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� Three practice-ready models by the literature have been used to predict weekly/monthly fluctuations for average daily traffic.

� They demonstrate a good combination of accuracy and ease of calibration, requiring conventional skills and analysis tools.

� The research shows possibilities for improvements by resorting to an appropriate linear combination of individual forecasts.
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a b s t r a c t

Knowing daily traffic for the current year is recognized as being essential in many

fields of transport analysis and practice, and short-term forecasting models offer a set

of tools to meet these needs. This paper examines and compares the accuracy of three

representative parametric and non-parametric prediction models, selected by the

analysis of the numerous methods proposed in the literature for their good combi-

nation of forecast accuracy and ease of calibration, using real-life data on Italian

motorway stretches. Non-parametric K-NN regression model, Gaussian maximum

likelihood model and double seasonality HolteWinters exponential smoothing model

confirm their goodness to predict the weekly and monthly fluctuations of average

daily traffic with varying degrees of performance, while maintaining an easy use in

professional practice, i.e. requiring ordinary professional skills and conventional

analysis tools. Since combining several prediction models can give, on average, more

accuracy than that of the individual models, the paper compares two weighting

methods of easy implementation and susceptible to a direct use, namely the widely

used information entropy method and the less widespread Shapley value method.

Despite being less common than the information entropy method, the Shapley value

method proves to be more capable in better combining single forecasts and produces

improvements in the predictions for test data. With these remarks, the paper might

be of interest to traffic technicians or analysts, in various and not uncommon tasks

they might find in their work.
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1. Introduction

Traffic flowdata represent basic information formany aspects

in traffic assessment issues, which may be related, for

example, to the calibration and validation of simulation

models, the design and operation of road facilities, the

development and management of any information transport

system (ITS).

The need for current-year traffic flow data is a problem for

transport planners since such data aren't available for ongoing

transport studies. In this sense short-term forecasting models

offer, therefore, a set of tools tomeet these needs. If in general

it is important to know the current level of data and to predict

its evolution, a noticeable issue when it has to do with short-

term daily traffic forecasts concerns the data fluctuations that

occur with time periods of varying length (Yu et al., 2016).

Vehicular flow presents fluctuations during 24 h of the day,

and fluctuations can also be recorded with respect to the

volumes of traffic on different days of the week, or over the

months that compose the solar year. The experience

highlights important and very significant seasonal

components, especially for motorway infrastructures, and

short-term forecasts should properly consider them.

In recent years new technologies and the gradual reduction

of construction and maintenance costs for traffic monitoring

systems have gradually expanded data availability relating on

transport infrastructures operation. Nowadays, especially in

motorway systems, monitoring equipment are widely

diffused along the infrastructure and even on vehicles: dual

loop detectors, radar devices, systems with radio-frequency

identification, video image processing systems, detectors for

portable phones (with or without GPS or Wi-Fi devices) allow

for constantly storing large databases of traffic time series.

This provides a sufficient amount of information for traffic

data mining to investigate traffic trends and seasonality and

to predict their short-term evolution. At the same time, in the

field of traffic analysis and forecasting, this large availability

has powered a huge increase in research. Many studies pro-

posed theoretical and practical applications, both on-line and

off-line, but scholars are always looking for more efficient

algorithms to analyse large amounts of data in less time.

The paper is organized as follows. Following this first sec-

tion that gives an overview of the topic, a brief review of ap-

proaches in the past-to-present literature and the general

criteria for models selection are reported in Section 2. Section

3 explores the main features of three selected models, taking

into account either individually or in combined form as a

synthetic linear weighting model. Two weighting methods

are considered, namely the IE method and SV method,

pointing to the most important aspects and the

computational steps. The section shows, therefore, some

key metrics or indexes to test the goodness of the
predictions, and then describes the nature of the traffic data

for the use in the real cases. Section 4 is devoted to the

application of the three single forecasting models and of the

two combining methods with real-life data from Italian

motorway stretches. In this section we discuss the results

obtained from the application of the three models,

evaluating the goodness of each to predict the sample data.

The analysis of the indexes shows the valence of the

different methods, even with respect to the set used for the

validation excluded from the original sample, clarifying also

the opportunity of introducing the weighing methods in

improving prediction performances. Finally, Section 5

explains the main outcomes and their usefulness in the

practical applications.
2. State of the art

2.1. Brief literature review

The research about short-term traffic forecasting covers a

period of almost 40 years. In the first part of this period, most

of the research employed “classical” statistical approaches to

predicting traffic; going forward over the years, data driven

approaches have become the most discussed field of analysis

in the literature, with a rich variety of algorithmic specifica-

tions, as effectively exposed by Vlahogianni et al. (2014). The

authors reviewed the last decade of literature, starting from

2004, citing for the previous period three papers: by

Vlahogianni et al. (2004), for short-term traffic forecasting

literature and related conceptual and methodological issues

up to 2003; by Adeli (2001) and by Van Lint and Van

Hisbergen (2012), for neural network and artificial

intelligence applications to short-term traffic forecasting.

Thus, a large number of studies about the short-term traffic

flow forecasts is well known, extensively dealt using analyt-

ical and data driven modelling approaches. Trying to sum-

marize the approaches used in relation to the specific topic of

this paper, this section provides some essential references to

the literature, in relation to the main parametric and non-

parametric approaches.

Most parametric approaches relate to the analysis of time

series models, especially based on autoregressive integrated

moving averagemodel (ARIMA) (Ahmed and Cook, 1979; Davis

et al., 1991; Hamed et al., 1995; Lee and Fambro, 1999), even

with introducing of seasonal components (SARIMA) (Cools

et al., 2009; Shekhar and Williams, 2008; Szeto et al., 2009;

Williams and Hoel, 2003), multivariate vector auto regressive

(VAR) time series models (Chandra and Al-Deek, 2008, 2009),

structural time-series model (STM) (Ghosh et al., 2009), or

exponential smoothing (ES) (Li et al., 2008; Smith and

Demetsky, 1997; Williams et al., 1998) and in particular by
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recourse to the HolteWintersmethod (Castro-Neto et al., 2009;

Daraghmi andDaadoo, 2015; Ghosh et al., 2005; Yu et al., 2016).

The most popular non-parametric approaches include

non-parametric regression (NPR), and in particular K-nearest

neighbour (K-NN) approach (Davis and Nihan, 1991; Lam et al.,

2006a; Smith and Demetsky, 1997; Smith et al., 2002; Tang

et al., 2003), support vector machines (SVM) (Su et al., 2007;

Yao et al., 2008; Zhang and Liu, 2009; Zhang and Xie, 2008) and

neural networks (NN) (Chen et al., 2001; Dia, 2001; Dougherty

and Cobbett, 1997; Nagare and Bhatia, 2012; Smith and

Demetsky, 1994; Vlahogianni et al., 2005; Yin et al., 2002).

These different approaches have been widely discussed in

the literature, trying to find the best combination of forecast

accuracy (often preferring parametric models) and ease of

calibration and use in real cases (preferring, instead, non-

parametric models) (Lam et al., 2006a, b). In general, a model

that is always the best does not exist; on the contrary there is

at each point in time amodel that can be identified as the best

(Timmermann, 2006). Jointly with the comparison, surely we

find the theme of the combination of the models; “compare

models or combine forecasts” is actually one of the 10

challenges proposed by Vlahogianni et al. (2014) about

directions for further research in traffic forecasts. The

combination of different models has often been taken as an

attractive strategy in various fields, to have better forecasts

on average than individual forecasting models and

enhanced by diversification. Since various researches have

demonstrated that combining several prediction models can

give on average more accuracy than that of the individual

models (Timmermann, 2006), sometimes the single-model

approach has been exceeded and mixed or hybrid models

have gradually become popular. Regarding the use of mixed

or hybrid models in traffic forecasts, Tan et al. (2009)

propose an aggregation based on the moving average (MA),

ES, ARIMA and NN models, Zhang et al. (2011) propose a

hybrid method that combines SARIMA and SVM models to

take advantage of the two models, and Wang et al. (2014)

combine ARIMA, Kalman filter (KF) and NN models by a

Bayesian method.

It should also be considered that some recent studies have

focused their attention on the impact of the periodic charac-

teristic of traffic data, highlighting that the explanation of

these periodic cycles may be an advantage for models. Zou

et al. (2015) propose a hybrid prediction approach to

consider the cyclical characteristics of freeway speed data

collected from detectors located on a freeway segment in

Minnesota. This approach decomposes speed into two

different components: a periodic component for cyclical

pattern over different weekdays, which is modelled by a

trigonometric regression function and a residual part after

removing the periodic component modelled by the space-

time (ST), vector auto regressive model (VAR), and ARIMA

model. The authors demonstrate that modelling the

periodicity and the residual part separately can better

interpret the underlining structure of the data, highlighting

the advantages of the ST model. Tang et al. (2017) propose

an evolving fuzzy neural network method (EFNN) to forecast

travel speed based on speed data collected from remote

traffic sensors located on a segment of a ring road in Beijing

City and compare that with other forecasting methods, such
as NN, SVM, ARIMA and VAR. EFNN model considers also a

trigonometric regression function to capture the daily

similarity of peaks and trough hours between days in the

raw speed data. The results suggest that the prediction

performances of EFNN are better than those of traditional

models, with the advantages of consider the periodic pattern

of data.

2.2. Criteria and choices for models selection

In this researchwe present, the literature cited above has been

examined with respect to a specific need: predicting the

average traffic during the seven typical days of theweek in the

various months of the year on the basis of past data recorded

for a number of earlier years.

This is a problem that often occurs in preparing traffic

studies, or in designing and developing decision support sys-

tem or data mining tools in the motorway sector, when one

needs to estimate the average expected traffic patterns in a

typical week on the basis of an archive of past data and to

predict the typical fluctuation of the average daily traffic

throughout the year.

It is important to note that while the traffic fluctuation and

peak-hour traffic within a day are information required by

transportation agencies for the management of highway

traffic operations, with particular reference to their real-time

forecast, the same companies need different data for other

aspects that fall within theirmanagement tasks. Among these

aspects we can find, for example, the various issues related to

the economic and financial planning of the activities by the

concessionaire company, and the regulation of its relation-

ship with the grantor. The reference horizons for these ac-

tivities go beyond the single hour or the specific day, turning

to periods that consider larger portions of the year (weeks,

months, quarters and semesters), for which reliable estimates

are required and, however, these forecasts can be made by

estimating the average daily traffic during the chosen period.

Being aware of the high number of approaches proposed in

the literature, with extremely refined theoretical and practical

implications, the aim of this study is to select some methods

with a simple analytical definition and ready to use, for solv-

ing the mentioned prediction problem. The purpose is to find

somemodels easily and directly applicable by technicians and

professionals (i.e., practice-ready), to solve a usual problem

theymeet in their normal work. The ease of implementing is a

very significant issue in traffic flow forecasting models, taking

into account that the more the model is simple the more its

application is generalisable and usable frequently with a not

too high research specialization by practitioners.

Model selection, testing and comparison are among the

key themes of the research and application of forecasting

models. The criteria can be multiple, always calibrated to the

specific needs. However some guiding elements need to be

considered as basic, such as accuracy, time and effort for

model development, technical skills and expertise required,

transferability and adaptability and so on (Vlahogianni et al.,

2014).

In line with that and with the purpose of the work, the

attention has been addressed to those methods with few re-

quirements in the specification and calibration process, highly

https://doi.org/10.1016/j.jtte.2018.01.002
https://doi.org/10.1016/j.jtte.2018.01.002


J. Traffic Transp. Eng. (Engl. Ed.) 2018; 5 (4): 239e253242
implementable without having an in-depth statistical

training, as well as in-depth modelling/programming skills. A

good compromise, such as combination of accuracy of fore-

casting and development readiness using ordinary profes-

sional skills and conventional analysis tools, appears in three

models of the past and present literature panorama: two non-

parametric methods, namely non-parametric K-NN regres-

sion model (NPR) and Gaussian maximum likelihood model

(GML); a parametric method, namely exponential smoothing

approach for time series based on double seasonality

HolteWinters model (DSHW). Finally, considering what

mentioned above with regard to the potential profitability by

combining multiple models, this paper calls into question a

linear combination approach with two weighting methods.

Even in this case, the choice fell on two weighing methods of

more easy understanding and implementation, susceptible to

a direct use in professional practice, namely information en-

tropy (IE) method and Shapley value (SV) method.

In this way, this paper proposes the study and application

of three prediction models, both in single and combined

manner, easy to use in professional practice (even using only

spreadsheets), but which still keep up high levels of accuracy

in forecasting, as demonstrated through the analysis of four

cases with real-life data on Italian motorway stretches char-

acterized by different seasonal patterns. On the whole, and

briefly, the three individual models and the two combining

methods have been identified testing the compliance with the

following selection criteria.

� proven uses in literature, with availability of tried and

tested applications.

� reliable input data availability for their calibration and

validation.

� few requirements in the specification and calibration

process.

� highly implementability and usability without having an

in-depth statistical training.

� highly implementability and usability without having an

in-depth modelling/programming skills.

� good compromise between forecasting accuracy and

practical usability.
3. Materials and methods

3.1. Prediction models

In recent years the studies about short-term traffic forecast

models have increased enormously, due to the growth of

available data and the needs of implementing ITSs to traffic

management. Vlahogianni et al. (2004, 2014) review decades of

research in short-term prediction models taking into account

several issues as scope, methodologies, type of output and

input data and their quality, intending to provide a logical flow

for developing short-term traffic forecasting algorithms. In

this highly diversified context, characterized by enormous

literature production, this paper aims to offer a comparison of

a number of high-potential alternativemodels that prove their

usefulness for predicting the average traffic during the seven

days of the week in the various months of the year on the
basis of past data recorded for a number of earlier years with

easily generalisable models, which can have a direct use in

professional practice.

As highlighted in the introduction, in this section the paper

explores the main features of the three models already pre-

sent in the literature review and assumed as references for the

paper purpose: the non-parametric regression model (NPR)

and Gaussian maximum likelihood (GML), which are non-

parametric type; the double seasonality HolteWinters model

(DSHW), which is a parametric exponential smoothing model

for time series.

For these three models, that will be further processed

jointly, in what follows the paper also describes two weighing

models and the main steps for their application to the case

under discussion.

3.1.1. Non-parametric regression model
In general, non-parametric prevision methods are based on

data-driven models, allowing observations to highlight the

underlying structures without requiring the explanation of

the relations between inputs and outputs. The primary pur-

pose of these methods is to identify data clusters with char-

acteristics similar to the current state for a certain interval of

prediction, and then to define the same prediction from these.

In this way, it is not necessary to assume a forecasting equa-

tion expressed mathematically by a set of parameters, as it

happens to the parametric approach.

Themost popular non-parametric approaches include NPR

and NN techniques. As NN are data-driven models based on

pattern classification and recognition capabilities of the arti-

ficial-intelligence approach, NPR models make their predic-

tion searching for the most similar case regarding the current

prediction state among all observations. After decades of

research, the NPR technical applications have been numerous

in different fields of analysis, including transport and traffic

engineering in particular using the K-NN approach, which

predicts the forecasting value based on a similarity measure

by distance functions. Davis and Nihan (1989) suggest K-NN

approach as a candidate alternative method to Parametric

approaches in short-term motorway traffic forecasting. They

compare K-NN to simple univariate linear time series

forecasts discussing the profitability of the non-parametric

approach. Smith and Demetsky (1997) show the superiority

of K-NN approach in terms of robustness and regarding

different data, analysing the differences with NN and ARIMA

models.

Smith et al. (2002) compare parametric ARIMA and non-

parametric NPR models, pointing out that the former is

more powerful than the latter, while being the ARIMA model

more complicated in specifying, calculating and updating.

Tang et al. (2003) introduce NPR and Gaussian maximum

likelihood (GML), compared with ARIMA and NN, to estimate

the daily flow and calculate the annual average daily traffic

(AADT) for the current year in Hong Kong. The results of the

four models are compared with the real data for validation,

showing greater ease of implementation of the NPR and GML

models with respect to ARIMA and NN models, which

require extensive data calibration. Lam et al. (2006a) chose

again an NPR model (specifically K-NN), for short-term traffic

forecasting in Hong Kong, showing the comparison with the
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already mentioned GML that we will discuss below in this

paper. Lam et al. (2006b) extend once again the analysis

comparing the two non-parametric models, K-NN NPR and

GML, with ARIMA and NN approaches, revealing that K-NN

NPR and GML models can offer better estimations of traffic

data. Resuming the studies above, the essential element of

these non-parametric methods is to find in the previous

data a range with similarity characteristics compared to

what is being forecast. From this point of view Huang et al.

(2011) generalize a method for the search and

characterization of the similarities in the previous data,

suggesting and combining pattern matching and forecasting

algorithms.

For the purposes of this paper, we resume the NPR model

proposed by Tang et al. (2003) and used by Lam et al. (2006a,b),

to which we refer for a complete description of themethod. In

general, we can summarize that the NPR model produces its

prediction as output, on the basis of a group of past states

identified as similar with respect to the current (forecasting)

state, which is the input for the same prediction. The similar

early states, identified in the number K, are defined as those

closest (nearest neighbor), on the basis of a certain measure

of distance, with respect to the forecasting state, i.e. K-NN.

Going back to our case, each state that composes the

database is identified by the day d of the week (Sunday ¼ 1 to

Saturday ¼ 7), the month m (January ¼ 1 to December ¼ 12)

and the year y (first year in database ¼ 1 to last year in

database ¼ l), and it is characterized by a traffic value Yd,m,y.

For each state (d; m; y) in the database, the variables to be

considered are:

� Yd;m�1: traffic of the day d of month preceding m, which is

m-1;

� Yd;m�2: traffic of the day d of the month preceding m-1,

which is m-2;

� Yd;m: traffic of the day d averaged over all the months m in

the database (for various years 1 to l);

� Yd;m�1: traffic of the day d averaged over all the relative

months m-1 in the database (for various years 1 to l).

As the aim is to forecast the average (typical) traffic in the

chosen day d of the week (Sunday to Saturday) for the selected

month m (January to December) for a certain year y (e.g.

y ¼ l þ 1), the distance in the K-NNmodel is between variables

in forecasting state (d; m; y) and variables for each past state

(d; m ¼ 1, …, 12; y ¼ 1, …, l) in the database. Choosing the

expression of the Euclidean distance, it holds Eq. (1)
D
n�

d;m; y
�
;
�
d;m; y

�o
¼

�
Yd;m�1 � Yd;m�1

�2
þ
�
Yd;m�2 � Yd;m�2

�2
þ
�
Yd;m � Yd;m

�2
þ
�
Yd;m�1 � Yd;m�1

�2r
(1)
Once identified a suitable value for K, which in this case

may be equal to 3 as suggested by Tang et al. (2003) and Lam

et al. (2006a, b), the K ¼ 3 smallest values, D0;D00 and D000 of
the distance between the prediction state and all states of
the database can be identified. So, the traffic expected for

the state (d; m; y) may be estimated by averaging.

bYd;m;y ¼
D0 þ D00 þ D000

3
(2)

3.1.2. Gaussian maximum likelihood model
As stated in the literature framework for NPR method, Tang

et al. (2003) introduced another non-parametric method

based on the GML model for the short-term traffic forecast,

also proposed by Lam et al. (2006a, b). For this paper, we

resume GML model summarizing the general aspects and

the computational steps of the method, but making

reference to the original articles cited above for a complete

description of the methodology.

Bearing in mind the terms of reference for the analysis, we

can compose a traffic time series as a sequence of states

identified by the average day of the week d (Sunday ¼ 1 to

Saturday ¼ 7), the month m (January ¼ 1 to December ¼ 12)

and the year y (first year in database ¼ 1 to last year in

database ¼ l), each of which characterized by the traffic Yd;m;y.

We denote that by Y
d;m;y

the consecutive observations of

the daily traffic obtained for a selected day d varying the

monthmwithm¼ 1, 2,…,12 and the year with y ¼ 1, 2,…, l; by

FY
d;m;y

the consecutive observations of the increment of daily

traffic for the selected day d of monthm obtained with respect

to daily traffic at day d of month m-1, i.e., FY
d;m;y

¼ Y
d;m;y

�
Y
d;m�1;y

, with m that varies between 1 and 12 for years y 1 to l

(noted that if m ¼ 1, m-1 ¼ 12 of the previous year y-1).

By considering the data, we can define m
Y;d;y

and s2
Y;d;y

as the

mean and the variance of the consecutive observations of the

daily traffic Y
d;m;y

(traffic in a selected day d and year y, varying

the month m), and m
FY;d;m

and s2FY;m;y as the mean and the

variance of the consecutive observations of daily traffic

increment FY
d;m;y

(traffic increment in a selected day d and

month m, varying the year y 1 to l).

Supposing that Yd;m and FYd;m are normally distributed,

Lam et al. (2006a, b) prove the existence of a closed-form so-

lution for the traffic estimate in a selected day d of a month m

for the year y derived from the maximization of the likelihood

function and taking account of both the flows and flow in-

crements simultaneously. Referring to the articles cited above

for the detailed demonstration, the traffic forecast for the day

d of a month m for the year y can be calculated using the

following Eq. (3).
bYd;m;y ¼
s2
Y;d;y�1

�
mFY;d;m � Yd;m;y�1

�
þ s2

FY;d;m
mY;d;y�1

s2
Y;d;y�1

s2
FY;d;m

(3)
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3.1.3. Double seasonality HolteWinters model
The double seasonal triple exponential smoothing, also called

double seasonal HolteWinters method (DSHW), is a version

proposed by Taylor (2003) to take into account the double

seasonality problem within the standard HolteWinters (HW)

seasonal ES model. Winters (1960) introduces HW model as a

time series forecasting method in the presence of

seasonality by extending the Holt model (Holt, 1957), which

considers a double exponential smoothing for level and

trend. This triple smoothing model is commonly used for

modelling auto-correlated time series with seasonality using

additive or multiplicative seasonal patterns in many fields of

application. ES methods are widespread used in many fields,

especially when an automated procedure is preferable to

work with many time series (Taylor, 2008). Williams et al.

(1998) introduce their usage in the analysis of traffic data,

highlighting that ES models are useful to deal with

seasonality in traffic time series, and propose a comparison

between seasonal ARIMA and HW in traffic flow prediction.

In the last few years the already mentioned research by

Taylor (2003) has resolved one of the main problems of the

single-seasonality model, namely the impossibility of

treating multiple seasonal phenomena, with its formulation

of DSHW model. Although the author applies the extended

model to the case of electricity demand, the proposed

solution is also applicable in any case of double seasonal,

and then in traffic time series in which this effect is relevant.

Recently Daraghmi and Daadoo (2015) use a DSHW

method for a short-term traffic flow prediction to determine

the status of all roads on routes for implementing dynamic

route guidance as a part of advance traveller information

systems in Taipei City. The authors prove the accuracy of

the proposed method, which outperforms other methods

achieving a lower root mean square error. Yu et al. (2016)

investigate the possibility of using the DSHW method to

account the double seasonality in traffic time series. They

prove how DSHW model outperforms the standard

HolteWinters method and the ARIMA method in short-term

traffic forecasting, allowing to take into consideration both

within-day and within-week seasonal cycles.

From this considerations, the suitability of DSHWmodel in

our case study is clear, having to deal with a double season-

ality relates to an intra-week component (average days per

week) with period s1 and an intra-annual component (weeks

in the months of the year) with period s2. In particular, as in

Taylor (2003) and many other applications including

Daraghmi and Daadoo (2015), and Yu et al. (2016), in this

case we refer to the multiplicative model, as the size of the

seasonal fluctuations are not fixed but vary depending on

the overall level of the traffic series.

As for the other models in Sections 3.1.1 and 3.1.2, each

traffic time series consists in a sorted sequence of states t

(t ¼ 1, …, N) identified by the average day of the week

d (Sunday ¼ 1 to Saturday ¼ 7, and then s1 ¼ 7), the month m

(January ¼ 1 to December ¼ 12, and then s2 ¼ 12 � 7 ¼ 84) and

the year y (first year in database¼ 1 to last year in database¼ l)

with traffic Yd;m;y. In line with this concept a time origin o for

the forecasting is set, whichmay be the state corresponding to
the last typical day of the lastmonth of the last year (i.e. t¼N),

which is part of the database.

Once selected a reference time o for the forecasts, we can

write the selected time t for the out-of-sample prediction (i.e.,

a selected day d of a month m for the year y) as h step-ahead

from origin o, and traffic forecast bYt as h step-ahead forecast

from the same origin.

bYd;m;y ¼ bYt ¼ bYo

�
h
�
¼
�
So þ hTo

�
Wo�s1þhMo�s2þh (4)

where So is the level (an estimate of the local mean), To is the

trend (an estimation of the local trend, i.e., the variation be-

tween successive time points),Wo andMo are the two seasonal

components (the estimation of the deviation from the local

mean for seasonality) for the weekly and monthly cycles with

their related periods s1 and s2, whose update are made in

consideration of four smoothing equations.

So ¼ a
�
Yo

��
Wo�s1Mo�s2

�	þ ð1� aÞðSo�1 þ To�1Þ (5)

To ¼ g½Yo=ðSo þ So�1Þ� þ ð1� gÞTo�1 (6)

Wo ¼ d
�
Yo

��
SoMo�S2

�	þ ð1� dÞWo�s1 (7)

Mo ¼ u½Yo

�ðSoWo�s1 Þ� þ ð1� uÞMo�s2 (8)

where a;g; d and u are the smoothing parameters, which can

be estimated on the basis of the sample data (e.g. by mini-

mizing the squared errors between predicted and measured

data). Smoothing parameters close to 1 emphasize the most

recent observations, while values close to 0 assign more in-

fluence on the past ones.

It is worth specifying that this model is able to provide the

explanation of the periodic characteristic of annual traffic, i.e.

the daily and monthly cycles, which is recognized as an

advantage in modelling and forecasting traffic (Tang et al.,

2017; Zou et al., 2015). This model, in fact, allows expressing in

a direct way the double frequency in predicting daily traffic

values through the two seasonal components Wo and Mo as

the estimation of the deviation from the local mean (i.e., the

level So) for the weekly and monthly cycles with their related

periods s1 and s2.

It should be emphasized that the model implementation

needs starting values for the level, the trend and the two

seasonal components. Going backwards with respect to the

origin o, the starting values must be calculated for the first s2
observations of the time series, which form the orderly suc-

cession of the daily traffic on days d ¼ 1, …, 7 and for months

m ¼ 1,…, 12 of the first year y ¼ 1. This allows the definition of

the updating algorithm, also making possible on-sample data

forecasts even for the first s2 observations of the series. In this

case, in fact, once selected the origin o so that d ¼ 1,m ¼ 1 and

y ¼ 1 (i.e. t ¼ 1), So, To, Wo and Mo would not be defined by the

general equations.

We address first the case of short seasonality W, with

period s1, whose starting value W*j for the first j ¼ 1, …, s2
observations of the time series are obtained by repeating s2/s1
times the following values W*z for the first s1 observations

(z ¼ 1, …, s1) of the same time series.

https://doi.org/10.1016/j.jtte.2018.01.002
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W*z ¼ RWd

SdRWd

�
s1

(9)

RWd ¼
Sm;yðRWdÞm;y

lðs2=s1Þ

ðRWdÞm;y ¼
ðYdÞm;y

SdðYdÞm;y

.
s1

where d ¼ 1, …, 7; m ¼ 1, …, 12; y ¼ 1, …, l.

Then we address the long seasonality M with period s2,

whose starting value M*j for the first s2 (j ¼ 1, …, s2) observa-

tions of the time series are obtained by the following.

M*j ¼ RMd;mP
d;m

RMd;m

,
s2

(10)

RMd;m ¼

P
y
ðRMd;mÞy

l

ðRMd;mÞy ¼
ðYd;mÞyP

d;m

ðYd;mÞy
,

s2

where d ¼ 1, …, 7; m ¼ 1, …, 12; y ¼ 1, …, l.

For trend and level, we can estimate T* and S* as in

Hyndman et al. (2017):

T* ¼
Ps2

j¼1

�
Yj�Yjþs2

s2
þ X*j

�
2s2

(11)

X*j ¼ Yj � Yj�1

X*1 ¼ 0

S* ¼
P2s2

j¼1Yj

2s2
�


s2 þ 1

2

�
T* (12)

Definitely, the traffic estimate in a selected day d of a

month m for the year y, i.e., bYd;m;y, can be obtained using the

prediction and smoothing equations declared above, consid-

ering an adequate number of h step-ahead from o. From this

point of view, if the origin o of the current forecasts (and then

the last state in past database) is the average Saturday (d ¼ 7)

in December (m ¼ 12) of the last year l of the database, the

forecast for the average Friday (d ¼ 6) in February (m ¼ 2) of

year y¼ lþ 1 is obtained considering h¼ 13 step-ahead from o.
3.2. Combined prediction model

The pioneers in the theoretical study of the combination of

forecasts are Bates and Granger (1969). These authors propose

techniques to obtain a combined forecast from linear

combinations of two individual forecasts, whose weights are

obtained from their forecast error variances. Subsequently

Newbold and Granger (1974) extend the linear combination of

forecast models from two to many, and then various forms of

combination have been developed using more sophisticated
methods, both objective (i.e., using a mathematical function)

and subjective (i.e., human judgements, such as experts’

opinions) (Aline and Werner, 2013).

Considering the simple linear combination model (Bates

and Granger, 1969; Newbold and Granger, 1974), in presence of

P prediction models the form in which a combined model can

be expressed is

bYd;m;y ¼
XP

i¼1
ui

�bYd;m;y

�
i

(13)

where ui is a weighting coefficient for each single model,

considering that ui � 0 and
P

iui ¼ 1.

Since the combined prediction model in this paper is the

combination of P ¼ 3 models, we can set ðbY
d;m;y

Þ1 for the NPR

model, ðbY
d;m;y

Þ2 for the GML model and ðbY
d;m;y

Þ3 for the DSHW

model, getting

bYd;m;y ¼ u1

�bYd;m;y

�
1
þ u2

�bYd;m;y

�
2
þ u3

�bYd;m;y

�
3

(14)

In the formulation above, the combination of weighting

coefficients would affect the accuracy and the success of the

combined forecast model (Timmermann, 2006) and for this

reason their right choice is an important and interesting

problem.

In what follows, this paper examines two weighing

methods for combining models: the widely used information

entropy method (IE) and the Shapley value (SV) method,

which is less widespread.

3.2.1. Information entropy method
Entropy is a thermodynamics concept introduced into the

information theory by Shannon (1948) to measure the order

and quality of information expressed by a system: a more

orderly system has the lower entropy and has the greater

information, and vice versa.

The concept of entropy is very used to combine forecasting

methods. In this case, after choosing a certainpredictionmodel,

its weight in the combined model can be calculated measuring

the coefficient of variation of an appropriate index according to

entropy theory, agreeing with the fact that to a greater index

variation degree corresponds a lower weight (Huang et al., 2011;

Liu and Li, 2015). The major differences in applying the method

derive from different choices of indexes and, from this point of

view, various options are possible in real application. In this

paper, we use relative forecasting error as the evaluation index,

and the entropy weighing algorithm is described as follows.

Suppose the actual average daily traffic volume in a time t

(to indicate a day d in a given month m during the year y) is Yt

and the forecasting value based on the three models is bYit,

with i ¼ 1, 2, 3.

Let eit denotes relative forecasting error for i-th forecasting

method in t time and Pit is the normalized relative prediction

error, regarding the entire prediction interval (t ¼ 1, …, N),

described as

eit ¼
8<:1 if

����Yt � bYit

�.
Yt

��� � 1����Yt � bYit

�.
Yt

��� if 0 �
����Yt � bYit

�.
Yt

���<1
(15)
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Table 1 e Brief description and calculation formula for five forecasting performance metrics.

Index Calculation Description

MAPE 1
N

XN
t¼1

�����Yt � bYt

Yt

�����
Relative and dimensionless index, expressing the average absolute

percentage deviation between pairs of measured and modelled values.

RMSE

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

N

XN
t¼1

ðYt � bYtÞ2
vuut Absolute index dimensionally the same as that of the variable, which

expresses the standard deviation of the errors.

RMSPE

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
N

XN
t¼1

 
Yt � bYt

Yt

!2
vuut Relative and dimensionless index, calculated from the RMSE and

normalizing errors with respect to the actual value of the variable.

UII

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPN
t¼1

ð bYt � YtÞ2
s

ffiffiffiffiffiffiffiffiffiffiffiffiPN
t¼1

Y2
t

s Relative and dimensionless index, which can be interpreted as the RMSE

of the proposed forecasting model divided by the RMSE of a no-change

model.

SSLAR
PN
t¼1

 
ln
bYt

Yt

!2

Relative and dimensionless index, calculated from the square logarithm

of predicted value divided by actual value.
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Pit ¼ eit
.XN

t¼1
eit (16)

For the i-th model the entropy value of relative forecasting

error is

hi ¼ � 1
lnðNÞ

XN

t¼1
Pit lnðPitÞ (17)

Then, for each single forecasting model we can introduce

the relative weight in the combined model by IE method as

ui ¼ Di

.X3

t¼1
Dt (18)

Di ¼ 1� hi (19)

3.2.2. Shapley value method
Shapley Value calculation is a mathematical method pro-

posed by Shapley (1953) and used to solve cooperation games

withmultiple players. Thismethod allows achieving a fair and

efficient allocation of team total revenue among the various

members that are cooperative players.

From this point of view, the aim of limiting the total pre-

diction error of the combined model can be considered as a

cooperative game, where each of the single models is a

cooperative player in the process of combined forecasting

(Feng et al., 2014).

We denote by I ¼ {1, 2,…, P} the set of P models taking part

in the combined model, which in our specific case is I ¼ {1, 2,

3}, by E the total error of the combined prediction and Ei the

absolute value of error of the i-th forecasting model. If s is any

subset of I, we can identify with E(s) the combined error of this

subset s. In general, the following relationships apply

Ei ¼ 1
N

XN

t¼1

���Yt � bYit

��� i ¼ 1;2;…; P (20)

E ¼ 1
P

XP

i¼1
Ei (21)

where N is the number of samples and
���Yt � bYit

��� is the pre-

diction error of getting bYit prediction by i-th forecasting

method, regarding to t-th time in the prediction interval.

Shapley value model considers that
Ei ¼
X
si2Si

uðjsijÞ½EðsiÞ � Eðsi � figÞ� (22)

uðjsijÞ ¼ ðn� jsijÞ!ðjsij � 1Þ!
n!

(23)

where si is a model combination set containing prediction

model i, among all sets Si containing the same original model,

jsij is the number of prediction models in the combination and

si-{i} is a new set obtained from si by removing i-th model.

Each forecasting model i appear in the combined predic-

tion model with a weight that is

ui ¼ 1
n� 1

E� Ei

E
(24)

In this case, as we are dealing with three initial models

(NPR, GML and DSHW) respectively numbered as 1, 2 and 3,

then I¼ {1, 2, 3} and all the possible subsets are E{1}, E{1,2}, E{1,3}

and E{1,2,3}, containing model 1; E{2}, E{1,2}, E{2,3} and E{1,2,3},

containing model 2; E{3}, E{1,3}, E{2,3} and E{1,2,3}, containing

model 3. Taking as an example the model 1, it holds

E1 ¼ uðjf1gjÞ½Eðf1gÞ � Eðf1g � f1gÞ� þ uðjf1;2gjÞ½Eðf1; 2gÞ
�Eðf1; 2g � f1gÞ� þ uðjf1; 3gjÞ½Eðf1;3gÞ � Eðf1; 3g � f1gÞ�

þ uðjf1;2;3gjÞ½Eðf1; 2;3gÞ � Eðf1; 2;3g � f1gÞ�

¼ ð3� 1Þ!ð1� 1Þ!
3!

½Eðf1gÞ� þ ð3� 2Þ!ð2� 1Þ!
3!

½Eðf1;2gÞ � Eðf2gÞ�

þ ð3� 2Þ!ð2� 1Þ!
3!

½Eðf1;3gÞ � Eðf3gÞ�

þ ð3� 3Þ!ð3� 1Þ!
3!

½Eðf1;2;3gÞ � Eðf2;3gÞ�
(25)

In a similar way E2 and E3 may be obtained. From them, the

weights u1;u2;u3 of NPR, GML and DSHW (respectively

numbered as model 1, 2 and 3) are obtained for the combined

forecasting model.

3.3. Forecasting performance metrics

To check the accuracy of the proposed algorithms in fore-

casting results, some evaluation metrics have been intro-

duced using a number of error testing indexes.
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Table 2 e AADT variability for different stretches and years (veh/d).

Stretch AADT Year

2012 2013 2014 2015 2016

(a) Mean 30,458 29,932 30,367 31,141 31,464

Stand. Dev. 4956 4971 4789 4856 4752

Max variation 17,845 18,100 16,415 16,135 17,586

Coef. Var. 0.163 0.166 0.158 0.156 0.151

(b) Mean 31,832 31,640 32,165 33,567 34,398

Stand. Dev. 6442 6882 6714 7099 6874

Max variation 22,318 23,310 23,898 23,962 22,681

Coef. Var. 0.202 0.218 0.209 0.211 0.200

(c) Mean 11,940 11,730 11,801 12,106 12,357

Stand. Dev. 5008 4845 4887 4968 5136

Max variation 9724 9491 9607 9825 9989

Coef. Var. 0.419 0.413 0.414 0.410 0.416

(d) Mean 44,091 43,714 44,425 46,334 47,581

Stand. Dev. 6464 6540 6187 6596 6304

Max variation 15,847 15,702 15,926 15,688 15,631

Coef. Var. 0.147 0.150 0.139 0.142 0.132
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The error testing indexes that have been considered are

some most used in the literature, namely: mean absolute

percentage error (MAPE); root mean square error (RMSE); root

mean square percentage error (RMSPE); Theil inequality II

coefficient (UII) (Bliemel, 1973; Theil, 1966); sum squared log

accuracy ratio (SSLAR) (Toffalis, 2015).

Taking up the notation already used, let Yt denotes the

actual value and bYt the predicted value, with reference to the

entire interval (t ¼ 1, …, N), Table 1 shows the calculation

formula and a brief description for each index. As it is

known, the best model has the lowest indexes.
Fig. 1 e Time sequences for average daily traffic, with weekly a

and 2016 (validation set). (a) Stretch (a) - light vehicles. (b) Stretch

(d) - light þ heavy vehicles.
3.4. Daily traffic volume collection and treatment

Real-life data for describing average daily traffic fluctuations

during weeks and months concern some stretches (basic

freeway segments) on the Italian motorway network. The

complete dataset contains daily traffic volumes for several

motorway stretches for five years between 2012 and 2016, as

resulting from accounting tickets/payments, distinguishing

travel direction and vehicle type (light and heavy vehicles).

For this paper, four stretches have been extracted from the

overall database, named later in the paper as (a), (b), (c), and
nd monthly fluctuation e year 2012e2015 (calibration set)

(b) - light vehicles. (c) Stretch (c) - heavy vehicles. (d) Stretch

https://doi.org/10.1016/j.jtte.2018.01.002
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Table 3 e DSHW optimized parameters for on-sample
data (2012e2015).

Stretch Model Optimized parameters

a g d u

(a) DSHW 0.889 0.001 1.000 1.000

(c) DSHW 0.907 0.011 1.000 0.010

(d) DSHW 0.569 0.001 0.575 0.950

(e) DSHW 0.802 0.007 0.373 0.010
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(d). The four selected stretches are located on Autostrada A4,

an important Italian motorway that goes through the Po Val-

ley and connects several major cities between Turin and

Trieste in Northern Italy. The A4 is one of the busiest in the

Italian motorway system and in the last years it has been the

subject of different researches about the fundamental dia-

gram and the traffic flow quality (Pompigna and Rupi, 2015),

and the lane distributions of the macroscopic variables of

the traffic (Pompigna and Rupi, 2017). Table 2 shows the

annual average daily traffic (AADT) values and some

statistics (standard deviation, max variation and coefficient

of variation) that express the data variability within each

year and for each stretch.

For these stretches, the average traffic volumes Y for each

typical day of the week, i.e., from Sunday to Saturday, have

been calculated over the 12 months of each year from 2012 to

2016. In particular, for stretch (a) and (b) the average traffic

data relate to light vehicles, for stretch (c) data refer to heavy

vehicles, while for stretch (d) the same data concern total

vehicles (light and heavy). This choice was made to analyse

the behaviour of the forecasting models for different patterns

of seasonality, mainly related to the type of vehicles or the

place of the stretch.

The sequences Yd,m,y constructed ordering the data by days

d 1 (Sunday) to 7 (Saturday) of the average week in themonths

m 1 (January) to 12 (December) of the years y 2012 to 2016, allow

describing the trend and the seasonal fluctuations of average

monthly daily traffic (AMDT) for each motorway stretch.

It is necessary to specify that the overall database of the

values obtained for the seven days of the average week for

each month in 5 years, have been divided into two portions:

data for years 2012e2015, which have been used for models

training and calibration (on-sample data); data for the year

2016, which have been reserved for models validation and

accuracy assessment (out-of-sample data).
Table 4 e Performances metrics for the three models consider

Stretch Model MAPE (%) RMSE

(a) NPR 2.16 871.28

GML 7.50 3227.24

DSHW 2.90 1131.12

(b) NPR 3.11 1385.86

GML 8.81 4000.60

DSHW 3.60 1219.13

(c) NPR 3.00 552.51

GML 10.95 1972.67

DSHW 5.85 1101.87

(d) NPR 2.64 1566.91

GML 7.45 4265.76

DSHW 2.67 1327.89
Fig. 1 shows the traffic Yd,m,y time series, distinguishing the

model calibration dataset (2012e2015) from the validation

dataset (2016). The double seasonality of the data is clear by

figures: a first seasonality regarding the daily fluctuation

within a week; a second seasonality regarding the monthly

fluctuation within a year.
4. Results and discussion

The single models have been implemented using standard

functions provided by any commercially available software

package for spreadsheets, to test and make sure their com-

plete definition in a substantially simple way and by using

commonly available tools. It should be specified that the two

Non-Parametric models have no calibration parameter, and

their complete definition about on-sample data only depends

on their adequate treatment.

The same thing does not happen for the Parametric model

DSHW, the smoothing parameters of which (i.e. a, g, d, and u)

have been optimized by minimizing the squared errors be-

tween predicted bYt and actual Yt average daily traffic for the

years 2012e2015.

Table 3 shows the values obtained for the calibration

parameters of the model DSHW. Also in this case the

optimization has been performed using the normal

functionality of spreadsheets (Namely Microsoft Excel

Solver). It is evident that the values obtained for model

parameters are extremely variable, depending on the

motorway stretch under consideration.

Table 4 shows the calculated values for the five error

indexes in Table 1, for the three proposed models and with

reference to the on-sample data. It should be specified that

the metrics have been applied to the differences between

the predicted values and the sample values only for the

years 2013e2015. Due to the nature of the GML model, in

fact, a prediction for the first year in time series cannot be

provided and, for this reason, the year 2012 has been

excluded. Despite being the same possible for the other two

models, however, for a homogeneous and concordant

discussion the first year has been excluded from the

calculation of the error testing indexes. To assess the

relative order of the three models proposed in terms of

average accuracy with regard to all the indexes, an average
ing on-sample data (2013e2015).

RMSPE (%) UII SSLAR AV RANK

2.98 0.03 0.220 1.0

10.03 0.10 2.865 3.0

3.89 0.04 0.377 2.0

4.47 0.04 0.489 1.2

11.43 0.12 3.821 3.0

4.79 0.04 0.577 1.6

4.40 0.04 0.467 1.0

15.96 0.15 8.419 3.0

8.69 0.09 1.720 2.0

3.59 0.03 0.327 1.2

9.71 0.10 2.696 3.0

3.77 0.03 0.348 1.6
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Fig. 2 e Single models forecast performances for out-of-sample data (Valid. data for 2016 validation set). (a) Stretch (a) - light

vehicles. (b) Stretch (b) - light vehicles. (c) Stretch (c) - heavy vehicles. (d) Stretch (d) - light þ heavy vehicles.
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rank (AV RANK) has been introduced. The AV RANK is

calculated as the average value of the accuracy orders of the

models with respect to each index, evaluated for each

stretch by attributing: the value 1 for the model with the

smallest index (the best performer); the value 3 for the

model with the largest index (the poorest performer); the

value 2 for the remaining model.

It should first be noted that the response of the three

models is generally good as shown by the values of the in-

dexes. Taking into consideration the mean absolute percent-

age error (MAPE) we have values that, at most, slightly exceed

10%. The highest values for the MAPE are shown by the GML

model; for the other two models, these values do not exceed

6% and, on average, reach about 3%. Essentially, the same

finding emerges considering also the other indexes.

In comparing the performance of the three models for on-

sample data prediction, it is still clear that the poorest
Table 5 e Single models performances metrics for out-of-samp

Stretch Model MAPE (%) RMSE

(a) Single NPR 3.86 2877.79

Single GML 7.24 3014.58

Single DSHW 3.60 1408.03

(b) Single NPR 6.06 3473.17

Single GML 8.22 3397.72

Single DSHW 6.13 2490.46

(c) Single NPR 5.71 1884.12

Single GML 11.71 1934.31

Single DSHW 6.26 1079.22

(d) Single NPR 5.57 3630.00

Single GML 6.54 3402.00

Single DSHW 4.89 2693.00
performing model is steadily, for all the four stretches, the

GML model. This model presents, in fact, an average rank

order that it is always equal to 3. This means that the GML

model presents, for the four stretches, the less prediction ac-

curacy with respect to all the five errors test indexes. The NPR

and DSHWmodels share out, in substance, the role of the best

performer with a slight predominance of the non-parametric

regression model.

Switching to the prediction for 2016, i.e., out-of-sample

data, Fig. 2 shows the evolution of the forecast for each single

model, and the comparison with the actual data. Table 5

presents a comparison among the indexes for the validation

year.

For the validation set, forecasting accuracy ensured by the

three models is satisfactory. Taking into consideration once

again the MAPE, values are all below the 12%. The highest

values are shown also in this case by the GML model; for the
le data (2016).

RMSPE (%) UII SSLAR AV RANK

4.69 0.093 0.195 2.0

9.55 0.095 0.872 3.0

4.48 0.045 0.172 1.0

7.51 0.104 0.539 2.2

10.76 0.098 1.125 2.6

7.46 0.075 0.528 1.2

7.20 0.146 0.459 1.6

16.18 0.145 3.105 2.8

7.97 0.083 0.546 1.6

6.42 0.079 0.377 2.4

8.75 0.072 0.731 2.6

5.76 0.059 0.303 1.0

https://doi.org/10.1016/j.jtte.2018.01.002
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Table 6 e IE and SV weights for single models calculated
for on-sample data (2012e2015).

Stretch Model Weights ui

IE SV

(a) NPR 0.351 0.521

GML 0.312 0.025

DSHW 0.337 0.454

(b) NPR 0.385 0.487

GML 0.295 0.059

DSHW 0.320 0.453

(c) NPR 0.325 0.538

GML 0.351 0.090

DSHW 0.324 0.372

(d) NPR 0.343 0.475

GML 0.285 0.053

DSHW 0.372 0.473
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other two models, these values do not exceed 6.3%, reaching

on average about 5. The other indices confirm the substance of

what has been found above. The reciprocal comparison be-

tween the predictive capabilities of the three models, made

clear through the AV RANK, shows that the best performances

are those of DSHW model, which detaches the second best

model, i.e., NPR, and the third in order of accuracy, i.e. GML.

Once assessed the goodness of prediction of the individual

models, we move to test the performances of the combined

models. As alreadymentioned, thesemodels are obtained from

the weighing of the individual models and these weights are

calculatedwith the IE and SVmethods explained in section 3.3.

Table 6 shows the EI and SV values of the weights

calculated on the training data, and which are later used for
Fig. 3 e IE (Entropy) and SV (Shapley) combined models forecas

validation set). (a) Stretch (a) - light vehicles. (b) Stretch (b) - ligh

light þ heavy vehicles.
weighing the forecast for the year 2016. The weights shown

in Table 5 have been calculated on 2012 to 2015 data because

it is assumed that the measured values are not known (and

the forecasting errors cannot be calculated) for 2016. These

weights seem to be very different for the two methods: the

IE method, in fact, produces weights that are more and more

balanced between them and values are not too different

from one-third each for NPR, GML and DSHW models.

The SV method shows more spaced weights between the

three models, and in all cases it is clear the reduced contri-

bution (and therefore low weight) for the GML model and the

predominance (with the weight values close to each other) of

the other two models.

Looking at the weighted combinations of each model, Fig. 3

shows the evolution of the joint forecast using IE and SV

weights, comparedwith the actual data, while Table 7 contains

the relative indexes for errors and the average accuracy.

The results presented in Table 7 highlights that the best

combination of models is obtained considering the SV

method, using the relative weights. The cooperative method

allows, in fact, finding the best values of the indexes (e.g.

MAPE that does not exceed 6%), with an AV RANK that it is

always close to one. This confirms the best forecasting

performance of the Shapley value method for all the

motorway stretches considered.

Comparing the indices in Tables 7 and 5, and looking at the

synthesis in Table 8 especially for normalized AV RANK, the

SV weights allows getting slightly better forecast in linear

combinations than those obtained with each model

individually considered. One exception appears for the

stretch (d), for which the best performances are obtained
t performances for out-of-sample data (Valid. data for 2016

t vehicles. (c) Stretch (c) - heavy vehicles. (d) Stretch (d) -

https://doi.org/10.1016/j.jtte.2018.01.002
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Table 7 e Combined models performances metrics for out-of-sample data (2016).

Stretch Model MAPE (%) RMSE RMSPE (%) UII SSLAR AV RANK

(a) Combined IE 3.99 1605.086 5.03 0.051 0.219 2.0

Combined SV 3.59 1359.745 4.35 0.044 0.166 1.0

(b) Combined IE 6.01 2567.133 7.43 0.076 0.524 2.0

Combined SV 5.87 2462.019 7.20 0.074 0.493 1.0

(c) Combined IE 6.62 1177.686 8.78 0.090 0.703 2.0

Combined SV 5.63 980.085 7.18 0.075 0.450 1.0

(d) Combined IE 5.10 2795.599 6.02 0.061 0.332 1.8

Combined SV 5.10 2743.672 5.88 0.060 0.314 1.2

Table 8 e AV Rank and Norm. AV Rank for single and
combined IE and SV models for out-of-sample data
(2016).

Model AV RANK NORM. AV RANK

(a) (b) (c) (d) (a) (b) (c) (d)

NPR 3.4 4.2 3.0 4.4 3 4 2 4

GML 5.0 4.6 4.8 4.6 5 5 5 5

DSHW 2.0 2.8 2.6 1.0 2 2 2 1

IE 3.6 2.4 3.6 2.8 4 3 4 3

SV 1.0 1.0 1.0 2.2 1 1 1 2
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with the DSHWmodel followed by the models combination in

accordance with the SV weights. In the latter case, however, it

should be noted the extreme closeness of the indexes when

comparing singular DSHW forecasts and weighted SV

predictions.

It should be noted, moreover, as the linear combination

with IE weights doesn't improve the results of the best single

model in all the stretches. The indices relating IE joint fore-

casts are worse than those of the combined SV, worse than

those of the single DSHW and, for two stretches, even than

those of the single NPR model.
5. Conclusions

This paper deals with a very common issue for professionals

in analysis of transport systems, especially of motorway in-

frastructures, which is predicting the weekly fluctuations of

traffic on various months of the year, on the basis of past data

recorded for a number of earlier years. This problem occurs

when practitioners need to estimate the average expected

traffic patterns in a typical week on the basis of an archive of

past data and, therefore, to predict the typical fluctuation of

the average daily traffic throughout the current year. This

often happens to those who are professionally involved in

motorway traffic, such as in activities for traffic studies and

for forecast report arrangements to support the concessionary

company or the grantor.

Following a literature review, three short-time prediction

models for average daily traffic have been identified: the non-

parametric regression model (NPR) and Gaussian maximum

likelihood (GML), which are non-parametric type: the double

seasonality HolteWinters model (DSHW), which is a para-

metric exponential smoothing model for time series.

On account of the fact that many approaches in the liter-

ature are very hardly applicable in professional tasks, due to

the complexity of underlying theory and the mathematical
formulation of solutions algorithms, our attention has been

addressed to those three because of their few requirements in

the specification and calibration process. These characteris-

tics make them highly generalisable and implementable

without necessarily having an in-depth statistical training, as

well as in-depth modelling and programming skills.

The threemodels have been applied to four stretches of the

Italian motorway network, characterized by different shapes

of weekly and monthly seasonality. The overall data for each

stretch have been divided into two datasets, with the values

for the years 2012e2015 as the training data and the values for

2016 as the validation data. To check the predictive accuracy

of these models for both data sets, five common performance

metrics for forecast error have been introduced (namely

MAPE, RMSE RMSPE, UII, SSLAR), with an average rank indi-

cator (AV. RANK) that allows to rate the goodness of the in-

dexes with respect to each model.

For both training and validation data, the response of the

three models discussed is generally good. The Parametric

DSHW model and non-parametric K-NN NPR model prove to

be the best ones; if the latter proves slightly better on the

dataset of calibration, the former is more accurate on the

validation dataset, but the distance between them is always

minimal. More detached is the GML model, with slightly

higher forecast errors. Beyond the mutual comparison, all

threemodels confirmprediction performances that arewidely

acceptable to the requirements of the problem we face here.

Given the fact that the possibility of a combined use of the

singlemodels as enhancing factor for accuracy is awell-known

finding in the forecast literature, two linearly combined pre-

dictions have been tested and compared by computing weight

coefficients through Information Entropy and Shapley Value

methods. Regarding the validation year 2016, the relative per-

formances for these two weighted predictions have been dis-

cussed comparatively and respect to the three single models,

to understand their strengths in improving the forecast for the

four motorway stretches. Despite being less popular than EI,

the SV method proves to be more capable in better combining

forecasts and produces improvements in the predictions for

test data than the individual models.

In conclusion, being known that estimating the current

traffic level and predicting the typical fluctuation of the

average daily traffic throughout the year are essential inmany

fields of transport analysis and practice, this paper draws

reader's attention to three models reviewed by the literature

as valuable and viable ready-to-practice tools for prediction

purposes. Referring to these models and using real-life data,

this research has highlighted a good balance of forecasting

accuracy and ease development using ordinary professional

https://doi.org/10.1016/j.jtte.2018.01.002
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skills and conventional analysis tools, also showing the pos-

sibility for improvement by resorting to an appropriate linear

combination of individual forecasts. In our view these re-

marks highlighted by the paper could be a useful reference

and aid for traffic technicians or analysts, in various and not

uncommon tasks they might find in their work.
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