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On the Impact of Beamforming Strategy on
mm-Wave Localization Performance Limits

Anna Guerra, Member, IEEE, Francesco Guidi, Member, IEEE, Davide Dardari Senior Member, IEEE

Abstract—In this paper we investigate the localization per-
formance limits of massive arrays working at millimeter-wave
(mm-wave) frequencies and adopting two different beamforming
strategies. In the first one, array weights are set in order to
point towards a precise direction (classic beamforming), whereas
in the second one, such weights are randomly chosen (random
beamforming). Thanks to the large set of measurements as well
as the high angular resolution provided by massive arrays, only
one single anchor node can be used for localization estimation,
thus avoiding over-sized infrastructures dedicated to positioning.
Accounting for such beamforming strategies, performance is
evaluated by taking into account the effects of arrays orien-
tation and beamforming weights non-idealities arising when the
number of antennas is high and low-complex components are
adopted. Results reveal that classical beamforming outperforms
the random one which still remains a feasible solution when the
system complexity has to be kept affordable.

Index Terms—Position Error Bound, Millimeter-wave, Massive
array, 3D localization.

I. INTRODUCTION

Fifth generation personal devices will be required to perform
self-localization in indoor environments as well as to share
a huge amount of data at extremely high rates [1]. To face
these challenges, massive arrays and mm-wave frequencies
emerge like potential candidates for including a large number
of antennas in a small size with the possibility to focus the
array beam in a precise direction in space [2]–[4]. In this
context, an access point (AP) equipped with a massive array
could be in principle used as a single-anchor node, i.e., a
node whose position is a-priori known, permitting the mobile
users to be aware of their positions, and, thus, enabling new
applications such as those related to augmented reality and
cyber-physical systems, as depicted in Fig. 1. Moreover, when
operating at such high frequencies, the portable devices can
also adopt massive arrays as the reduced wavelength permits
to pack a large number of antennas in small spaces, as for
example smartphones or tablets [5]–[7].

Different works deal with the derivation of the Cramer-Rao
Lower Bound (CRLB) as a tool to investigate the ultimate
performance of a localization system [8]–[14]. Notably, the
CRLB can be considered as an asymptotic lower bound for all
estimators and it can be asymptotically achieved, for example,
by the maximum likelihood estimator (MLE) operating in high
signal-to-noise ratio (SNR) regime. Therefore, here we aim at
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Fig. 1. Single AP localization scenario.

presenting the localization performance as a benchmark for
real estimators without providing new localization techniques
as done, for example, in some our previous works [15]. In [8],
[9], the Position Error Bound (PEB) is derived for a wideband
sensors network composed of several anchors and multipath
effects are taken into account in the analysis. Nevertheless, in
these works, beamforming strategies are completely neglected
as anchors were considered equipped with a single antenna
unable to perform beamsteering operations. Moreover, even if
considered as a virtual array, anchors operate independently
to each other as in multiple-input multiple-output (MIMO)
systems. In our previous work [14], some preliminary results
on positioning accuracy have been presented for different
fractional bandwidth and spherical arrays.

Stimulated by this framework, in this paper we propose
a PEB study to compare the localization capabilities of
mm-wave massive arrays operating different beamforming
strategies. More specifically, classical and random beamform-

ing will be compared in terms of positioning performance. In
both cases, a phased array composed of phase shifters (PSs)
is considered, as reported in Fig. 2. In the first strategy, all
the beamforming weights are set in order to point towards a
precise direction, e.g., the AP, while in the second one, the
weights are randomly chosen. From a radiation pattern point-
of-view, classical beamforming permits to accurately shape the
radiation pattern radiation pattern with a main narrow beam
in the intended direction. Differently, random beamforming
results in a non-defined pattern shape but, at the same time,
it permits to maintain a certain level of diversity gain while
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keeping the architecture complexity lower. In fact, as shown
in [16]–[18], where transmitarrays (i.e., a particular type of
phased arrays consisting of a focal source illuminating a
planar array) have been proposed, PSs are usually realized
using switches. Therefore, as it is often unfeasible to obtain
a continuous phase value ranging from 0◦ to 360◦ with real
antennas, the resulting quantization errors should be taken into
account in the analysis. Thus, this paper proposes a CRLB-
based investigation on how a proper choice of the beamform-
ing strategy can lead to different levels of localization accuracy
and of array complexity.

The rest of the paper is organized as follows. In Sec. II
we describe the considered array configurations, whereas in
Sec. III we discussed an ad-hoc signal model for the analyzed
multi-antennas schemes. Sec. IV shows the PEB derivation,
where results are given in Sec. V. Final conclusions are
successively drawn in Sec. VI.

II. ANTENNA ARRAY GEOMETRIC CONFIGURATION

We consider a 3D localization scenario consisting of a
Nrx-sized receiving array located in known position (i.e.,
pr = [xr

0, y
r
0, z

r
0]

T = [0, 0, 0]T) and a transmitting array with
Ntx antennas whose position, pt = [xt

0, y
t
0, z

t
0]

T = [x, y, z]T, is
to be inferred by the estimation process. We indicate with
θ = [θ,φ]T

the direction-of-arrival (DOA), i.e., the angle
formed between the two arrays geometric centers. Moreover,
if classical beamforming is considered, the steering angles will
be indicated with θ0 = [θ0,φ0]

T
.

In both arrays, the antennas coordinates with respect to the
array centroid can be expressed as

pt/r
i/m(ϑt/r)=

[
xt/r
i/m, yt/r

i/m, zt/r
i/m

]T

=ρt/r
i/m R

(
ϑt/r

)
dT

(
θt/r
i/m

)

(1)

with i = 1, 2, . . . , Ntx, m = 1, 2, . . . , Nrx being the 1D
transmitter (TX)/receiver (RX) antenna index, R

(
ϑt/r

)
being

the 3D rotational matrix with ϑt/r =
[
ϑt/r,ϕt/r

]T
being the

transmitting/receiving array orientation with respect to its
geometric center. The direction cosine in (1) is given by

d (θ) = [sin(θ) cos(φ), sin(θ) sin(φ), cos(θ)] . (2)

Finally, ρt/r
i/m=∥p

t/r
i/m(ϑt/r)−pt/r∥2 and θt/r

i/m =
[
θt/r
i/m,φt/r

i/m

]T

represent the transmitting/receiving spherical coordinates.

Having indicating with D the maximum diameter and with
d = ∥pr − pt∥2 the distance between the two arrays, we
suppose that they are sufficiently far from each other, i.e.,
D ≪ d, in order to assume an identical angle of incidence at
all the array antennas. Note that this hypothesis is especially
verified at mm-wave where the array dimensions are very
small thanks to the reduced wavelength. Given this assump-
tion, it is possible to express the propagation delay and the
amplitude between the mth receiving and the ith transmitting
antenna, respectively, as

1) τim ≈ τ + τ t
i(θ,ϑ

t)− τ r
m(θ,ϑr) 2) aim ≈ a (3)

where τim ! ∥pr
m − pt

i∥2/c is the time-of-arrival (TOA)
between the mth receiving and the ith transmitting antenna,

√
E P (f)

√
E P (f)

µt
1(θ0) + δt

1
υ1

µt
i(θ0) + δt

i
υi

µt
Ntx

(θ0) + δt
Ntx

υNtx

(a) Classical Beamforming (b) Random Beamforming

Fig. 2. Classical and random beamforming schemes.

τ ! ∥pr − pt∥2/c = d/c is the TOA between the arrays
centers and τ t/r

i/m(θ,ϑt/r) is the transmitting/receiving inter-
antenna delay given by

τ t/r
i/m(θ,ϑt/r) =

1

c
d (θ) pt/r

i/m

(
ϑt/r

)
(4)

with c being the speed of light.

III. BEAMFORMING SCHEMES AND SIGNAL MODEL

In this section, the two array beamforming strategies present
in Fig. 2 will be analysed from a signal processing point-of-
view and by focusing on how the different signaling phasing
schemes translate in different localization capabilities.

A. Transmitted Signal Model and Beamforming

The transmitted signal at the ith transmitting antenna is
denoted with g(t) =

√
E ℜ

{
p(t) ej 2πfct

}
with p(t) being the

unitary energy equivalent low-pass signal, and fc the carrier
frequency. We consider a constraint on the total transmitted
energy Etot which is uniformly allocated among antennas,
thus E=Etot/Ntx represents the normalized energy at each
antenna element. We introduce the Fourier transform of p(t) as
P (f) = F {p(t)}, with F {·} denoting the Fourier transform
operation in a suitable observation interval Tobs. For further
convenience, the vector p(f) = P (f)1Ntx×1 contains all the
baseband transmitted signals with 1Ntx×1 being a Ntx-sized
vector of all ones.

In multi-antenna systems, beamforming is obtained by ap-
plying different weights at each array element. In classical
beamforming, the objective of this operation is to coherently
sum up signals towards the intended steering direction, i.e.
θ0. Considering the signal bandwidth W , when W ≪ fc

holds, this process can be realized using only PSs. The
corresponding array structure is referred as phased array.
Contrarily, in random beamforming, weights are randomly
generated resulting in a non-directive radiation pattern but in
an extremely low-complexity array design. In both cases, the
beamforming weights are collected in a matrix that can be
defined as

B = diag (ω1, ω2, . . . , ωi, . . . ωNtx) (5)

where the ith PS generic element can be written as

ωi =

{
ej 2 π fc τ

t
i(θ0) = ejµ

t
i(θ0) Classical Beam.

ej υi Random Beam.
(6)
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with υi uniformly distributed between 0 and 2 π, i.e.,
υi ∼ U (0, 2π).

In addition, even when classical beamforming is adopted,
some technological issues could induce errors in the beam-
forming vector resulting in an increased side-lobe level (SLL),
decreased array maximum gain and angular resolution. In
fact, in practical implementations, digitally controlled PSs
are often adopted in place of their high-resolution analog
counterparts inducing quantization errors, to be accounted for
in the localization performance analysis [19].

In the presence of such non-perfect weights, a matrix
accounting for non-idealities is introduced

Q = diag (ς1, ς2, . . . , ςi, . . . , ςNtx) (7)

where ςi takes into account the i th beamforming weight
quantization error, i.e., ςi = exp (jδt

i) with δt
i being

the phase error. For further convenience, let indicate with
ω̃i = exp (j(µt

i(θ0) + δt
i)) the quantized weights in classical

beamforming; whereas ω̃i = ωi in random beamforming.

B. Received Signal Model

All the received signals are gathered in a vector
r(f)=[R1(f), . . . , Rm(f), . . . , RNrx(f)]

T
, where Rm(f) =

F {rm(t)} is evaluated in Tobs and rm(t) is the equiva-
lent low-pass received signal at the mth receiving antenna.
Specifically, the received signal vector can be written as
r(f) = x(f) + n(f), where the set of useful received
signals is

x(f) = [X1(f), . . . , Xm(f), . . . , XNrx(f)]
T

=
√
E ar(f, θ,ϑr) c(f, τ) At(f, θ,ϑt) Q B p(f) (8)

and n(f)= [N1(f), . . . , Nm(f), . . . , NNrx(f)]
T

is the noise
vector with Nm(f) = F {nm(t)}, with nm(t) ∼ CN (0, N0)
being a circularly symmetric, zero-mean, complex Gaussian
noise. The receiving and transmitting direction matrices for
the inter-antennas delays and TX orientation are

ar(f, θ,ϑr) =
[
ej γ

r
1 , . . . , ej γ

r
m , . . . , ej γ

r
Nrx

]T

(9)

At(f, θ,ϑt) = diag
(
e−j γ t

1 , . . . , e−j γ t
i , . . . , e−j γ t

Ntx

)
(10)

with γ t/r
i/m = 2π (f + fc) τ t/r

i/m(θ,ϑt/r). The channel vector

is indicated with c(f, τ) = α 11×Ntx being the 1 × Ntx,
whose generic element is α = a exp (−j 2 π (f + fc) τ). For
further convenience, define νt = Et/N0 = νNtx, with
ν = E/N0. The SNR at each receiving antenna element is
SNRt = NtxSNR1, where SNR1 = a2 ν represents the SNR
component related to the direct path between a generic couple
of TX-RX antenna elements.

IV. POSITION ERROR BOUND

In the following, we will derive the asymptotic limits of
the TX position (i.e., pt) estimation error starting from the
set of received waveforms r(f). Thus, we define the unknown
parameters vector as ψ =

[
(pt)T , a

]T

. We assume that an
initial search between the TX and RX is conducted in order
to coarsely infer the TX position and to allow the TX setting

its own beamforming weights to point towards the RX in the
case in which classical beamforming is operated.

The performance of any unbiased estimator ψ̂ = ψ̂ (r (f))
can be bounded by the Cramér-Rao bound (CRB) defined as
[20]

Er,ψr

{[
ψ̂ −ψ

] [
ψ̂ −ψ

]T}
≽ J−1

ψ = CRB (ψ) (11)

where Jψ is the Fisher Information Matrix (FIM) given by

Jψ ! −Er,ψr

{
∇2
ψψ ln f (r|ψ)

}
=

[
Jpp Jpa

Jap Jaa

]
(12)

with the symbol ∇2
ψψ =

(
∂2/∂ψ∂ψ

)
indicating the second

partial derivatives with respect to the elements in ψ and

Jpp =

⎡

⎣
Jxx Jxy Jxz
Jyx Jyy Jyz
Jzx Jzy Jzz

⎤

⎦ , Jpa =

⎡

⎣
Jxa
Jya
Jza

⎤

⎦ . (13)

Since the observations at each receiving antenna element are
independent, the log-likelihood function ln f (r|ψ) can be
written as

ln f (r|ψ) ∝ − 1

N0

Nrx∑

m=1

∫

W
|Rm(f)−Xm(f)|2 df. (14)

According to (12)-(14), it is possible to compute the elements
of the FIMs as

Jpb pa
= 8 π2 ν a2

∑

mij

ℜ {ω̃ij ξij χij(2) }∇pa
(τim)∇pb

(τjm)

Ja a = 2 ν
∑

mij

ℜ
{
ω̃ij ξij R

p
ij (∆τij)

}

Jpb a = 4 π a ν
∑

mij

ℑ { ω̃ij ξij χij(1)}∇pb
(τim) = 0 (15)

where pa/b indicate two elements in the set {x, y, z},
∑

mij =∑Nrx

m=1

∑Ntx

i=1

∑Ntx

j=1, ω̃ij = ω̃i (ω̃j)
∗
, ξij = e−j 2 π fc ∆τij with

∆τij = τim − τjm, and

χij(2) =

∫

W
(f + fc)

2e−j 2 π f ∆τij |P (f)|2 df

χij(1) =

∫

W
(f + fc) e

−j 2π f ∆τij |P (f)|2df

Rp
ij(∆τij) =

∫

W
e−j 2π f ∆τij |P (f)|2df. (16)

The derivatives translating the TOA and DOA in position
information can be expressed as

∇p (τim) =
1

c

{
c∇p (τ) +∇p (d (θ))

[
pt
i(ϑ

t)− pt
m(ϑr)

]}

(17)

with

∇p (d (θ)) =∇p (θ) cos(θ)

⎡

⎣
cos(φ)
sin(φ)

− tan(θ)

⎤

⎦
T

+∇p (φ) sin(θ)

⎡

⎣
− sin(φ)
cos(φ)

0

⎤

⎦
T

. (18)
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∇pp(τim, τjm) =

⎡

⎣
∇x(τim)∇x(τjm) ∇x(τim)∇y(τjm) ∇x(τim)∇z(τjm)
. . . ∇y(τim)∇y(τjm) ∇y(τim)∇z(τjm)
. . . . . . ∇z(τim)∇z(τjm)

⎤

⎦

=
d2ant

(c y)2

⎡

⎢⎣
(mx − ix) (mx − jx)

y
dant

(mx − ix) (mx − ix)(jz −mz)

. . . y2

d2
ant

y
dant

(jz −mz)

. . . . . . (iz −mz) (jz −mz)

⎤

⎥⎦ (19)

Moreover, by further analyzing (15), one can notice the
dependence of the FIM from the beamforming weights given
by the coefficients ω̃ij .

Finally, by using the Schur complement, the PEB expression
can be easily derived as

PEB =
√

tr (CRB (pt)) =

√
tr
((

Jpp − Jpa J−1
aa JH

pa

)−1
)

=
√

tr
(
J−1
pp

)
(20)

where tr (·) is the trace operation.

Equation (20) is a general bound valid for any beamforming
strategy and accounting for signal weights quantization effects.
Specialized expressions can be derived from (20) for specific
cases to get insights on the key parameters affecting the
performance as it will be done in the following.

A. Absence of Quantized Weights in Classical Beamforming

Here we provide an example on how the general expression
(20) can be simplified in absence of beamforming weights
errors. Given the FIM in (15), it can be easily found that for
classical beamforming it is

PEB =

√
tr
(
G−1 J̆−1

pp

)
(21)

where we have separated the effect of signal design J̆pp (i.e.,
that related to (16)) from that of the geometry G (i.e., that
related to (17)). Specifically for phased arrays, we have

J̆pp = 8π2
SNR1

(
β2 + f2

c

)
(22)

G =
∑

mij

∇pp (τim, τjm) (23)

where ∇pp (τim, τjm) is a 3× 3 matrix and β2 is the squared
baseband effective bandwidth of p(t).

The matrix G provides, through derivatives, the relationship
between the TOA-DOA at each TX-RX antenna element
couple and the TX position. To improve the comprehension of
(21), in the next paragraph the particular case of planar arrays
will be discussed considering a fixed orientation ϑt = ϑr =
[0, 0]T.

1) Special Case: Planar Array: For squared arrays with
antennas spaced of dant, we can compute a simplified version
of (17). Specifically, it is possible to obtain:

∇p (τim) =
1

c
[c∇p (τ) + dant ((ix −mx)∇p(φ)

+(mz − iz)∇p(θ))] (24)

with mx = mz = −
√
Nrx

2 , . . . ,
√
Nrx

2 and ix = iz = jx = jz =

−
√
Ntx

2 , . . . ,
√
Ntx

2 . From (24), it is straightforward to derive
(19). Then, by considering the summations present in (22), it
is possible to obtain the elements of the position CRB matrix
as

CRB (x) = CRB (z) = CRB0
12

S

1

Ntx (Nrx − 1)

CRB (y) =
CRB0

Ntx Nrx
(25)

where CRB0 represents the CRB of the ranging error one
would obtain using single antenna which can be written as

CRB0 =
c2

8π2 SNRt (β2 + f2
c )

(26)

and S = Ar/y2 with Ar = Nrx dant.
From (25) it is possible to remark that the CRB of the

estimation error in the y-coordinate is inversely proportional
to Ntx and Nrx: in fact, the Ntx term accounts for the SNR
enhancement due to the beamforming process while the Nrx

term accounts for the number of independent measurements
available at the RX.

V. NUMERICAL RESULTS

In this section, numerical results are reported considering
the two discussed beamforming schemes. For what the anten-
nas spatial deployment is regarded, planar arrays are accounted
for as they represent the most conventional structure to be
integrated in small-sized devices. Differently from Sec. IV-A1,
here we compare results with fixed and averaged RX orien-
tations, thus giving the possibility to appreciate the impact of
the array rotation on the localization performance.

We consider a scenario with a single RX with the centroid
placed in pr = [0, 0, 0]T, and a TX located in pt = [0, 5, 0]T

(d = 5m). As previously assumed, the RX has a perfect
knowledge of the TX steering direction.

Results are obtained for fc=60GHz and W=1GHz (the
signal duration is τp = (1 + β)/W = 1.6 ns) in free-space
conditions. Root raised cosine (RRC) transmitted pulses cen-
tered at frequency fc = 60GHz and roll-off factor β = 0.6 are
adopted, being compliant with the Federal Communications
Commission (FCC) mask at 60 GHz [21]. A noise figure of
NF = 4 dB and a fixed transmitted power of Pt = 10mW are
considered, if not otherwise indicated.

The performance is evaluated in terms of PEB averaged
over Ncycle = 500 Monte Carlo iterations. For each cycle, a
different 3D RX array orientation is generated. The antennas
are spaced apart of dant = λL/2, where λL = c/fL and
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Fig. 3. Classical and random beamforming PEB vs. Ntx, Nrx = 25.

fL = fc−W/2. When present, the PSs quantization errors are
δt
i ∼ U (−π/4,π/4) and the random beamforming weights
υi ∼ U (0, 2π).

A. Results

Results have been obtained in free space conditions as
a function of the number of antennas; of the beamforming
schemes (i.e., classical vs. random); of the presence or absence
of quantization errors; and as a function of arrays orientation.

In Fig. 3, the PEB performance is reported as a function
of Ntx, for Nrx = 25 and averaged over different RX’s orien-
tations, apart for results refering to the fixed orientation (i.e.,
ϑr = [0, 0]T). It can be observed that classical beamforming is
very sensitive to the particular geometric configuration chosen
when compared with its random counterpart, and performance
can drastically decrease when a rotational angle is considered.
On the other side, the impact of quantization errors is not
much appreciable both in fixed and averaged RX orientations.

For what random beamforming is regarded, it shares the
structure simplicity of phased arrays but it does not allow
the formation of a high gain main beam pointing towards
the RX, and thus, the positioning accuracy results degraded
with respect to that achievable with classical beamforming.
Nevertheless, as previously mentioned, it results more insen-
sitive with respect to the RX orientation. Consequently, if the
localization accuracy required by the application of interest is
not so stringent, random beamforming can be an interesting
option to guarantee both a sub-centimeter positioning accuracy
(e.g., for Nrx = 50 and Ntx = 25, PEB ≈ 1 cm) and an
easy implementation in future devices operating at mm-wave
frequencies. For example, it could be employed for an initial
coarse users localization estimation useful as a preliminary
step before a precise beamforming operation. For what the
number of TX antennas is concerned, it can be observed that
the localization performance for Ntx > 25 is almost constant

4 10 20 30 40 50 60 70 80 90 100
10
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10
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10
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10
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P
E
B

[m
]
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Classical Beam. - Av. Orien.
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Fig. 4. Classical and random beamforming PEB vs. Nrx, Ntx = 25.

for all the configurations, and thus, it can be relaxed in order
to guarantee an easy integration in portable devices.

In Fig. 4, the PEB results are reported as a function
of the receiving antennas with Ntx fixed to 25. The same
considerations drawn for Fig. 3 hold with the exception of
those regarding the dependence on Nrx. Indeed, in this case,
a higher number of antennas translates in a higher number of
collected measurements and thus, in an increased localization
accuracy.

VI. CONCLUSION

In this paper, we have considered a new scenario where a
single-anchor localization exploiting mm-wave massive arrays
has been put forth for next 5G applications. The theoretical
PEB has been evaluated for different beamforming strategies,
i.e., classical vs. random beamforming. Moreover, phase quan-
tization errors and arrays orientation have been taken into
account in the analysis.

From numerical results, we can conclude that classical
beamforming permits to achieve a better localization perfor-
mance thanks to the capability of focusing the power towards a
precise direction in space; nevertheless, random beamforming
attains a sub-centimeter accuracy even when the number of
antennas is not extremely massive. Finally, the impact of quan-
tization errors can be considered negligible. Consequently,
whenever the localization requirements are not too stringent,
it is possible to relax the implementation constraints (i.e.,
adoption of switches instead of analog PSs) without severely
degrading the localization performance.
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