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Abstract—The concept of personal radar has recently emerged
as an interesting solution for future simultaneous localization and
mapping (SLAM) applications. In this paper we evaluate the
performance of an ultrawide-band (UWB) radar system for in-
door environments mapping by exploiting a grid-based Bayesian
approach able to combine all the measurements collected by
radars adopting non-pencil beam antennas. In the proposed
approach, the crowd will be involved by freely exploring the
space, sending environmental partial views of it to cloud servers,
where a complete map will be formed. Results show how the
mapping accuracy can be improved thanks to the information
collected from the crowd and considering different receivers
schemes.

Index Terms—UWB, SLAM, indoor mapping, personal radar.

I. INTRODUCTION

Next Internet of Things (IoT) scenarios are expected to
enable people and objects sharing their information in real
time. Interconnected electronic devices acquire and exchange
information on the surrounding world, thus creating a digital
representation (mapping) of the real world into the so called
smart space [1].

In this perspective, personal devices (e.g., smartphones,
tablets and wearables) could represent a great sources of
information allowing users to achieve an augmented ambient
awareness thanks to the development of crowd-based appli-
cations. These latter, based on the “power of crowd”, are
expected to dramatically increase in their adoption thanks
to the extreme connectivity and data sharing guaranteed by
next 5th generation (5G) mobile devices [2]. The mobile
crowd sensing paradigm has been intensely investigated [3],
but, as the amount of data transferred can be huge, efficient
compression schemes must be devised in view of what can
be defined as an “acceptable information loss” in the mapping
process. Moreover, tracking and localization in indoor scenar-
ios still remains very challenging and a matter of research
studies. SLAM-oriented solutions based on lidars or on vision
technologies have been proposed in literature but, despite
their capabilities of reconstructing environments, they need
perfect visibility conditions to operate and require human
active participation in the exploration process. To overcome
these shortcomings, the concept of a smart personal radar
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Fig. 1. Crowd-based mapping using personal radars.

has been recently proposed in [4] as well as the adoption of
dedicated high gain massive arrays for this kind of application
[5]. In these works, the personal radar is based on a massive
array operating at millimeter-wave (mmW) frequencies able
to electronically scan the surrounding environment and to
reconstruct a map of it. The choice of these technologies
has been driven from one side to allowing the integration of
massive arrays in small size, to the other by the necessity
of achieving a high-definition distance estimate and very
narrow steering beams which allow a high level of mapping
reconstruction.

Contrarily, in this paper, the possibility of realizing a
crowd-based personal radar working at ultrawide-band (UWB)
frequencies for indoor environments mapping is investigated.
If from one side, the possibility to adopt a near-pencil beam
antenna could be lost, on the other side, the complexity reduces
because a technological shift for the system realization is not
yet necessary. The main novelty in the mapping approach
is that the crowd will be involved in this process by freely
moving within the space to be mapped, providing partial views
of the users’ surroundings and sending them to cloud servers,
where they will combined to form a more complete and less
uncertain map. Such information will be then available to all
users again for possible mapping refinements and for providing
an infrastructure-less, low-cost, and highly accurate indoor
localization system.
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Fig. 2. Map of the considered scenario consisting of two main paths where
pA(1) is the starting position for users 1-2 and pB(1) for users 3-4.

The rest of the paper is organized as follows. Sec. II
describes the measurement set-up and the considered UWB
radar. Sec. III presents the mapping algorithm and finally,
Sec. IV describes the case study and discuss the obtained
measurement results. Sec. V concludes the work.

II. UWB INDOOR MEASUREMENTS

In order to validate the crowd-based personal radar concept,
a measurement campaign has been conducted at the University
of Bologna - Cesena Campus indoor premises. The considered
scenario is shown in Fig. 2, and it consists of an area of
20 × 20m2 with two possible trajectories. Fig. 3 shows two
photos taken during the measurement campaign. The measure-
ment set-up consists of a Novelda R⃝ NVA-R661 impulse radar1

connected to two UWB sinouos antennas with dielectric lenses
and to a personal computer, placed on a mechanical positioner.

The considered antennas, operating in the bandwidth 6−8.5
GHz, present a gain of 6.7 dBi with an half power beam
width (HPBW) of 40◦. The UWB antennas are placed in a
quasi-monostatic configuration and spaced apart of 0.14m.
Consequently, the effect of antenna coupling is significant and
has to be suppressed through a time-gating operation.

The UWB NVA-R661 chip comprises the impulse generator,
capable of transmitting short pulses over a large range of fre-
quencies (6−10.2GHz), a receiver to collect the backscattered
environmental response and to provide the band-pass samples
of the received waveform.

Measurements have been collected in different positions
spaced of 0.6m in accordance with the two considered paths.
At each measurement step, measurements have been collected
from 8 different angles (i.e., the set of observation angles have
been set to O = {0◦, 45◦, 90◦, 135◦, 180◦, 225◦, 270◦, 315◦})
according to the sinuous antennas HPBW. To make the mea-
surement set-up easily manageable, a rotating radar support
position was placed on a trolley with wheels, as shown in
Fig. 3.

1https://www.xethru.com/

Fig. 3. Indoor measurements.
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Fig. 4. Receiver schemes.

For each position and each steering direction, Np = 100
pulses have been transmitted with a central frequency of
6.8GHz and a bandwidth W = 3GHz. Starting from the
collected received signals, two receiver schemes, whose block
diagram is shown in Fig. 4, have been analysed. According
to the receiver A (Fig. 4-top), first the received signals are
accumulated to enhance the signal-to-noise ratio (SNR) and
successively, the energy profile is computed; considering the
receiver B (Fig. 4-bottom), energy profiles have been accu-
mulated over the total number of emitted signals. The first
approach could result in higher performance but at the expense
of a higher receiver complexity while the second one is more
appealing to be implemented in practical systems thanks to
its simplicity, at the expense of a lower SNR. In both cases,
before creating the energy profiles database, post-processing
operations on the raw collected data have been performed
to filter out the out-of-band interference and noise, and to
suppress the coupling between the two UWB antennas.

In Figs. 5, an example of accumulated received signal
according to the receiver A and an example of accumulated
energy profile according to the receiver B are shown. In
particular, they are collected in position pA(1), for a steering
direction equal to θb = 0◦. The energy profile has been ob-
tained by considering Nbin time bins of duration TED = 1/W .

III. MAPPING ALGORITHM

The described measurement campaign was conducted to
enable the offline creation of the environment mapping by
inferring the RCS of the surrounding objects. To this purpose,
the extended Kalman filter (EKF) based probabilistic state-
space approach described in [5] and reported in Algorithm 1
has been adopted. Differently from previous works, here, a
crowd-based mapping approach is adopted in which the state
estimation process could benefit from different users measure-
ments. Specifically, referring to Fig. 2, 2 users following path
A are considered in the environment and other 2 moving along
path B with the same moving direction. At each time instant,



Algorithm 1: Mapping Algorithm

Data: Np, T set of positions in the considered trajectory, p(k) = p(1)
the initial radar position

Result: radar cross section (RCS) map of the environment
1 Initialization
2 while p(k) ∈ T do
3 Measurement step ◃ e(k)
4 Correction and update step;
5 Compute the innovation ◃ e(k)− ẑ(k|k − 1)
6 Compute the EKF update
7 Update the state ◃ x̂(k|k)
8 Update the observation ◃ ẑ(k|k)
9 Time Update (Prediction)

10 Predict the state ◃ x̂(k + 1|k)
11 Predict the observation ◃ ẑ(k + 1|k)
12 Go to the next radar position. ◃ p(k) → p(k + 1)
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Fig. 5. Accumulated received signal using the receiver A and energy profile
using the receiver B over Np = 100 pulses.

the measurements of each users are exploited to estimate the
updated version of the map by using the Algorithm 1.

To this end, the environment has been discretized in NL =
XgridYgrid cells, and a RCS value, which has to be estimated at
the end of the mapping process, has been associated to each
cell. According to the considered approach, the state vector
of the system, that contains the parameters to be estimated in
order to reconstruct the map, is given by

x(k) = m(k) = [m1(k), . . . , mi(k), . . . , mNL(k)]
T

(1)

where k is the discrete time instant and mi(k) indicates
the root radar cross section (RRCS) of the ith cell of the
grid, where the frequency dependency has been neglected. To
simplify our analysis, the environment is considered stationary
with good approximation, with the possibility to neglect the
transition model. The main difference of the algorithm herein
exploited with respect to the other approaches, is that in our
case the mapping procedure is not preceded by a detection
phase as in [6], [7]. In fact, in our case the vector e(k)
containing the accumulated measured energy at the output of
the receiver at time k is directly handled in the Gaussian
observation model z(k) fully described in [4]. Thus, once
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Fig. 6. Reconstructing map using by different users using the receiver A,
Acell = 0.2× 0.2 m2, R = 2m.

the set of measurements e(1 : k) is given, map estimation
is performed by means of the EKF to evaluate the posterior
distribution p(x(k)|e(1 : k)) of x(k). More details on how the
mapping algorithm is performed are reported in Algorithm 1
and [4].

IV. MAPPING RESULTS

We now describe the mapping results obtained with the
proposed model by including real measured data. As a metric
for the environment reconstruction, the reconstructed RCS
values is juxtaposed to the environment map in which the
measurements took place. In the adopted grid-based approach,
different grid cells size have been considered in order to study
the trade-off between computational complexity and mapping
accuracy. To emulate the crowd sourcing mechanism, four
different users are accounted for: two moving along path A in
the same direction, and the same for path B.

Fig. 6 shows examples of maps reconstructed by the 2
couple of users. In particular, Fig. 6-(a) shows the map
reconstruction given from two users following path A of Fig. 2,
whereas Fig. 6-(b) the map due of two users following the
path B. All the examples were reported for a grid cells of
0.2 × 0.2m2 and the radar maximum range is set to 2m, if
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Fig. 7. Reconstructing map using the receiver A, different sized grid cells
and radar maximum range conditions.

not otherwise indicated. As it is possible to observe, despite it
is possible to recognize walls and environment shapes, maps
look incomplete.

Then, by following the crowd-based principle, maps were
fused together decreasing the single user uncertainty of the
surrounding. First complete mapping results are reported in
Fig. 7-top where the maximum range is imposed to 2m to
reduce the inclusion of noisy energy bins. As it is possible
to observe, the obtained results shown in Fig. 7-(a) are better
performing and could be considered satisfactory due to the
adoption of low directional antennas and the power emission
constraints required by UWB technology. Note that the grid
cells area and the radar maximum range are two important
parameters in defining the mapping accuracy and the algorithm
computational complexity. In Fig. 7-(b), a map obtained by
discretizing the environment into a grid cells of 0.5× 0.5m2

and a radar maximum range set to 5.3 m is reported. In this
case, the environment is completely reconstructed as before
but the map contour does not exactly follow the walls due
to the fact that the resolution is worsen with respect to the
previous case.

Finally, the mapping result employing receiver B is reported
in Fig. 8. As expected in this case, the mapping accuracy
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Fig. 8. Reconstructed map using the receiver B, 4 users, a grid cell area of
Acell = 0.2× 0.2 m2 a radar maximum range of R = 2m.

slightly degrades compared to Fig. 7-(a) but still remains
acceptable.

V. CONCLUSIONS

In this paper we presented an indoor backscattering mea-
surement campaign at UWB frequencies for personal radar
mapping applications. By combining different users’ infor-
mation, we showed that a good mapping accuracy could
be reached. Moreover, we investigated the trade-off between
algorithm complexity and mapping accuracy by comparing
two receiver schemes and grid discretization. Future steps are
intended to analyse better ways for data fusion, and how the
prior knowledge on the correlation state between cells impact
the mapping performance.
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