of simulations comprising each set is reported in the fourth column, and the resulting number of pairs of shadow
simulations is reported in the fifth column (in the No-feedback ò=0.5 case, the two numbers correspond to the two sets). The penultimate column reports the redshift
at which the shadow simulations are perturbed and resumed, and the last one the final redshift to which they are evolved.

14 Note that the specific nodes on which the computations are done are not
required to be kept fixed for the results of the calculations to be binary
identical.
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described above, will quickly develop into effective offsets in
the random number sequence, and hence have the same effect.
This is because once the round-off errors develop into a
situation where the number of star-forming gas cells in one
simulation is different from its shadow simulation, each
individual cell will be affected by a modified series of random
numbers.

In order to examine whether the usage of random numbers
affects our results in any meaningful way, we run a few
simulation sets that completely avoid them. For the reason
explained in the previous paragraph, this necessarily implies
that the subgrid physics model is modified as well. To remove
the usage of random numbers, we change the subgrid model
such that any gas cell that crosses the star formation density
threshold is immediately converted to a collisionless star
particle. Similarly, in simulations with the TNG model, any
such gas cell is converted into two collisionless particles, each
with half of the original mass, one of which is a stellar particle
and the other a wind particle. These modifications effectively
change both the star formation timescale and the wind mass
loading factors in the model. More subtle changes are also
applied to the directionality of both galactic winds and black
hole feedback, such that they do not use random numbers. All
these modifications result in galaxies that are physically
different from those in the fiducial model, e.g.,in their gas
contents and morphologies, but these differences are secondary
to our purpose here. The important aspect is rather that the
results become completely independent of the random number
generator, and hence provide an important sanity check on our
conclusions. The results of these tests are discussed in
Section 3.2.3.

In Appendix B, we present further tests in which the treatment
of random numbers in our simulations is modified, and in
particular, we examine how circumventing the effects of random
numbers affects the early evolution of the differences between
shadow simulations. In Section 5, we discuss the relation of the
usage of random numbers in our models to the real universe. We
refer the reader to these sections for further details.

2.2. Analysis

2.2.1. Matching between Shadow Simulations

The first analysis task, given a set of shadow simulations, is
to match individual objects—galaxies or dark matter halos—

between these simulations and thereby obtain a catalog of
“shadow objects.” The type of objects that we match, in
practice, are SUBFIND subhalos (Springel et al. 2001). These
objects are matched between each pair of shadow simulations
by identifying subhalos across simulations that have common
dark matter particle IDs, namely according to commonalities of
their Lagrangian patches. Specifically, the shadow subhalo in
simulation B of a subhalo in simulation A is the subhalo in
simulation B that contains the largest number of dark matter
particles that are among the Np most bound dark matter
particles in the subhalo in question from simulation A. The
number Np is set to 1% of the total number of dark matter
particles in the subhalo in question, bounded by 20 from below
and 100 from above. Further, if multiple halos from simulation
A find the same match in simulation B, then only the most
massive of them is kept as a valid match and the rest are
discarded.15 We perform these matches for all subhalos with a
stellar mass larger than h M108 1-

 in the hydrodynamical
simulations or total mass larger than h M1010 1-

 in the DM-
only simulations. This procedure typically results in a matched
fraction of ∼98%. Figure 1 presents mock stellar light images
of a pair of matched shadow galaxies from a series of snapshots
starting from shortly after the perturbation is applied and
covering most of cosmic time.
In our analysis, we narrow these matches down to include

only those that are between two subhalos that are both the main
subhalos of their friends-of-friends (Davis et al. 1985) halos—
namely, central subhalos, or central galaxies in the case of the
hydrodynamical simulations series. This is a conservative
choice, as differences between shadow subhalos where one is a
central and one is a satellite tend to be larger, due to the strong
environment-driven evolution of satellites. Such cases occur
when timing differences appear between shadow systems; for
example, if one, in which the subhalo is still a central, lags
behind the other, in which the subhalo is already a satellite.
Such cases are quite rare, and the galaxy populations in our
simulations are not large enough to sample them well, which is
another reason we exclude them from the main analysis.

Figure 1. A visual demonstration of the butterfly effect in the evolution of a pair of shadow galaxies. A galaxy in the initial (z = 5) snapshot of the ò=0.5 simulation
set in our TNG-model series is followed over time (from left to right) in each of the two shadow simulations in the set (top/bottom rows). Each image is a color-
composite representing the stellar luminosity in the (SDSS)r–g–(Johnson)B bands, and is centered at the most bound particle in the galaxy and projected along the
z-axis of the simulation box. The redshift and time elapsed since the time a perturbation has been applied to the initial z=5 snapshot are indicated in the bottom row.
Structural differences can be quite easily discerned at t 2 GyrD ~ , but smaller differences, such as in the positions of individual stellar particles, can be seen as early
as t 4 MyrD ~ . By t 4 7 GyrD ~ – , the initial perturbations have evolved into differences in the structure of the spiral arms and the overall orientation of the disk. At
z=0.2, the galaxy has a prominent star-forming disk in the simulation shown in the top row—but in that shown in the bottom, it has already largely quenched as a
result of a gas ejection event by the central supermassive black hole, and hence has a markedly different color.

15 The determination of which simulation in a pair of shadow simulations is
“A” and which is “B” is arbitrary. We also checked an alternative method:
enforcing a bidirectional match by discarding any galaxy whose match’s match
is not itself. This resulted in discarding <5% of the galaxies and had virtually
no effect on our results.
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2.2.2. Quantifying the Differences between Shadow Galaxies

Once we have a catalog of shadow subhalos between each
pair of shadow simulations in a set, we calculate logarithmic
differences, namely ratios, in the properties of those shadow
subhalos. We focus on the following quantities: total bound
stellar mass M* and dark matter mass MDM, the maximum of
the circular velocity profile Vc,max ( GM rtotal as a function of
radius r), the half-mass radius of the stellar distribution R*,1/2,
the instantaneous SFR based on the gas distribution in the
subhalo SFR0, and the SFR averaged over a time window of
1 Gyr, SFR1 Gyr. All of these quantities are calculated by
SUBFIND during the run, except for SFR1 Gyr, which we
calculate in post-processing based on the formation times of the
stellar particles belonging to the subhalo (in Appendix C,
we verify that our results are not significantly affected by the
particularities of the SUBFIND algorithm).

The logarithmic differences of these quantities between
shadow subhalos are studied in Section 3. We show that their
distributions are well-fit by Gaussians, and quantify the
standard deviations of these distributions, namely the typical
pairwise differences, as a function of time since the perturba-
tion and of subhalo mass. It is important to realize that the
distribution of pairwise differences is wider by 2 than the
distribution of actual values among many perturbed realiza-
tions. This is simply because each realization is drawn from the
normal distribution of actual values, and the distribution of
pairwise differences is then a distribution of the differences
between two identical normal random variables, which is
indeed in itself a normal distribution that is 2 wider than the
original one. In our case, we have a small number of pairwise
differences per subhalo, or even just a single one, so we cannot
reliably quantify the distribution of actual values. However, we
do have a large statistical sample of many galaxies, and
therefore many pairwise differences for a population, whose
distribution can be robustly quantified and fit with a Gaussian.
We therefore present examples of these distributions in and of
themselves in Figure 2, as discussed in the next section.
However, it is important to keep in mind that, when using the
standard deviations of these distributions to quantitatively
compare to distributions of values, rather than of differences, as
done in Section 4, the width of the pairwise shadow differences
must be divided by 2 for a meaningful comparison, and so
this is the way they are presented throughout the paper, with
the exception of Figure 2.

In Section 4, we go beyond the individual quantities and
study the evolution of differences between shadow galaxies in
the context of scaling relations. Specifically, we quantify the
extent to which differences in various individual quantities
between shadow galaxies move them perpendicular to—versus
along—certain scaling relations. To this end, for a given pair of
physical quantities, e.g.,stellar mass and halo mass, we
perform a piece-wise linear fit in log-space to all the galaxies
in all the simulations of a given set. These fits then define the
scaling relation between these quantities, as well as the (piece-
wise) perpendicular direction to the relation, namely the
direction in which the scatter of the relation is minimal. We
then calculate the difference between each pair of shadow
galaxies in that perpendicular direction. The standard deviation
of these pairwise perpendicular differences (divided by 2 for
reasons discussed in the previous paragraph) is compared to the
total scatter (among all galaxies) perpendicular to the scaling

relation, in order to assess the contribution of the butterfly
effect to the total scaling relation scatter.

3. Results: Individual Quantities

3.1. Distributions of Shadow Pairwise Differences

We find that the distributions of pairwise logarithmic
differences between the properties of shadow galaxies are fit
well by Gaussians whose centers are consistent with zero. This
is a general result, which we demonstrate in Figure 2 in a
particular regime. There, we present the probability density
functions of all pairwise logarithmic differences between the
values of the maximum circular velocity profile Vc,max of
shadow galaxies, for all central galaxies with stellar mass

M h M9.5 log 101
*< <-

[ ] in our No-feedback (top) and
TNG model (bottom) simulation series at the last available
snapshot, separated by resolution level. In each case, the actual
probability density function (thick stepwise curves), which is
comprised of 100 of pairwise differences, can be described
well by a best-fit Gaussian (thin curves). This shape probably
arises due to the central limit theorem, as a large number of
individual factors (resolution elements) contribute to the
quantity Vc,max. As mentioned, this is a general result that we
find holds for other quantities and for other galaxy selections.

Figure 2. Probability density functions of pairwise logarithmic differences
between the maximum circular velocities of shadow galaxies with mass of

M h M9.5 log 101
*< <-

[ ] at z=0.5. These are shown at four resolution
levels, increasing from blue to red, for two simulation series: without feedback
(top) and with feedback (bottom). The distributions (thick stepwise curves) are
fit well by Gaussians (thin curves). Without feedback, the differences between
shadow galaxies become smaller as resolution is increased. With the TNG
model, however, no clear resolution dependence can be discerned, and the
distributions are wider than at high-resolution without feedback.
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The dependence on resolution seen in Figure 2 is illuminat-
ing. In the No-feedback series, the width of the distribution
decreases with increasing resolution: at higher resolution, the
minute perturbations that are introduced at z=5 grow less by
z=0 than they do at lower resolution. That the result is not
converged implies that the magnitude to which these perturba-
tions grow in the lower-resolution cases is not physical, and
possibly that their growth is altogether a numerical artifact even
at the highest resolution that is available to us, rather than an
intrinsic property of the simulated physical system. In
particular, as discussed below in Section 3.2.1, the results are
significantly affected by Poisson noise. In contrast, the results
when the TNG model feedback processes are turned on show
no meaningful dependence on resolution. At all resolution
levels, the standard deviation of the distribution is ≈0.02 dex,
i.e., a typical difference of ≈5% between the Vc,max values of
shadow galaxies. Note that galaxies in the considered mass bin
of M h M9.5 log 101

*< <-
[ ] are resolved at the ò=4

resolution level with only ∼30–100 stellar particles, rendering
the invariance of the result between all resolution levels quite
striking.

This convergence suggests that the growth of the initial
perturbations, on a scale of one part in 1014, to percent-level
differences is inherent to (the numerical realization of) the
physical system, namely a system evolving from cosmological
initial conditions according to the physical processes included
in the TNG model and their particular implementation in this
model. In particular, at the ò=0.5 resolution level, the
distribution of pairwise differences is significantly broader than
it is at the same resolution level in the No-feedback case,
indicating that the final level of differences is not inherent to
the code in general, but is related to the particular physical
processes that it implements. Specifically, that the pairwise
differences do not keep shrinking with increasing resolution as
in the No-feedback case is an indication that the form of
feedback implemented in the TNG model increases the
sensitivity of the system to small perturbation—or in other
words, the degree of chaotic-like behavior it manifests.

After establishing that the pairwise differences distributions
are Gaussian, we characterize them throughout the rest of this
paper with a simple summary statistic: their standard deviation.
However, as discussed in Section 2.2, for each individual
galaxy, the standard deviation of the pairwise differences
between its various shadow versions is a factor of 2 larger
than the standard deviation of the values themselves. Because
we have here only a few pairs per galaxy, we cannot sample the
distribution of the values themselves well. However, we have a
large number of galaxies, and hence do have a robust estimate
of the standard deviation of the distribution of pairwise
distances. Hereafter, we use this robust estimate and divide it
by 2 in order to obtain a robust estimate of the standard
deviation of the values themselves even in the absence of a
direct probe into their distribution. As discussed in Section 2.2,
the standard deviation of the latter is the more meaningful
quantity.

3.2. Growth of Differences over Time

3.2.1. Results from No-feedback Simulations

Figure 3 presents the standard deviations of distributions like
the ones discussed so far (divided by 2 , as discussed above)
as a function of time, where t=0 is defined to be the time the

perturbations were introduced; in this case, z=5. These are
shown for four physical quantities, one per panel, as indicated
in the figure, and for four resolution levels via different line
styles, as indicated in the legend, all for galaxies from the
No-feedback series in a fixed mass bin of 9.5 <

M h Mlog 101
* <-

[ ] (in the bottom right panel: 11.5 <
M h Mlog 12DM

1 <-
[ ] ). The differences between shadow

galaxies have a generic evolution as a function of time for all
explored quantities at all resolution levels: an initial growth that
can be described reasonably well by a power law t1 2µ , which
then plateaus approximately 1 Gyr after the perturbation. In
other words, after a transition period lasting about 1 Gyr after
the perturbation, galaxies of M h M9.5 log 101

*< <-
[ ] have

a certain (resolution-dependent) degree of random variation
between shadow simulations that is independent of cosmic
epoch. For most quantities, in accordance with the top panel in
Figure 2, the results are not converged, as the differences are
smaller at higher resolution, both in the growth phase as well as
after reaching a plateau. At the ò=4 resolution level, the
plateau levels are ∼0.01–0.1 dexfor the various quantities,
while for the highest resolution level, ò=0.5, they are
∼0.003–0.01 dex.
For the two quantities shown on the right column of

Figure 3, stellar mass M* (top) and dark matter mass MDM

(bottom), there is one source of randomness that is easy to
estimate: Poisson noise. Because both stellar and dark matter
particles are numerical constructs that discretely sample an
underlying smooth field, we can expect random variations on
the masses of collections of them, such as subhalos, to scale as
m Np p , where mp is the typical particle mass and Np is the
number of particles in a given subhalo. Hence, the relative
random scatter in the mass of a subhalo is expected to have a
lower limit at N1 p . These lower limits are shown in the right
column of Figure 3 as horizontal dashed lines. Indeed, this
expectation is confirmed: as for the lower resolution levels, the
“chaotic” differences between shadow subhalos plateau exactly
to the values expected from this Poisson noise estimate. It takes
about 1 Gyr for the initial perturbations to evolve to that level
because, at shorter times after the perturbation, the masses of
the subhalos still mostly consist of their components that
formed prior to the perturbation, which are common to all
shadow realizations. In other words, Np in this context applies
to the number of particles added since the perturbation. It is
therefore expected that the time to reach the plateau
corresponds roughly to the growth timescale of the mass itself,
and this is consistent with the observed timescale of 1 Gyr» .
Moreover, for a constant mass growth rate dM dt, which is a
reasonable approximation for a relatively short window of
1 Gyr, Np is roughly linear with time, and hence the relative
error N Mp * (where M*is a constant by selection) scales
roughly as t1/2, as indeed is observed.
Importantly, the expected Poisson noise diminishes as the

square root of the mass resolution, namely by a factor of
8 2.8» with every step in resolution level. In the case of the

stellar mass, the measured “chaotic” differences indeed
diminish at that rate for the lowest three resolution levels,
indicating that Poisson noise is the dominant factor in those
regimes. However, for the ò=0.5 level this is no longer the
case, as the measured differences are larger than expected from
Poisson noise. This indicates that, at this high resolution there
exists a different origin for the “chaotic” differences that is not
just sampling noise. In the case of the dark matter mass, this is
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even more pronounced, as the differences are larger than
expected from Poisson noise at all resolution levels but the
lowest one—and in fact, the differences appear to be converged
between ò=1 and ò=0.5. This, again, indicates that there is
something beyond the simple randomness of the sampling of
the mass field that gives rise to mass differences between
shadow simulations.

For the quantities shown on the left column of Figure 3,
maximum circular velocity Vc,max (top) and stellar half-mass
radius R ,1 2* (bottom), it is not clear whether a simple analytic
estimate can be devised. It is to be expected that there is an
initial growth phase, during the time in which there still exists a
significant component that formed before the perturbation. For
reasons that are unknown to us, the differences in R ,1 2* grow
at a rate similar to those of the masses, roughly t1 2µ , but the
growth of the Vc,max differences begins slower than that and
then accelerates around 10 yr8 after the perturbation.16 It is also
then not entirely expected or intuitive that the differences
between the shadow galaxies in these two quantities reach a

plateau around the same time the masses do, 1 Gyr» ,
suggesting that the differences may be mass-dependent but
not time-dependent. Importantly, and curiously, these structural
properties that are in the left column show worse convergence
than the masses in the right column, suggesting that they might
be driven by numerical discreteness that will continue
diminishing with increasing resolution.
We conclude the discussion of Figure 3 with a comment on

the statistical uncertainty on these standard deviations. The
curves in Figure 3 are mostly rather smooth, which indicates
that the statistical uncertainty is small. Because the distribu-
tions from which these standard deviations are measured are, to
a good approximation, Gaussian, the error on the standard
deviations can be estimated simplistically by dividing the
standard deviation itself by the number of shadow pair
differences that constitute the distributions. To avoid visual
clutter, we show these simplistic estimates (as error bars) only
in the right panels of Figure 3 and only for the ò=1 resolution
level, because the uncertainties for this level are the largest, as
the number of galaxies is the smallest (see Table 3). This
confirms that the statistical uncertainties are similar to the
typical point-to-point variations, as expected, and that in most

Figure 3. The evolution of pairwise differences between shadow galaxies with final mass of M h M9.5 log 101
*< <-

[ ] (in the bottom right panel:
M h M11.5 log 12DM

1< <-
[ ] ) in our No-feedback simulation series. Specifically, the standard deviations of the pairwise logarithmic differences distributions (such

as those shown in Figure 2), divided by 2 , are shown as a function of time since z=5, when perturbations were applied. Each panel presents these results for a
distinct physical quantity: maximum circular velocity, stellar mass, stellar half-mass radius, or halo mass, each based on four resolution levels, which are indicated by
color, increasing from blue to red. The results largely show saturation after 1 Gyr~ , as well as a mixture of convergence and non-convergence with resolution. See text
for a detailed discussion.

Table 3
Numbers of Galaxies Included in the Analysis

Resolution Box size M h M9 log 9.51
*< <-

[ ] M h M9.5 log 101
*< <-

[ ] M h M10 log 10.51
*< <-

[ ]
level h Mpc1 3-[( ) ] No-feedback TNG model No-feedback TNG model No-feedback TNG model

ò=4 503 781 596 1181 432 1455 366
ò=2 503 5392 1201 5077 796 3377 637
ò=1 253 2050 277 1399 168 653 108
ò=0.5 253 3856 346 1899 214 688 133

Note. For each resolution level and for each of the two hydrodynamical models (without and with feedback) the number of galaxies in a single (arbitrarily selected)
shadow simulation is given in three stellar mass bins. For each bin, the number of galaxies increases with box size and with better resolution, as well as when feedback
is turned off. The intermediate mass bin corresponds to the one used in most figures throughout the paper. These numbers indicate the statistical power of our analysis
by virtue of the large cosmological volumes employed.

16 For a possible connection between a rough t1 2µ divergence of integrated
quantities of N-body systems and diffusion, see El-Zant et al. (2018).
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cases these are comparable or smaller than the size of the
symbols in Figure 3. In Appendix C, we comment on where
this simplistic estimate breaks.

3.2.2. Results from TNG model Simulations

Figure 4 is analogous to Figure 3, except that it presents the
results for the TNG model simulation series and includes four
additional panels for additional physical quantities. Several
important qualitative differences exist between Figures 3 and 4.

First and foremost, the results for the common four physical
quantities (top four panels) appear to be well-converged with
the TNG model, as opposed to the case without feedback,
extending a similar result discussed around Figure 2. In
particular, at the highest resolution level, ò=0.5, the typical
differences among shadow galaxies close to z=0 are much

larger with the TNG model than without feedback: ≈0.015 dex
(or 3.5%) versus ≈0.003 dex forVc,max (top left), ≈0.05 dex (or
12%) versus ≈0.006 dex for M* (top right), ≈0.1 dex (or 25%)
versus ≈0.01 dex for R ,1 2* (middle left), and ≈0.007 dex (or
1.5%) versus ≈0.004 dex for MDM (middle right). It appears,
then, that the introduction of feedback in the TNG model gives
rise to a much stronger amplification of the initial perturbations.
Second, for all the baryonic properties we examine (namely

except for MDM), the differences appear to be rising with the
TNG model at all cosmic times, including in particular at z=0,
rather than reaching a plateau as in the No-feedback case. In
other words, galaxy mass is no longer the sole determinant of the
differences between shadow simulations; instead, galaxies at a
fixed mass tend to show a larger effect of the initial perturbations
at later epochs.

Figure 4. The evolution of pairwise differences between shadow galaxies with final mass of M h M9.5 log 101
*< <-

[ ] (in the second from top, right panel:
M h M11.5 log 12DM

1< <-
[ ] ), similarly to Figure 3, except here based on our simulation series that uses the TNG model, including feedback. In addition to the top

four panels that repeat the quantities shown in Figure 3, the four bottom panels present additional quantities: stellar metallicity, black hole mass, and SFR measured in
two ways. In this case of the TNG model, much clearer convergence is generally seen with increasing resolution (blue to red), compared to the No-feedback case of
Figure 3. It is also clear that Poisson noise, where it can be straightforwardly estimated (horizontal dashed curves), is very subdominant at high resolution.
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Third, the evolution of the differences in the stellar and dark
matter masses (top right and second right panels) is, with the
TNG model, not strongly affected by Poisson noise (the only
exception being the ò=4 resolution level for MDM), but
instead continues growing to much higher levels than that,
implying that actual physical processes generate these
differences rather than effects of discrete sampling. Interest-
ingly, the growth keeps its approximate power-law dependence
on time even after crossing the maximal Poisson noise level,
namely that which corresponds to the (full, rather than
accreted/formed after the perturbation) particle number in the
selected mass bin. This is curious given that the explanation we
suggested above for this dependence applied only to the early
regime, before reaching that level.

The bottom four panels in Figure 4 present four additional
quantities that were not included in Figure 3 for the No-
feedback model. In the third row on the left are the logarithmic
differences between shadow galaxies in stellar metallicities.
The results are systematically converging and appear very well
converged between the two highest resolution levels after
∼1 Gyr, at a level of ≈0.04 dex (or 10%) at z=0. In the third
row on the right are the differences in black hole masses,
hovering around ≈0.1 dex (or 25%) at 1 Gyr for the various
resolution levels—which, however, do not show a monotonic
behavior, as discussed below.

The two quantities examined in the bottom row of Figure 4
are measurements of the SFR, but on different timescales. On
the bottom left, it is the instantaneous SFR as measured from
the gas cells, which is determined by their density based on the
Springel & Hernquist (2003) model, SFR0. On the bottom
right, it is the SFR averaged over the past 1 Gyr, as measured
from the number of stellar particles that actually formed during
this time window, SFR1 Gyr. For both quantities, an estimate of
Poisson errors can be made based on the number of resolution
elements that contribute to the calculation. Given that the
instantaneous SFRs of individual cells can vary greatly, this is
somewhat less accurate for SFR0 than for SFR1 Gyr, which is
based on the almost-constant masses of stellar particles.
Nevertheless, both quantities show a similar picture indicating
that Poisson noise17 does not dominate, except perhaps at the
lowest resolution level.18 The effect of the perturbations is
clearly still rising for the SFRs as a function of cosmic time,
even at z=0, for galaxies in this fixed mass bin. Perhaps
surprisingly, the differences between shadow simulation in
SFR1 Gyr are quite close to those in the instantaneous SFR0,
both being ≈0.2 dex at z=0. This indicates that the star
formation histories of shadow galaxies diverge from one
another in a significant way not only on short timescales, but
rather even when averaged over time windows much longer
than, e.g., a galactic dynamical time. It is also worth pointing
out, for context, that this level of differences between shadow

galaxies is comparable to the overall scatter of SFRs between
galaxies in this stellar mass bin, a point discussed in more detail
in Section 4.
The results in the bottom row of Figure 4 show a curious

behavior with respect to dependence on resolution. They
appear essentially converged (at 1 Gyr) between the two
intermediate resolution levels of ò=2 and ò=1, but then
diverge toward smaller values for the highest level, ò=0.5.
We interpret this as evidence that star formation itself proceeds
in a different way in the ò=0.5 set, affecting the process of
perturbation amplification. This is in accordance with the
findings of Sparre et al. (2015), i.e., that a new, more bursty
mode of star formation appears at resolution levels beyond that
of Illustris. In other words, the process we study here, namely
the perturbation amplification, is not the only one affected by
changing resolution; that change also affects the results of the
simulation itself and thereby also the dominance and effect of
various physical processes that occur within the simulation and
drive the perturbation amplification. It is hard to separate the
direct effect of numerical resolution on the perturbation
amplification from its indirect effect through changes to the
simulation results themselves and to the relevant physical
processes. In fact, this indirect effect of resolution is not
guaranteed to act in the direction of decreasing the amplifica-
tion. Indeed, a non-monotonic dependence on resolution
appears for the case of black hole masses (third from top
panel on the right), and a tentative hint for an opposite effect
can be seen in the top left panel for Vc,max, where at late times
the growth of the differences is faster, and their amplitude is
larger, in the ò=0.5 case than in the other resolution levels,
which in themselves appear quite converged. A careful
examination of Figure 2 reveals that, at least in the last
snapshot, this is driven by the larger number of outliers in the
ò=0.5 case, which one may speculate are also driven by the
more bursty mode of star formation at this resolution level.
While this particular case is not conclusive, due to small
number statistics, this general point is discussed further in
Section 3.3.

3.2.3. Results of Simulations without Random Numbers

In Figure 5, we demonstrate that the results presented thus
far are largely unchanged when the usage of random numbers
in the simulations is turned off. For both the No-feedback (top)
and the TNG models (bottom), the growth of differences is
compared for two quantities, Vc,max (left) and M* (right),
between the fiducial simulations (dark colors) and the
simulations run with modified subgrid models that do not use
random numbers (light colors). Two general trends visible in
this comparison stand out.
First, at early times, the evolution of the differences between

the two types of simulations is markedly different. Specifically,
in the fiducial simulations, the differences already appear at a
level of ∼10−3 after a few million years, in the first snapshots
that are available. Thereafter, the evolution is rather gradual,
with a power-law behavior as discussed in the previous
subsections. In contrast, it takes 100Myrfor the simulations
without random numbers to reach this level: their evolution in
the first few million years is much slower, but thereafter is
much faster. In Appendix B, we discuss in much more detail
the very early evolution and how it can be dominated by the
usage of random numbers. To summarize the conclusions from
Appendix B, the differences in random number sequences that

17 Unlike mass, which is constant by selection, the SFRs change over cosmic
time, and hence the Poisson noise level is not constant. The dashed horizontal
lines in the bottom two panels of Figure 4 are calculated based on the z=0
SFRs, which are at their nadir at that time, resulting in larger Poisson noise
levels than at any other cosmic epoch.
18 Note that the feature at 1 Gyr that appears for SFR1 Gyr is there essentially by
construction, as at all times shorter than 1 Gyr past the perturbation, the
measurement of SFR1 Gyr is based partially on stellar particles that were formed
prior to the perturbation, namely ones that are by construction in common
between all the shadow simulation in a set. Only after longer times can and do
the differences grow substantially to (and even beyond) the indicated Poisson
noise level, which is calculated assuming that all the particles are independent
draws from some underlying smooth field.
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develop between pairs of shadow fiducial simulations result in
a “discontinuous” evolution of the pairwise differences. This is
avoided when random numbers are not used, resulting in an
exponential growth of the initial differences with (Lyapunov)
timescales on the order of the dynamical time of galaxies at the
perturbation redshift of z=5. This exponential growth is more
gradual than the “discontinuous” initial growth in the fiducial
simulations, but is faster thereafter.

Second, after enough dynamical times, the evolution in the
simulations without random numbers catches up and the
pairwise differences converge to values that are essentially
indistinguishable from those in the fiducial simulations. This
indicates that the late-time (1 Gyr) evolution of the pairwise
differences is roughly independent of how they are “seeded” at
earlier times, namely by either a power-law growth of early
“discontinuous” differences brought about by random number
differences, or by an exponential growth of the perturbations
introduced initially. One regime where this is not the case is the
stellar mass in lower-resolution simulations with the TNG
model (bottom right panel), where the plateau level of pairwise
differences is at larger values in the fiducial set than in the set
without random numbers. It appears that, in these lower-
resolution cases, the use of random numbers increases the
pairwise differences. These are reduced as the resolution
increases, such that the fiducial TNG model is not yet
converged between the resolution levels shown in Figure 5.
In contrast, the simulations without random numbers show
converged results at late times, at a level that is in fact very
similar to the converged results of the fiducial simulations (seen
also in the top right panel of Figure 4).

3.2.4. Comparing Shadow Differences to Overall Scatter

We close this subsection with a study of one additional
quantity, the angle between the angular momentum vector of
the stellar component of subhalos and that of their total mass
content (including the dark matter and gas), which we denote
α. Pairwise differences of cos a( ) between shadow galaxies are

presented in Figure 6 (for this quantity, we find no mass
dependence, hence this figure is based on all galaxies with
M h M108.5 1
* >

-
). In the top panel, the solid curves are

analogous to those in Figures 3 and 4, and they present a
similar picture of an initial power law-like growth and a plateau
reached at t 1 Gyr , which is resolution-dependent, but
possibly close to converged at the highest resolution level.
In addition, the top panel in Figure 6 shows (dashed curves)

the standard deviations of the distributions of cos(α) values of
different galaxies, rather than cos(α) differences between
shadow galaxies (solid curves). These cos(α) values are of all
galaxies with M h M108.5 1

* >
-

 in all of the simulations of
any given resolution level, combined, but practically indis-
tinguishable standard deviations are obtained when only a
single (arbitrary) simulation is used (for any given resolution
level). To emphasize, this quantity, which is the standard
deviation of the distribution of the values of a certain property,
is the quantity that is regularly being referred to as the overall
scatter in this property—in this case, cos(α). It is seen to be
rather constant as a function of time, and for the most part
between the four resolution levels, at ≈0.3–0.5. At low
resolution, however, the overall cos(α) scatter is larger than at
higher resolutions, and is not much larger than the typical
difference between shadow galaxies (solid curves). This
suggests that it is the butterfly effect itself that affects (more
specifically, it enhances) the overall cos(α) scatter at the ò=4
level. When the former drops, at higher resolution, so does the
latter.
Shown in the bottom panel of Figure 6 is the ratio between

the solid and dashed curves of the top panel, which can be
interpreted as the fractional contribution of the butterfly effect
to the total scatter in this quantity. Because we compare
standard deviations of distributions, and plausibly other
contributions of scatter would be independent and hence add
quadratically, it is the square of the ratio shown in the bottom
panel that is the more meaningful quantity, namely the
contribution of the butterfly effect to the variance of cos(α)
among the overall galaxy population. In the highest-resolution

Figure 5. The evolution of pairwise differences between shadow galaxies with final mass of M h M9.5 log 101
*< <-

[ ] , similarly to Figure 3 (No-feedback, top) and
Figure 4 (TNG model, bottom), but here comparing the fiducial models (dark colors) to modified subgrid models that completely avoid the usage of random numbers
(light colors). Two quantities are presented: maximum circular velocity (left) and stellar mass (right). In almost all cases (see discussion in Section 3.2.3), the
differences evolve more gradually at early times (t 1 Gyr ) in the simulations without random numbers, but eventually converge to very similar values as in the
fiducial simulations. This demonstrates that the butterfly effect in cosmological simulations is not driven by the usage of random numbers in the subgrid models.
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case, it appears possibly converged at 0.52, which implies that
about 25% of the variance among galaxies in the misalignment
between these two vectors cannot be derived from deterministic
macroscopic arguments—which is to say, that portion of the
variance cannot be predicted or explained. In Section 4, we will
make similar comparisons, but for the scatter of a scaling
relation between two quantities instead of for the scatter in an
individual quantity.

3.3. Differences versus Mass

In Section 3.2, we have shown how differences between
shadow simulations grow as a function of time for a fixed
selected mass bin. Here, we present a complementary view of
the late-time differences between shadow subhalos of various
mass bins (all perturbed with respect to one another at z= 5).
These results are shown in Figure 7 for the No-Feedback series,
in an organization analogous to that of Figure 3, with a
different physical quantity in each panel and a different color
for each resolution level. The middle of the five stellar

mass bins, M h M9.5 log 101
*< <-

[ ] , is the one for which
results were discussed in Section 3.2, and so is the first of the
four dark matter mass bins in the lower left panel, 11.5 <

M h Mlog 12DM
1 <-

[ ] . In order to increase the statistical
significance, results are shown for the average of six snapshots
corresponding to the redshifts of the last six snapshots available
for the highest resolution level, which in the case of the No-
feedback series corresponds to 0.5�z�1.5.
The top right panel in Figure 7 shows that the logarithmic

differences between the stellar masses of shadow galaxies in
the No-feedback series is strongly mass-dependent, and
specifically smaller for more massive galaxies. This is easy to
understand, as the close match is apparent between the actual
data (solid steps) and the estimates based on Poisson noise
(dotted curves). Hence, the conclusion from the top right panel
of Figure 3 regarding the Poisson noise origin of the differences
holds generally for all mass bins. The exception to this
conclusion, which is also in alignment with Figure 3, is the
highest resolution level—and it is particularly so for higher
mass bins. In particular, for galaxies with M h Mlog 1

* >-
[ ]

10, the stellar mass differences between the shadow ò=0.5
simulations are several times larger than expected based purely
on sampling noise, given the number of particles comprising
these galaxies. Still, the standard deviations between the stellar
masses in shadow galaxies at this high resolution level is rather
small, ≈0.01 dex, across the M h M8.5 log 111

*< <-
[ ] mass

range.
The result is quite different for the dark matter mass of these

subhalos, as shown in the lower right panel of Figure 7. It is not
clear if the results show convergence toward a value larger than
zero, but they are definitely larger than expected due purely to
Poisson noise at all resolution levels and all masses, except
at the combination of lowest mass and lowest resolution.
Nevertheless, the lower resolution levels, particularly ò=4,
are clearly affected by the Poisson noise to a certain degree. At
the end of the day, the magnitude of the result at the highest
resolution level may be considered small: it is ≈0.005 dex
across the full mass range explored.
The results in the left column of Figure 7 do suggest

convergence toward mass-independent values of ≈0.005 dex
for the maximum circular velocity (top) and ≈0.01 dex for the
stellar half-mass radius (bottom). We do not have an analytical
estimate analogous to the one we have for the mass-based
quantities shown on the right, but it is nevertheless clear that, at
lower simulation resolution levels, lower-mass galaxies are
more strongly affected by the butterfly effect, and that this mass
dependence becomes weaker at higher resolutions. This
suggests that with regards to these quantities too there is a
role for discreteness or sampling effects. These effects,
however, appear to be largely mitigated at the ò=0.5
resolution level, where a mass-independent “floor” is reached.
In Figure 8, we present a similar study, but for the TNG-

model simulation series, where again the structure is analogous
to that of the time-dependent Figure 4. The phenomenology
seen in Figure 8 is quite rich, and here we discuss the aspects
we find most significant and illuminating.

1. As seen in the top left panel of Figure 4 for the middle
mass bin shown here, the dependence of the Vc,max
differences on resolution is not monotonic, and while the
results for three resolution levels are very close to each
other, those for the highest one are markedly different.
The examination here of additional mass bins reveals a

Figure 6. Top: a comparison of the standard deviations of the distributions of
pairwise cos a( ) differences between shadow galaxies (divided by 2 ; solid
curves with symbols) to the standard deviations of the cos(α) distributions of
the overall galaxy population (dashed curves), where α is the angle between the
angular momentum vectors of the stellar and total mass contents of the
SUBFIND subhalos hosting the galaxies. The comparison is made as a function
of time since the perturbation is applied at z=5, and includes all central
galaxies with stellar mass above h M108.5 1-

. Bottom: the ratio between the
two quantities shown in the top panel.
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more general picture: in the low mass bins, higher
resolution results in lower differences, while in the high
mass bins, higher resolution results in larger differences.
This highlights an argument made in the discussion of
Figure 4, namely that changes with resolution may arise
due to the appearance of new physical processes or
phenomena at higher resolution levels—for example, in
the mode of star formation, or the galactic dynamics. This
further highlights the idea that our quantitative results are
idiosyncratic to the particular physical model that is
employed, in the broadest sense that also involves the
numerical resolution, and cannot immediately be general-
ized to other numerical or physical setups, or to the real
universe. A similar discussion is relevant for the behavior
of black hole mass differences (third row, right column).

2. The results for stellar mass (top right) are similar for all
mass bins we consider, except for the highest one. The
stellar mass differences are significantly larger than those
expected purely from Poisson noise, and instead decrease
with increasing resolution in a way that appears to
converge toward a finite value that is only mildly mass-
dependent. Specifically, in all mass bins and resolution
levels, when galaxies are represented by more than
roughly 100 stellar particles, the differences between
shadow simulations become almost independent of the
number of particles (even up to ∼105 particles), and are
typically ∼0.03–0.05 dex. An exception to the appear-
ance of convergence is the highest mass bin, which shows
a rather sharp decrease between the three lower resolution
levels and the highest one. This is possibly related to the
decreased scatter in the high-mass, high-resolution case
shown in the bottom two panels, discussed next.

3. At the highest resolution level, the differences between
shadow simulations show a nearly mass-independent
value, ≈0.12 dex for SFR0 (bottom left) and ≈0.08 for
SFR1 Gyr (bottom right). At first glance (perhaps surpris-
ingly), in the lower mass bins, this appears to be a value
toward which the lower resolution levels are converging
—while in the higher mass bins, the results are non-
monotonic with resolution, and in particular show a large

decrease between the three lower resolution levels and the
highest one. We hypothesize that this has to do with the
onset of quenching in the high mass bins and its
sensitivity to resolution. In particular, if it is the case
that the butterfly effect can determine whether a galaxy is
quenched or not, large shadow pairwise differences are to
be expected. Because the quenched fraction is high in
high mass bins (e.g., Nelson et al. 2018), it should not be
surprising that the differences are indeed seen to increase
with mass. This is not the case, however, for the highest
resolution level, where the results are more in line with
the lower mass bins, potentially indicating weaker
quenching at this high resolution. To test this hypothesis,
we calculate the mean and width of the SFR distributions
of all galaxies (not of differences between shadow
galaxies) in the two highest mass bins at the ò=0.5
resolution level. We find M1.9 yr 1-

 and M3.8 yr 1-
 for

the means and 0.23 dex and 0.4 dex for the scatters,
respectively, for the two bins. For the ò=1 resolution
level, in contrast, strong quenching exists in these high
mass bins, where the means are 1.3 and M0.9 yr 1-

 and
standard deviations 0.55 dex and 1.1 dex, respectively.
This indeed serves as evidence in support of our
hypothesis.

4. The results for the half-mass radius (second row, left) are
remarkably insensitive to resolution variations and show
little mass dependence, with a standard deviation of
≈0.07 dex across this parameter space. The exceptions
are low-mass bins at the lowest resolution, which contain
only a few dozen stellar particles and hence show larger
differences. Those, however, quickly reach their con-
verged values at the ò=2 resolution level. This is to say,
all galaxies at all resolution levels that are resolved by
more than ≈20 particles show a roughly converged result.
The results for the stellar metallicities (third row, left) are
the most well-behaved with resolution, showing both a
monotonic and converging trend of decreasing differ-
ences as the resolution increases, and in particular, results
that are very similar between the two highest resolution
levels.

Figure 7. Pairwise differences (specifically, the standard deviations of the distributions thereof, divided by 2 ) between shadow galaxies in our No-feedback
simulation series, as a function of final mass, averaged over the six snapshots in the redshift range 0.5�z�1.5. Each panel presents these results for a distinct
physical quantity: maximum circular velocity, stellar mass, stellar half-mass radius, or halo mass, each based on four resolution levels, which are indicated by color,
increasing from blue to red.
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4. Results: Scaling Relations

While so far we have quantified and discussed the
differences that develop between shadow simulations one
physical quantity at a time, we now turn to study relations
between the differences in pairs of quantities, and the
implications of those for our general understanding of “galaxy
scaling relations,” namely correlations between several quan-
tities within a population of galaxies. We begin by presenting
an extension of Figure 2, which presented examples of one-
dimensional distributions of pairwise logarithmic differences
between shadow galaxies, into two dimensions. In Figure 9, we
show several examples of how these differences in one quantity
are related to those in another, using heat maps that represent
the two-dimensional distributions of differences in several such

pairs of quantities. These are all based on the z=0.2 snapshot
in the TNG-model series of simulations that have been
perturbed at z=5. Each row shows a different combination
of two quantities, with one panel per resolution level,
increasing from left (ò=4) to right (ò=0.5).
The first row of Figure 9 demonstrates that the differences

between shadow galaxies in stellar mass and maximum circular
velocity are positively correlated with substantial scatter. The
situation is similar between stellar mass and SFR (second row).
On the other hand, there appears to be a very mild
anticorrelation between stellar mass and half-mass radius
differences (third row), and no significant correlation between
stellar mass and dark matter mass (bottom row). These (non)
correlations appear to be stable with resolution variation even
as the magnitudes of the differences themselves vary

Figure 8. Pairwise difference between shadow galaxies as a function of final mass, similar to Figure 7, but for the simulation series based on the TNG model,
namely feedback, and with the addition of four measurements corresponding to the bottom half of Figure 4. Here, the six snapshots that are included cover
0�z�0.65.
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significantly in some cases (in particular, M* and MDM). We do
not aim here to explain these results, but we will discuss their
implications.

If the differences between shadow galaxies in a pair of
quantities relate to each other in a way similar to the mean
relation between those quantities for a large galaxy population,
then we can say that these two shadow galaxies are displaced
with respect to one another “along” the overall “scaling
relation” between those quantities. This holds also for the case
of an anticorrelation that goes in exactly the opposite direction.

If, however, the differences relate to each other in a different
way, then the line connecting the two shadow galaxies is not
parallel to the overall scaling relation, and there is a component
that is perpendicular to it and parallel to its scatter.
If, for example, the differences between two quantities are

uncorrelated at the galaxy population level, then the displace-
ments between pairs of individual shadow galaxies would tend
to have some nonzero component perpendicular to the scaling
relation between those two quantities. Some pairs would be
displaced perpendicular to the relation, some parallel to it, and

Figure 9. Joint distributions of shadow pairwise differences in various combinations of two physical quantities. These results are based on z=0.2 galaxies with
M h M9.5 log 101
*< <-

[ ] (top three rows) or M h M11.5 log 12DM
1< <-

[ ] (bottom row), at four resolution levels increasing from left to right, all using our
simulation series based on the TNG model. The pairwise differences between Vc,max and M* (first and second rows, respectively) appear to be somewhat positively
correlated, albeit with large scatter, while those between R ,1 2* and M* (third row) tend to be very slightly anticorrelated, and the MDM–M* differences show no
discernible correlation at all. The total width of each panel in each axis is equal to four standard deviations of the one-dimensional distribution of the quantity shown
on that axis. Note that the distributions are better sampled at lower resolutions because of the larger number of available shadow galaxy pairs, a trend driven by
computing power (see Table 2).
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most in some intermediate direction. Figure 9 clearly indicates
that that is the case for the pairs of quantities shown in the third
and fourth rows, where there is no significant correlation
between the differences, even though the quantities themselves
certainly are correlated. However, there is significant scatter
even in the case of the first and second rows, which do show
some overall positive correlation that is indeed similar to the
overall scaling relation between the two quantities. Hence, in
the case of the M*–Vc,max plane, individual pairs of shadow
galaxies are also expected to show significant displacements in
all directions.

This is demonstrated explicitly in Figure 10, which shows a
scatter plot of the stellar mass and the maximum circular
velocity of galaxies in the ò=1 simulation set of the TNG-
model series. The full z=0 galaxy population in each of the
three simulations in this set is shown with small dots of a
different color, clearly delineating (a version of) the well-
known Tully–Fisher relation and its scatter. In addition, twelve
triplets of shadow galaxies are shown using large black
symbols, each one unique to its respective triplet. Some of
them (crosses, hexagrams) are displaced roughly in parallel to
the overall slope of the mean scaling relation. Some, however,
are displaced roughly in the perpendicular direction (asterisks,
diamonds). Some do not have a strong preferred direction
(triangles), while some are displaced mostly along one of the
axes (pentagrams, circles). It is possible that shadow versions
of certain galaxies intrinsically tend to be displaced in certain
preferred directions, or perhaps these particular cases are just
random draws from an underlying distribution of displacements
that is similar for all galaxies. To distinguish these two
possibilities would require having a large number of shadow
versions for a sizable number of galaxies, but because we only
have a small number of shadow versions for each galaxy (albeit
for a large number of galaxies), our setup does not allow us to
address this specific question any further.

Figure 10 suggests visually that the scatter between shadow
versions of individual galaxies may constitute a considerable
fraction of the overall scatter in certain scaling relations in our
simulations. In Figures 11 and 12, this notion is quantified for a
selection of eight scaling relations with the TNG-model series,
using the procedure described in Section 2. Figure 11 shows
the Tully–Fisher relation Vc,max–M* (top left), the black hole
mass-stellar mass relation MBH–M* (top right), and the star

formation main sequence using two different timescales,
sSFR0–M* (bottom left) and sSFR1 Gyr–M* (bottom right).
Further, Figure 12 presents the mass–metallicity relation
Z*–M* (top left), the baryonic conversion efficiency
M*–MDM (top right), the size–mass relation R ,1 2* –M*
(bottom left), and the relation between stellar specific angular
momentum and stellar mass j*–M* (bottom right). In
particular, what is shown as a function of post-perturbation
time is the ratio between the inferred standard deviations
between shadow galaxies in the direction perpendicular to the
various scaling relations and the standard deviations of the full
galaxy population in that same direction, i.e., the intrinsic
scatter of the relations. This can be thought of as the fractional
contribution of the butterfly effect to the total scatter of the
relations. More precisely, under the reasonable assumption that
the butterfly effect and additional effects contribute indepen-
dently to the scatter, and hence contributions should be
summed in squares, the square of the quantity shown on the
vertical axes is the fractional contribution of the butterfly effect
to the variance of the scaling relations.
Figures 11 and 12 present what we regard as the central

result of this work. Figure 11 shows that, with the TNG model,
at late cosmic epochs the butterfly effect contributes ∼50% of
the variance (the square of the scatter) around the Tully–Fisher
relation, the MBH–M* relation, and the the star formation main
sequence. For the former relation, this contribution is 20% for
most of cosmic time (z<1), while for the latter, it is 40%
throughout this time window. These results are very convin-
cingly converged. In contrast, the contributions of the butterfly
effect to the size–mass, angular momentum–mass, baryonic
conversion efficiency, and stellar mass–metallicity scaling
relations, shown in Figure 12, are much smaller and less
clearly converged with increasing resolution. At our highest
resolution, the contribution at late times to the variance around
the these relations is ∼10%.
It is interesting to consider which of the two quantities

making up each of the relations contributes more significantly
to these results. The cases of the MBH–M*, sSFR–M* and
M*–MDM relations are all similar: the relations themselves are
roughly linear, the differences between shadow galaxies in the
two quantities making up the relation are uncorrelated, and one
of them is larger than the other, making it the dominant
contribution. As can be seen in Figure 4, the differences in

Figure 10. The z=0 Tully–Fisher relation, defined here as Vc,max–M*, from our TNG model simulations at resolution level ò=1. Symbols represent individual
galaxies, with colors distinguishing different shadow realizations that started from slightly perturbed initial conditions at z=5. It is visually evident that the scatter
between shadow galaxies can be non-negligible compared to the total scatter in the relation.
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stellar mass are larger than those in dark matter mass, making
the butterfly effect for the stellar mass dominate its relative
contribution to the scatter in the M*–MDM relation. Similarly,

the differences in SFR and those in black hole mass are larger
than those in stellar mass, making the former two dominate the
total contribution of the butterfly effect to the scatter in the star

Figure 11. The evolution of the fractional contribution of pairwise differences between shadow galaxies to the total scatter in various scaling relations, for galaxies
with mass of M h M9.5 log 101

*< <-
[ ] (in the middle right panel: M h M11.5 log 12DM

1< <-
[ ] ) in our TNG model simulation series. Each panel presents a

distinct scaling relation, as indicated in its upper left corner, using four resolution levels, which are indicated by color, increasing from blue to red. The quantity on the
vertical axis is the ratio of two quantities: in the numerator, the standard deviations of the pairwise logarithmic differences between shadow galaxies in the direction
perpendicular to the respective scaling relation, divided by 2 ; in the denominator, the total scatter of that relation in the same, perpendicular direction. These ratios
are shown as a function of time since z=5, when perturbations were applied. The results for these scaling relations are rather stable at a contribution of around
∼(70%)2∼50% to the variance of the relations from the butterfly effect (this level is indicated with black dashed horizontal lines).

Figure 12. Same as Figure 11, but for scaling relations where convergence is less clear, and at z=0 the relative contributions at the highest resolution are
smaller: 30% 10%2~ ~( ) .
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formation main sequence and the MBH–M* relation, respec-
tively. For the size–mass and mass–metallicity relations, the
picture is slightly different because the relations themselves are
sublinear rather than linear. This means that differences in
stellar mass contribute less significantly to the scatter in these
relations than equal differences in size or metallicity, because
those in stellar mass displace galaxies more parallel to the
relation than perpendicular to it. The implication of this is that
the differences in size (metallicity) dominate the butterfly effect
contribution to the scatter in the size–mass (mass–metallicity)
relation. All these results hold true at all the resolution levels
we probed.

The case of the Tully–Fisher relation is most involved in this
respect. At low resolution, the differences in stellar mass are an
order of magnitude larger than those in maximum circular
velocity (as can be seen in Figure 4). Thus, in spite of the
flatness of the Vc,max–M* relation, the differences in stellar
mass dominate the contribution to the overall scatter in the
relation. This is, however, driven by the nonconvergence of
the stellar mass differences at the ò=4 resolution level. At the
highest resolution, in comparison, the differences in M*
are smaller, while the differences inVc,max are similar, rendering
the latter the dominant contributor to the overall butterfly effect
contribution to the scatter in the relation. Note that it is still the
case, even at the highest resolution, that the differences inVc,max
are smaller than those in M*, but because the Vc,max–M*
relation is sublinear, the former are nevertheless dominant in
the total scatter of the relation.

5. Summary and Discussion

5.1. Summary

In this paper, we investigate the response of cosmological
simulations—in particular, hydrodynamical ones that include
models for galaxy formation—to minute perturbations to their
initial conditions. The main metrics we use are global,
integrated properties of galaxies, such as their mass, peak
circular velocity, or SFR, and our samples contain hundreds to
thousands of galaxies because our simulations are of uniform-
resolution cosmological boxes. We find that minute differ-
ences, close to the machine precision, that we introduce
between sets of otherwise identical “shadow” simulations at
early cosmic times grow over billions of years by many orders
of magnitude. We hence determine that “the butterfly effect” is
present in our cosmological hydrodynamical simulations. To
understand whether the magnitude of the effect is large enough
to be of general interest for galaxy formation theory, we
quantify the typical uncertainty on various simulated galaxy
properties that the effect induces, and moreover quantify the
contribution of the effect to the scatter in various galaxy scaling
relations. Before further discussing our results and their relation
to the real universe, we summarize them as follows.

1. Figures 3 and 4: The divergence rate between shadow
simulations, and in particular, the existence of a
saturation level and its magnitude, is not universal—
rather, it varies with the considered quantity, the physics
included in the simulation, and numerical resolution.
Generally speaking, the resolution dependence of the
results is much weaker in simulations that include stellar
and black hole feedback than in those that include no
feedback. This implies that, at the highest resolution we
consider, which is better than that of the Illustris and

TNG100 simulations, differences between shadow simu-
lations that include feedback are larger than between
those that do not.

2. Figure 4: After ∼10 Gyr of cosmic evolution, the
differences between shadow simulations that utilize our
fiducial feedback model, in terms of all the baryonic
galaxy properties that we explore, are still growing. At
our highest resolution, by z=0, they reach a level of
∼0.01 dex (namely, a few percents) for peak circular
velocity, ∼0.1 dex (namely, tens of percents) for stellar
half-mass size, SFR, black hole mass, and angle between
halo and galaxy angular momentum vectors, and in
between those values for stellar mass and stellar
metallicity. The differences of dark matter mass, on the
other hand, have already reached a constant level of
∼0.01 dex after ∼1 Gyrof evolution.

3. Figure 5: Given enough time to evolve, the results are
largely robust to whether random numbers are used in the
subgrid models, as is standard in cosmological simula-
tions, or whether their usage is completely avoided.
Appendix B shows that, when random numbers are
avoided, whether in DM-only or hydrodynamical simula-
tions, the initial growth of the perturbations is approxi-
mately exponential with a timescale on the order of the
dynamical time of the relevant systems (dark matter halos
or galaxies, respectively). This is the behavior expected
from a chaotic system. Later on, the evolution slows
down into a power-law growth regime.

4. Figures 9 and 10: On a galaxy-by-galaxy basis, the
differences between shadow galaxies in the values of
different properties are largely uncorrelated. This means
that, for the scaling relations between two distinct galaxy
properties that we examined (e.g., the Tully–Fisher
relation), the separations between sets of shadow galaxies
are sometimes roughly aligned with the relation, but
sometimes they are roughly perpendicular to it. In other
words, the scatter about (i.e., perpendicular to) scaling
relations arises not only due to macroscopic differences in
initial conditions between different galaxies, which
determine, e.g.,the large-scale tidal field and the timings
and mass ratios of mergers in their formation history, but
also due to the sensitivity of the final galaxy properties to
the “microscopic” initial conditions.

5. Figures 11 and 12: Quantifying the previous point,
we find that the scatter perpendicular to the Tully–Fisher
relation between shadow galaxies with 9.5 <

M h Mlog 101
* <-

[ ] reaches, at late cosmic times, a
value that is approximately 70% of the total scatter in the
relation. This means that about one half of the variance
around the mean relation arises from the chaotic-like
behavior of the simulation. Similar or even higher values
are found for the sequence of star-forming galaxies
between their SFR and their stellar mass, as well as for
the relation between black hole mass and host galaxy
stellar mass. In contrast, for the relations between stellar
mass and halo mass, as well as between stellar size,
angular momentum or metallicity and the stellar mass, the
contribution of the butterfly effect to the overall relation
scatter is not converged and is lower at higher resolutions.
In particular, at our highest resolution, the butterfly effect
only contributed a few percents of the variance about
these relations.
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5.2. Implications for Interpretation of Simulations

First, we should emphasize that, in principle, as a result of
sample variance, the effect we have studied—namely,
differences between shadow galaxies—propagates into differ-
ences of the properties of the ensemble of galaxies between
shadow simulations. This means that ensemble properties, such
as the mean and scatter of scaling relations between two
quantities or the total stellar mass or SFR in the simulation box,
may differ between two shadow simulations simply because
each and every galaxy is different, to a certain extent, from its
shadow. However, we consider this effect to be unimportant in
most cases because ensemble differences shrink toward zero as
the number of galaxies increases, due to the central limit
theorem. In other words, if the simulation volume is small and
contains only a small number of galaxies, ensemble properties
of those galaxies will be sensitive to the individual galaxies;
instead, for larger and larger number of galaxies in the
ensemble, the differences between the shadows will tend to
cancel out more and more completely, leaving the average
statistical properties of the ensemble of galaxies less and less
affected. Nevertheless, in regimes in which a small number of
galaxies is considered, for example by applying some cuts in a
multidimensional parameter space, the ensemble properties
may be affected strongly enough by the uncertainty of the
properties of the individual galaxies comprising the ensemble.
For example, the stellar mass function at the highest-mass end
of any simulation box is, by definition, based on a small
number of the most massive galaxies in the simulation. The
uncertainty on those masses implied by the butterfly effect
(e.g., at a level of a few percent; see Figure 8) will then
translate to a similar level of horizontal uncertainty for the mass
function itself. If the mass function is steep, this will in turn
translate into a larger vertical uncertainty, which may be
needed to be taken into consideration.

A distinct implication of this work pertains to our ability to
explain the scatter in scaling relations or in galaxy properties
using deterministic considerations. If, for given initial condi-
tions and a given physical model, each galaxy may occupy a
finite rather than infinitesimal region in property space, then its
properties can only partially be predicted based on its initial
conditions and a set of physical arguments; or in other words,
there is a limit to the degree to which one can “understand” the
properties of that galaxy. When applied to a galaxy population,
this kind of argument implies that only a fraction of the scatter
in galaxy properties or in correlations between them can be
understood, and once a correct model explains that fraction, the
understanding is in fact complete. If the butterfly effect exists in
real galaxy formation as it does in our simulations (a possibility
discussed below), then these arguments apply to the scatter and
scaling relations of galaxies in the real universe.

If, however, the effect we measure in the simulations does
not exist or is much larger than in the real universe, then the
implication may be that some of the simulated scatter is
artificially inflated by the numerics. In this case, care should be
taken when comparing the simulated scatter to the observa-
tionally inferred one. For example, if the simulated scatter is
smaller than the intrinsic scatter inferred from observations, as
has been argued to be the case for the Tully–Fisher relation
(e.g., McGaugh 2012) and as is probably the case for the black
hole–stellar mass relation (e.g., Weinberger et al. 2018), then
the tension between the two may in fact be even starker than it
might appear without considering the numerical butterfly

effect. Conversely, if the simulated scatter is larger than
observed, the numerical butterfly effect could account for the
discrepancy.
In these considerations, we have implicitly assumed that

scatter driven by the butterfly effect is independent of, and can
be added (e.g.,in quadrature) to, other sources of scatter—in
particular, scatter arising from “macroscopic” differences
between the environments and initial conditions of different
galaxies. However, this does not necessarily have to be the
case. If all the butterfly effect did was “shuffle” galaxy
properties between different galaxies, the methods used in this
work would detect a non-zero butterfly effect, while the overall
scatter between galaxies would not increase.
A more specific scenario where such a situation could arise is

one where the scatter between galaxies is associated with short
timescale oscillations of galaxy properties. These oscillations
could be driven by some physical process regardless of the
butterfly effect. In this case, the butterfly effect can be thought
of as merely determining the “phase” of each galaxy within the
oscillation pattern, but as the driver of neither the pattern itself
nor of the scatter of galaxy properties associated with it. In such
a scenario, the evolution paths of shadow galaxies in some
physical property space will be oscillating around some mean
path and may be recurrently crossing each other (as opposed to
monotonically drifting away from each other). In this case,
measuring the butterfly effect on time-averaged galaxy proper-
ties will result in a diminished effect compared to instantaneous
properties. We leave further considerations along these lines to
future work, but point out that, in the single case we have
examined using a time-averaged measurement, namely that of
SFR1 Gyr, the magnitude of the butterfly effect we found was
very close to that of the instantaneous property SFR0. Note
that, even in the oscillatory scenario, our measurement of the
magnitude of the butterfly effect is an indication of the level to
which the properties of individual galaxies can(not) be
predicted from first principles, even if the level of scatter
between galaxies can be attributed to the physical processes
driving the oscillations rather than to the butterfly effect itself.
Our work also has implications for the interpretation of

differences between simulations with different physical models
or numerical schemes on an object-by-object basis, most
notably in the context of “zoom-in” simulations. In order to
conclude that the properties of a certain simulated galaxy
differs between two simulations due to changes to the
numerical scheme (including thereby both physical processes
and their particular implementation), it first must be determined
that these differences do not arise due to the butterfly effect
alone. Unless a large ensemble of shadow simulations is
available, which is normally not the case, this implies that the
changes have to be significantly larger than the typical
magnitude of the butterfly effect in order to be considered
“real.” A complication that arises is that the magnitude of the
butterfly effect on the considered quantity it is not known
a priori—because, as we have demonstrated here, that
magnitude itself varies with the physical model, as well as
with numerical resolution. That Keller et al. (2019) found an
effect of feedback opposite to the one we found, namely that
feedback in their simulations acts to reduce the magnitude of
the butterfly effect rather than enhance it as in ours, serves as
further evidence that the dependence on physical and numerical
approach is complicated and may be significant.
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5.3. Implications for Galaxy Formation in the Real Universe

A fundamental question that underlies the work presented
here is whether the effect we have identified is purely
numerical, i.e., applicable only to the simulated systems, or
physical, in the sense that it exists in the real universe as well.
We do not have a clear answer to this question, but we discuss
several interesting aspects of it.

First, one can ask whether the inherently limited accuracy of
the integration of the gravity and hydrodynamics equations
may be introducing chaos into the system. For example, an
infinitesimal change in the position of a dark matter particle or
a gas mesh-generating point may result in a finite change to the
forces or the fluxes due to a finite change in the structure of the
gravity tree or the geometry of the mesh. This clearly results in
the amplification of some differences, at least locally and on
short timescales. The fundamental question is, however,
whether it is this kind of amplification that builds up gradually
toward the macroscopic effect we have quantified, or whether
those purely numerical effects tend to cancel out.

A second, related question is whether the use of probabilistic
modeling in the simulations (which cannot be trivially
converted into continuous/non-probabilistic formulations)
introduces chaos into the numerical system that does not exist
in physical reality. The probabilistic algorithmic implementa-
tion uses random number generators to control several physical
processes. We find that infinitesimal changes in our simulations
may result in discrete changes of finite magnitude within a
single simulation time step, due to changes in the “field” of
random numbers as a function of space and time. Indeed, we
show in Appendix B.2 that differences between shadow
simulations grow faster once their respective random number
sequences are effectively no longer the same.

We believe that it is at least plausible that, even if these
numerical drivers of the butterfly effect exist only in the
simulations but not in physical reality, our results still largely
apply to galaxy formation in the real universe as well, due to
physical drivers of the butterfly effect. This is because galaxies
contain chaotic systems, of various natures and scales, that
inject chaos into the galactic scale in analogy with the purely
numerical factors described above. For example, even in a
purely gravitational system without any discrete effects in the
force calculation, some satellite galaxies and stars are on
truly chaotic orbits within their dark matter halos. Further, if
turbulence in molecular clouds is truly chaotic (e.g.,
Deissler 1986; Bohr et al. 2005) then chaos determines where
and when individual stars form—and hence, where and when
they explode. These are “discrete” events that are analogs to the
choice of a random number to determine, e.g., the birth time
and place of a star in the unresolved interstellar medium in our
simulations. In some aspects, our simulations are most likely to
actually suppress chaos that exists in reality. For example, the
flow in the interstellar medium in our simulations is less
turbulent than in reality, due to numerical viscosity. Another
example is the lack of stochasticity in the sampling of the initial
mass function (IMF) in our simulations, in which each stellar
population is comprised of a “smooth,” idealized IMF.

While the nature of chaos injection from small scales into the
galactic scale differs between our simulations and reality, as
discussed, it is possible that the growth of differences in
macroscopic galaxy properties that is exhibited by our
simulations captures a real phenomenon. This is the third,

“dynamical,” phase discussed at the end of Appendix B.2,
during which the growth of differences is no longer exponential
but instead power-law or slower, but during which most of the
growth in absolute terms is achieved. It is instructive in this
context that we find a significant difference in the character-
istics of the butterfly effect between our simulations with and
without feedback. In spite of having the same small-scale chaos
drivers, such as roundoff errors, discreteness effects, and
random numbers, as the simulations without feedback, those
with feedback result in a stronger butterfly effect. This suggests
that it is the nature of the dynamics on galactic scales that
determines the degree to which “random” differences, e.g.,in
the formation sites of stars, develop into global differences in
galaxy properties.
Even under the assumption that this is indeed the case, our

work nevertheless cannot yet determine with great certainty
what is the magnitude of the butterfly effect on galaxy
formation in the real universe. Additional work would be
required in order to characterize and understand the depend-
ence of this magnitude on the physical models used in the
simulation. It is possible that eventually only an accurate
simulation of galaxy formation, perhaps much more accurate
than ours, will be reliable enough to parallel the real universe in
this respect.
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Appendix A
Dark Matter-only Simulations

In Figure 13, we show that the initial minute perturbations
we apply to particle positions at z=5 evolve into percent-level
differences in halo properties even in the DM-only case. At
early times, the various resolution levels evolve similarly. At
late times, however, lower resolution levels show continuously
increasing differences, while higher resolution levels show a
weaker growth rate, which for the highest level, ò=0.5,
already appears as a plateau by t 2 Gyr . For mass (right
panel), this plateau level is, however, still very close to the one
expected just from shot noise, given the finite number of dark
matter particles in the halos. Hence, the four resolution levels
we have are not enough to clearly determine whether the result
is converged or will continue shrinking with even higher
resolution. This is different from the cases with hydrodynamics
and galaxy formation models discussed in the main part of the
paper.
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Appendix B
Special Simulations for Numerical Verification

This appendix has two main goals: to explore the sensitivity
of the results to several numerical nuisance parameters, both for
pure N-body cosmological simulations containing only dark
matter and for hydrodynamical runs, and to support the
interpretation of our main results with regard to the role of the
usage of random numbers in the baryonic physics models.

Table 4 provides an overview of the additional sets of
simulations shown in the figures of this appendix. The special
features distinguishing these simulations from the fiducial ones
fall into three categories: (i) greater numerical integration
accuracy through the usage of smaller simulation time steps,

(ii) variations of the magnitudes of the initial perturbations
applied to the z=5 initial conditions of the shadow
simulations, and (iii) a different usage of random numbers.
We run several sets of DM-only verification simulations at
resolution level ò=2, and several more with the TNG model
at level ò=1. In addition, there are three ò=2 sets included in
Table 4 whose results are not shown in the figures because they
are, for any practical purpose, indistinguishable from the
fiducial case. This includes a DM-only set with a higher
accuracy in the tree part of the gravity force calculation, a TNG
model set with larger initial perturbations, and a TNG model
set where compilation optimization has been turned off
(rendering our results insensitive to the optimization level).

Figure 13. The evolution of differences between shadow galaxies with final halo mass of M h M11.5 log 12DM
1< <-

[ ] in our dark matter-only simulation series,
similar to Figures 3 and 4 (note, however, the different scale on the vertical axes). Two physical quantities are shown: maximum circular velocity (left) and halo mass
(right), each based on four resolution levels, which are indicated by color, increasing from blue to red.

Table 4
An Overview of the Numerical Verification Simulations

Simulation type Physics model Resolution level Line style

10× smaller simulation time step tD (individually) DM-only ò=2 black asterisks, Figures 14 and 15

10× smaller gravity tree opening angle DM-only ò=2 L

50× smaller maximum simulation time step tD (globally) DM-only ò=2 magenta triangles, Figures 14 and 15

500× smaller maximum simulation time step tD (globally) DM-only ò=2 magenta dots, Figures 14 and 15

50× smaller maximum simulation time step tD (globally), and only a single particle is
initially perturbed

DM-only ò=2 red circles, Figures 14 and 15

107× larger initial perturbation DM-only ò=2 cyan squares, Figures 14 and 15

107× larger initial perturbation TNG model ò=2 L

No code optimization (compilation with -O0) TNG model ò=2 L

50× smaller maximum simulation time step tD (globally) TNG model ò=1 magenta triangles, Figure 16

50× smaller maximum simulation time step tD (globally) and different usage of
random numbers, method 1

TNG model ò=1 purple pentagrams, Figure 16

500× smaller maximum simulation time step tD (globally) and different usage of
random numbers, method 2

TNG model ò=1 gray crosses, Figure 16

500× smaller maximum simulation time step tD (globally) and no usage of random
numbers

TNG model ò=1 dark blue lines, Figure 16

Note. We have generated six numerical verification pairs of shadow DM-only simulations at resolution level ò=2, five of which are shown in Figures 14 and 15.
Each of these pairs has a unique difference in its setup with respect to the fiducial simulations discussed throughout the paper, as briefly summarized in the first column
and discussed in detail in the appendix. Two distinct ò=2 pairs were run with the TNG model; they produce results virtually indistinguishable from the fiducial case
and are therefore not explicitly shown. Four numerical verification pairs were run at resolution level ò=1 with the TNG model, presented in Figure 16.
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B.1. The Case of Pure Dark Matter Simulations

Figure 14 presents the standard deviations of the Vc,max

difference distributions between shadow subhalos in DM-only
simulations, similar to Figure 13, but for the numerical
verification sets. The left panel shows the usual log–log view,
while the right panel shows linear time on the horizontal axis,
and only up to t 3 Gyr= . Examination of the right panel
makes it clear that, at early times, t 0.5 Gyr , the evolution
can be fit well by an exponential growth of the differences in
time. This is a characteristic of chaotic systems, and the thick
blue lines in the top left of that panel indicate exponential
growth rates with Lyapunov timescales of 60 Myr and
120 Myr, roughly bracketing the slopes seen for the various
cases in their initial phases. It is worth noting that these
Lyapunov timescales are not surprising, given that the
dynamical time of dark matter halos (defined as 10% of
the contemporaneous Hubble time) at the time the perturbations
are applied is 117 Myr (Kandrup & Smith 1991; Goodman
et al. 1993; Kandrup et al. 1994).

The fiducial case (at the ò=2 level, as all other simulations in
Figure 14) is shown in green, and in the left panel is identical to
the line with the same style in Figure 13. One of the special cases,
where the simulation time step was decreased uniformly by a
factor of 10 for all particles (black asterisks), appears to behave
essentially just like the fiducial case. The same holds for an
additional case, which is listed in Table 4 but not shown in
Figure 14 (for visual clarity), where the force calculation accuracy
of the tree algorithm was significantly increased by decreasing the
node opening angle threshold (Hernquist 1987). However, when
forcing the time steps of all particles to a common, smaller
maximum time step (magenta triangles and dots for factors of 50
and 500 compared to the fiducial simulations, respectively), then
the results are affected. In particular, a very similar evolution
occurs, namely exponential with a similar timescale, but it is
delayed with respect to the fiducial case. The origin of this
behavior will be elucidated when discussing the next figure.

Before doing so, we point out the two sets where the nature
of the initial perturbation has been modified. In one case (cyan
squares), each particle is displaced initially at its eighth

significant digit instead of the fifteenth, i.e., by up to ≈1 pc
instead of 10 pc7- (corresponding roughly to a “single
precision” perturbation). This results in Vc,max differences that
are initially about two orders of magnitude larger than in the
fiducial case, but the initial growth is still exponential with a
similar timescale, such that a plateau is reached earlier—but to
the same level as in the fiducial case. In the second case (red
circles), the initial perturbation (at the fiducial magnitude) is
applied only to a single particle in the whole simulation box. In
this case, non-zeroVc,max differences take1.5 Gyr to appear, but
thereafter evolve similarly. After several more billions of years,
they again reach the same level as the fiducial case. Next, we
discuss the nature of this delay.
In Figure 15, we present the time evolution of a kind of

quantity different from the ones discussed so far. In this case, it
is the root mean square (rms) of the distances between the
positions of matched individual dark matter particles between
pairs of shadow simulations. This is a useful quantity because,
unlike differences in global subhalo properties, these distances
are continuous and are directly related to the initial perturba-
tion, which is implemented as a displacement of particle
positions. Indeed, the left panel shows that the cases with the
fiducial kind of perturbation begin at a level of h10 kpc10 1- - ,
as prescribed, and the corresponding case with the larger initial
perturbation at h10 kpc3 1- - . Finally, the case where only a
single particle is perturbed appears initially at a level of

h10 kpc18 1- - , which is indeed what is expected, given that the
number of particles in our DM-only ò=2 simulations is
5123≈1.3×108.
The left panel of Figure 15 shows the usual log–log view,

while the middle and right panels show time on a linear axis, up
to t 2 10 Gyr9= ´ in the former, and further zooming in on
t 2 10 Gyr7 ´ in the latter, which also focuses on a particular
range on the vertical axis (as symbolized by long dashed brown
lines) that includes only the simulations with the fiducial kind of
perturbations. In the middle panel, it can be seen that all
simulation types show an exponential growth of the rms distance
between shadow particles in the first ∼Gyr of evolution, with a
Lyapunov time consistent with the dynamical time of dark
matter halos at z=5 (117 Myr), as indicated by the thick blue

Figure 14. Growth of the standard deviations of the distributions of pairwise differences between theVc,max of shadow galaxies in various tests of DM-only simulations
at resolution level ò=2, as indicated in the legend (see also Table 4). Both panels show the same data, focusing on different timescales. Note that the vertical axis
spans a significantly larger dynamic range than the analogous Figures 3 and 4. Right: the first 3 Gyr on a linear time axis. Non-zero differences appear for the various
sets at different times, but then they all exhibit an initial growth phase that is close to exponential with a Lyapunov exponent of 1 100 Myr~ , as indicated by the thick
blue lines in the top left corner. After this initial phase, which lasts 1 Gyr~ , the growth slows down. Left: the full cosmic time on a logarithmic time axis. The initial
exponential growth phase turns roughly to a power law, and all sets converge to essentially the same outcome by z=0, despite the vastly different result at earlier
times, e.g., t 1 Gyr= or t 2 Gyr= .
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line at the bottom of the panel.19 This is very similar to the
evolution of the Vc,max differences seen in Figure 14. The
transition to an approximate power-law growth at t 1 Gyr is
also similar, as is the convergence by z=0 to a very similar
result in all cases despite their vastly different initial stages and
evolutions.20

However, a close examination of the first 20 Myr in the right
panel of Figure 15 demonstrates that, in the very initial phase,
the “effective” Lyapunov time actually differs between the
different simulations. In particular, the growth in the fiducial
case (green) over the first few million years has no exponential
form altogether, but instead can be seen (in the left panel) to be a
power law with an index of unity. The “effective” growth
timescales when exponential fits are forced, indicated with blue
thick lines and associated timescales, become longer as the
maximum simulation time step is reduced. Importantly, in
the most aggressive case (magenta dots), the growth timescale
appears to converge to the ∼117Myrlevel, which then
continues throughout the first ∼1–2 Gyr, as seen in the middle
panel. We interpret these results to imply that the fiducial case is
affected by numerical accuracy errors that present themselves as
an early power-law growth with an artificially short associated
growth timescale, but these can be mitigated by using shorter
time steps, in which case the evolution from the very beginning
is physical and on the expected, dynamical timescale.21

The lack of an initial artificially fast growth rate in the
simulations that use aggressively short time steps, seen clearly
in the right panel, results in an effective delay with respect to
the other simulations, which is clearly seen in the middle and
left panels. The intermediate cases (magenta triangles and black
asterisks) are also delayed with respect to the fiducial case, by
an intermediate amount.22 This brings us back to the delay in
the appearance of Vc,max differences that we observed in
Figure 14. Simulations with smaller time steps first show non-
zero Vc,max differences at a later time because it takes them
longer to develop substantial rms particle position differences,
which are necessary to give rise to Vc,max differences. A similar
case applies for the large delay of the simulation where only a
single particle is perturbed. In particular, we observe that it is
common to all simulations that non-zero Vc,max differences
appear once and only once their rms particle differences reach a
level of h10 10 kpc8 7 1~ - - -– , which occurs at different times in
the various cases.
We conclude that, as long as the initial perturbation of

positions is large enough that it has enough time to grow to a
level of h10 10 kpc8 7 1~ - - -– , given a growth rate that is
roughly 10% of the Hubble time, then it is large enough to
develop into macroscopic (percent-level) differences in global
subhalo properties such as Vc,max.

B.2. The Case of Hydrodynamical Simulations with the TNG
Model

Figure 16 is a combination analogous to Figures 14 and 15,
but for test simulations based on the TNG model rather than on
DM-only. Figure 16(a) presents Vc,max differences and
Figure 16(b) rms particle position differences; in both cases,
the left panel is on a logarithmic time axis and the right panel
on a linear time axis limited to t 20 Myr . First, we note that,

Figure 15. Growth of the rms physical distances between shadow dark matter particles in the various ò=2 DM-only sets: the fiducial one (green), as well as various
tests (line styles as in Figure 14). All panels include the same data, but focus on different scales. Left: the full range of rms distances with a logarithmic time axis.
While the initial perturbations span 15 orders of magnitude, by z=0 they all converge to a very similar outcome. At t 1 Gyr , the growth is approximately a power
law with time. Middle: the full range of rms distances with a linear time axis limited to the first 2 Gyr . The growth during most of the first Gyr is roughly exponential,
with a Lyapunov exponent of 1 117 Myr~ , which is the dynamical time of dark matter halos at z=5. At t 1 Gyr , the growth starts slowing down toward the
power-law behavior seen in the left panel. Right: a zoom-in on the first 20 Myr , focusing on the simulations with the fiducial type of perturbation. The set using very
small time steps (magenta dots) shows the exponential with a timescale of 117 Myr~ right from the beginning, while sets using larger time steps show an initial phase
of faster, numerical error-driven, growth.

19 We have confirmed that it is indeed dark matter particles that are part of
dark matter halos that drive the growth, rather than particles outside of halos;
see also Thiébaut et al. (2008).
20 We note that the initial imposed correlation between the magnitude of the
perturbation and the position in the box is gradually erased over time, as the
results converge toward a value that is independent of the magnitude of the initial
perturbation (this happens even faster in the TNG model case than with DM
only). This is analogous to the shrinking differences between simulations with
different overall magnitudes of initial perturbations.
21 In the case where only a single particle is perturbed, the growth rate of the
rms distance before the exponential growth sets in is a power law versus time
with an index of 2. The same power law holds for the number of particles with
a non-zero distance between the shadows (not shown). A possible interpreta-
tion of this growth rate is that it corresponds to the growth of the volume of a
perturbation in the spherical collapse model (Gunn & Gott 1972).

22 This is more significant and seen clearly in the case of the factor of 50
smaller maximum time step (magenta triangles), where the initial growth rate is
also intermediate (∼10 Myr). In the case of time steps individually smaller by a
factor of 10 (black asterisks), the generation of the “delay” is unresolved by the
snapshot time separations we have available, i.e.it occurs at t 1 2 Myr – .
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in the fiducial case (orange squares), we do not see a gradual
growth of theVc,max differences as in Figure 14, but they appear
directly at a level of 10−4 dex. The same holds even for the
case with shorter time steps (magenta triangles), where earlier
snapshots are available and this level of difference is then seen
as early as 2 10 yr5´ after the perturbation. Also, the rms
particle position differences show a power-law growth with
time as early as can be probed, instead of the exponential
growth seen in Figure 15. This suggests that a different
mechanism is at play in generating the differences with respect
to the DM-only case.

We can gain significant insight from an additional set that
has no analog in the DM-only case, in which the treatment of
random numbers is modified compared to the fiducial model
(and at the same time, the maximum time step is limited in the
same way as discussed above, in order to have high accuracy
and high time resolution). In the fiducial TNG model,23 there is
a single stream of random numbers that is used on each MPI
task during the calculation; each time a star-forming gas cell
requires a random number to determine whether to turn into a

star or wind particle, it draws the next number from that stream.
This means that changes, such as to the number of star-forming
cells in the simulation, the way they are distributed between
MPI tasks, or the sizes of their individual time steps, all
necessarily affect the random number series that each and
every gas cell in the simulation is using. This in turn means
that, for example, changing one cell in the simulation box from
non-star-forming to star-forming will immediately result in star
formation and wind ejection events occurring at modified
positions and times throughout the whole simulation volume
(and hence, clearly, involving a superluminal flow of
information).
In an attempt to control and mitigate this unphysical effect,

which normally has no adverse consequences but critically
pertains to our study here, we introduce a change where the
random numbers are a deterministic function of time step and
of coarse-grained position (“method 1” in Table 4). In other
words, for each simulation time step and coarse-grained spatial
position, there exists a single, well-defined random number.
The level of coarse-graining used is h1 kpc1- . In this way, a
change to a single cell (as in the example above) only
propagates through more “local” effects. For example, a change
in one cell will affect the dynamics of its neighboring cells,

Figure 16. Top: evolution of the standard deviations of pairwise Vc,max differences between shadow galaxies in the numerical verification sets of the TNG model at
resolution level ò=1 (see Table 4). As opposed to the DM-only case seen in Figure 14, the fiducial case and the case with smaller time steps behave in virtually the
same way, both showing “large” ( 10 dex4> - ) differences as early as can be measured (t 10 yr6» and 2 10 yr5´ , respectively). The cases where the random number
usage is modified toward greater correspondence between the shadow simulations, or altogether removed, result in a delayed growth of differences, converging
eventually toward the fiducial case. Bottom: rms differences of the positions of shadow dark matter particles in the same sets of simulation. The fiducial and small time
steps cases show a power-law growth from the very beginning, while the cases with the modified random number treatments show an initial exponential growth with a
short timescale of 4 Myr~ .

23 Note that this aspect of the TNG model is inherited from the original star
formation subgrid model of Springel & Hernquist (2003).
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some of which then might move from one coarse-grained voxel
to the other and hence have their random number series
changed, inducing further changes around them. Such cascade
is, however, expected to take longer to develop than in the
fiducial case. However, once the changes are significant
enough to induce a change in the overall time stepping
sequence of the simulation, if even a single time step is skipped
in one of the simulations with respect to the other, due to even a
single particle requiring a shorter time step, then at subsequent
times the behavior will be identical to the fiducial case, in that
every cell in the simulation will be affected by a different set of
random numbers between the two shadow simulations.

The results from the set with random number treatment
modified according to this “method 1” are presented in
Figure 16 with purple pentagrams. In Figure 16(a), we indeed
find that the Vc,max differences are initially at a very small level
of 10 dex8~ - , similar to the very early times in the DM-only
case. They then show a step function to the ∼10−4 dex level of
the fiducial case at t 7 Myr» . We interpret this delay to imply
that, for the first 7 Myr» after the perturbation, the random
number sequences that determine the evolution of individual
cells are for the most part identical between the two shadow
simulations. This is confirmed by examining the time step
sequences of the two, which indeed are found to be identical in
this case for 156 steps representing 7.1 Myr of evolution, at
which point one of the two simulations introduces one
additional short time step as required for evolving one single
cell at an earlier time than its shadow simulation, thereby
decoupling the random number sequences of the two simula-
tions from each other.

The decoupling of the random number sequences between
the two shadow simulations has a strong effect on the evolution
of the rms particle position differences, as seen in Figure 16(b).
Following that critical time, which in the fiducial case occurs
essentially immediately at the perturbation time, and in the
modified case occurs at t 7.1 Myr= , the rms distance between
shadow particles evolves very accurately like a power law with
index 2.5 for approximately 2 Gyr. We do not yet have an
explanation for this behavior. Note that, in the case of the set
with modified random numbers, this quantity goes as
t 7.1 Myr 2.5-( ) , which accounts for the steep transition region
seen in the left panel around 7 10 yr6´ .

In a further numerical experiment (“method 2” in Table 4),
we make the random numbers a deterministic function of both
coarse-grained space and coarse-grained cosmological scale
factor, such that they are independent of the nuisance parameter
that is the sequential time step number of the simulation. In this
case, the transition to a regime where all cells see different
random number sequences between the two simulations occurs
more gradually. This can be seen in all panels of Figure 16
(gray crosses): the growth of the rms distance (Figure 16(b))
does not show as sharp a transition as does “method 1” at
7.1 Myr. This is because the number of cells that develop
different coarse-grained spatio-temporal evolution tracks grows
gradually, with only local influences between cells.24 This also
results in a more gradual evolution of Vc,max differences
(Figure 16(a)), which in this case take almost 10 Myr to grow
from ∼10−8 dex to 10−4 dex (compared to1 Myr with “method
1”). The typical timescale of the evolution of the rms distances

at early times after the perturbation is a few million years, as
indicated in the right panel of Figure 16(a). This timescale is
∼20 times shorter than the 117 Myr~ found in the DM-only
case with the same small time steps, corresponding to the
shorter dynamical times of galaxies compared to dark matter
halos.
Finally, we present a test that is identical to the simulations

introduced in Section 3.2.3, which completely remove the
usage of random numbers, except for a much shorter time step
(dark blue curves in Figure 16). These show an evolution of the
differences, both in particle distances and in Vc,max, that
resembles an exponential growth with a timescale of
≈4–10Myr, as indicated in the right panels. These simulations
do not show the same rapid convergence toward the fiducial
case that is seen in the other tests once the random numbers go
out of sync between the shadow simulations in a pair. Instead,
the evolution transitions directly from the exponential growth
regime (on a timescale comparable to the dynamical timescale
of galaxies) into the late power-law regime when the Vc,max

differences become of order 10 dex5- .
We conclude that the use of random numbers in our

simulations (and possibly, by extension, cosmological simula-
tions produced by other codes) instantaneously injects
relatively high levels of difference between shadow simula-
tions; levels that may take of order billions of years to develop
under exponential growth where there is no usage of random
numbers. While the particular workings of these random
numbers is clearly a numerical construct, it is an interesting—
and pertinent—question whether they have analogs in the real
universe. This is discussed in Section 5. It is also worth
pointing out that, once such differences appear, they continue
developing more slowly over cosmic time, as described in the
main part of the paper. In this sense, the final z=0 differences
are only seeded by the random number differences, but not
directly determined by them—indeed, they generally develop
to very different levels depending on whether feedback is
present or not.
Hence, we identify three regimes to the development of the

initial perturbations. First is the “chaotic” regime, which is
similar to the DM-only case, in which the growth of
perturbation is exponential. Second is the “injection” regime,
in which the very small perturbations are very rapidly blown up
by the injection of randomness into the star formation process
through the random numbers. This phase does not exist in the
DM-only case or when random numbers are not used in the
subgrid models. Third is the slower “dynamical” regime,
during which the perturbations continue growing as a power
law or slower, in some cases reaching a plateau after several
Gyr. They typically grow into percent-level or even larger
differences, which often constitute a sizable fraction of the
overall variation within the galaxy population.

Appendix C
(In)sensitivity to the Group Finder

To mitigate a potential concern that the results we present in
the main text are significantly affected by properties of the
SUBFIND group structure algorithm, here we present results
that are not based on SUBFIND in any way. Such a concern
may arise because SUBFIND is not fully translationally and
rotationally invariant. It may return different results in response
to small changes in particle coordinates due to its use of a tree
structure, and for the same reason its results are also generally

24 The shorter maximum time step we applied in “method 2” compared to
“method 1” accounts for the slower initial growth, analogously to the DM-only
case discussed in Appendix B.1.
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not completely invariant to certain nuisance parameters. By
calculating quantities only based on the raw particle data and
on the Friends-of-Friends algorithm, as we do in this appendix,
we verify that these properties of SUBFIND do not, in fact,
affect our results in any significant way.

Figure 17 is analogous to the top row in Figure 4, and shows
the growth over time of pairwise differences between the
maximum circular velocities and the masses of shadow
galaxies in our TNG model series. Here, however, these two
quantities are calculated in a way different from that used for
Figure 4, avoiding the use of SUBFIND. The mass (right panel)
is simply the full stellar mass assigned to Friends-of-Friends
halos. The maximum circular velocity (left panel) is calculated
within a fixed aperture of h10 kpc1- around the stellar particle
with the lowest potential energy.

Quantitatively, the results in Figure 17 are similar to those in
Figure 4. In fact, the difference between the two is such that the
pairwise differences are somewhat larger in the SUBFIND-
independent case shown here. We interpret that to be a result of
the difference aperture that is used here (which itself is chosen
so as to avoid the use of SUBFIND), rather than a direct
consequence of the group finding algorithm. This also means
that we believe that the results presented in the main body of
the paper are not driven or dominated by SUBFIND.

It is worth pointing out, however, a general artifact of group
finding, not specifically of SUBFIND, that occurs in rare cases.
This is where the timing of a merger is different between two
shadow simulations such that there are two nearby galaxies that
are still considered separate objects in one shadow simulation,
while in the other they are already considered as merged. In
such a situation, the galaxy properties calculated by the group
finder may even be different on the order of unity between the
two shadows, even while the state of the physical system itself
is almost identical. In these cases, the large pairwise difference
is an outlier to the Gaussian-like distribution of pairwise
differences such as those shown in Figure 2, but it can affect
the overall standard deviation of the distribution. An outcome
of this can be seen most prominently in the R1 2,* and M*
panels of Figure 3 at t 5 10 yr7= ´ , where the outlier point of
the ò=0.5 level is affected by a single galaxy: in two of the
shadows, it has just “absorbed” a satellite, while it has not yet
in the other two. In such highly non-Gaussian cases, the
simplistic estimate for the error on this standard deviation
(shown as error bars for a few examples in Figure 3)
dramatically underestimates the true one, as expected.
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