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When Helbing Meets Laumond:

The Headed Social Force Model

Francesco Farina1, Daniele Fontanelli2, Andrea Garulli1,

Antonio Giannitrapani1, Domenico Prattichizzo1

Abstract— The increased diffusion of service robots operating
in tight collaboration with humans has renewed the interest of
the scientific community towards realistic human motion mod-
els. In this paper, we present the Headed Social Force Model, a
modeling approach enriching Helbing’s Social Force Model with
Laumond’s human locomotion models. The proposed solution
is shown to inherit the best features of either models, being
able to reliably reproduce pedestrians’ motions both in free
space and in highly crowded environments. Extensive numerical
simulations are presented in order to evaluate the performance
under very different operating conditions.

I. INTRODUCTION

Human motion models have been deeply investigated in
the last decades within different research areas, ranging from
building architectural design to service robotic planning and
control [1]. Recently, novel applications of such models have
emerged in the service robotics field. As a matter of fact,
an ever growing number of applications involve robots that
interact with humans for accomplishing different tasks, such
as guiding visitors in a museum [2], helping navigate visually
impaired people [3] or assisting older adults [4]. Guaran-
teeing safety is of paramount importance in human-robot
interaction. In this context, accurate human motion models
are required in order to predict the trajectories followed by
individuals moving within the robot workspace. The same
models can also be exploited for generating human-like
trajectories for robots, with the purpose of increasing robot
acceptance by the users (the interested reader is referred to
the survey [5] for a thorough review on human-aware robot
navigation).

Proposed approaches to modeling human motion include
cellular automata [6], agent-based models [7] and graph-
based methods [8]. One of the most popular human motion
model is the Social Force Model (SFM), first introduced
in [9] and then refined in [10] and other works by D. Helbing
and his coauthors. The SFM assimilates each individual
to a point-wise particle subject to social forces. In this
way, the pedestrians’ dynamics are described by means of
a system of differential equations. The SFM is especially
well suited to reproduce individual motion of pedestrians in
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high-density scenarios (crowd), as well as the interactions
occurring among pedestrians. Recently, several experimental
studies conducted by J.-P. Laumond and his research group,
have revealed that in many cases the trajectories followed by
pedestrians in uncluttered environments tend to comply with
nonholonomic constraints [11], [12], like those featured by
wheeled vehicles [13]. This phenomenon is a direct conse-
quence of the preference of individuals towards forward mo-
tion, due to biomechanics of humans. In these circumstances,
unicycle-like models are a good approximation of real-
world human locomotion. For instance, unicycle kinematics
is especially accurate whenever pedestrians rely on wheeled
assistive aids, such as smart walkers [14]. In certain situ-
ations, however, sideward motions violating nonholonomic
constraints do emerge quite naturally in practice. Avoiding
an unexpected obstacle, negotiating a narrow passage or
reaching a close goal are typical situations in which unicycle-
like models cease to be valid. To overcome such limitations,
a dynamic model that smoothly switches between holonomic
and nonholonomic locomotion has been proposed in [15].

In this paper, we introduce the Headed Social Force

Model (HSFM), an approach to modeling human locomo-
tion which extends the traditional SFM with the inclusion
of possible nonholonomic constraints. Each individual is
modeled by means of a dynamic system like that presented
in [15], in order to account for holonomic/nonholonomic
motion patterns under different circumstances. The control
inputs are designed as a suitable function of the social
force acting on each individual, computed according to
the traditional SFM [10]. Simulation results show that the
proposed approach enjoys the best features of both Helbing’s
SFM and Laumond’s motion models. Resulting trajectories
satisfy nonholonomic constraints whenever appropriate. At
the same time, the SFM ability to reproduce interactions
among individuals, as well as pedestrian behavior in crowded
scenarios, is preserved.

The paper is organized as follows. The two human motion
models, introduced in previous works and exploited in this
paper, are outlined in Section II. The Headed Social Force
Model is presented in Section III. Numerical simulations
highlighting some key features of the proposed approach are
reported in Section IV. Finally, some conclusions are drawn
in Section V.

II. BACKGROUND MATERIAL

In this section, we present a brief review of the SFM
presented in [10] and the human locomotion model (HLM)



proposed in [15], on which the present work relies. Vectors
and matrices are written in boldface and (·)′ denotes the
transpose operator.

A. Social Force Model

Consider a system of n pedestrians moving in a 2D
environment. The i-th individual, i = 1, . . . , n, is assimilated
to a particle with mass mi, whose position and velocity,
expressed in a global reference frame, are denoted by ri =
[xi, yi]′ and vi = [ẋi, ẏi]′, respectively. The equations of
motion are then

ṙi = vi, (1)

v̇i =
1

mi
fi, (2)

where fi, representing the social force driving the i-th
particle, is given by the contribution of three terms

fi = f0i + f
p
i + fwi . (3)

The first term

f0i = mi
v0
i − vi

τi
(4)

accounts for the pedestrian’s desire to move with a given
velocity vector v0

i . In (4), the characteristic time τi > 0 is
a parameter determining the rate of change of the velocity
vector. The terms f

p
i and fwi represent the repulsive forces

exerted on individual i by the other pedestrians and by
possible obstacles present in the environment (e.g., walls),
respectively. The expressions of the forces f

p
i and fwi are

reported in the Appendix for completeness.

B. Human Locomotion Model

In the SFM, a pedestrian is modeled as a point-wise
mass subject to an external force. The model does not
account for the heading of the individuals (e.g., the forward
direction) and, at any time, a person can move freely in
any direction. However, most of the time, humans tend to
move forward, i.e. their velocity vector is aligned with their
heading. This phenomenon has been observed by several
studies [11], [12], which come to the conclusion that a
nonholonomic dynamic system, such as the unicycle model,
could be more appropriate to describe human motion in
many cases. On the other side, there are some circum-
stances in which sideward motions, that indeed violate the
nonholonomic constraints, are commonly observed. Typical
examples include navigating in highly crowded places, like
exiting from a theatre, or avoiding sudden obstacles. In
these cases, unicycle-like models are no longer valid and a
holonomic model is preferable1. In [15], a human locomotion
model (HLM) has been proposed which: i) accounts for
pedestrians’ heading, and ii) reproduces both holonomic and
nonholonomic motion patterns by suitably controlling the
system inputs. Let qi = [θi, ωi]′ be the vector containing the
heading (direction of forward locomotion) and the angular

1With a slight abuse of terminology, we denote by “holonomic model” a
model not subject to nonholonomic constraints, thus including unconstrained
models.

velocity of the i-th pedestrian in the global reference frame.
Denote by vB

i = [vfi , voi ]
′ the velocity vector expressed in

body frame, i.e. in a reference frame obtained by rotating the
global reference frame according to the pedestrian’s heading
θi. The components vfi and voi of vector vB

i correspond
to the projection of the velocity vector along the forward
direction and the orthogonal direction, respectively. Clearly,
vi = R(θi)vB

i , where the rotation matrix R(θi) is defined
as

R(θi) =

[

cos(θi) − sin(θi)
sin(θi) cos(θi)

]

.

Then, the HLM can be written as

ṙi = R(θi)v
B
i , (5)

v̇B
i =

1

mi
uB
i , (6)

q̇i = Aqi + biu
θ
i , (7)

where

A =

[

0 1
0 0

]

, bi =

[

0
1
Ii

]

, (8)

and Ii denotes the moment of inertia of pedestrian i. In
the HLM, the control inputs are uB

i = [uf
i , uo

i ]
′, whose

entries are the forces acting along the forward direction and
the sideward direction, respectively, as well as the torque
uθ
i about the vertical axis. Notice that the model (5)-(7)

is indeed a holonomic model. However, if voi (0) = 0 and
uo
i (t) = 0, for all t, the HLM boils down to the dynamic

unicycle model. In general, whenever voi = 0, the HLM
features a nonholonomic behavior, the velocity vector being
aligned with the pedestrian’s heading.

Remark 1: In [15], a single pedestrian is considered and
the HLM is instrumental to formulating and solving an
inverse optimal control problem aimed at identifying opti-
mality criteria guiding human motion. In this paper, we are
interested in modeling the motion of multiple individuals, as
well as the interactions occurring among them, and between
people and environment. To this purpose, the approach
followed in this work is to enrich the traditional SFM with
an enhanced model of human motion model like the HLM.

III. HEADED SOCIAL FORCE MODEL

The scheme of the Headed Social Force Model proposed
in this work is shown in Fig. 1. The basic idea is to exploit
the SFM to evaluate at each time instant the social forces fi
and f0i acting on a pedestrian according to (3)-(4), and then
computing the HLM control inputs uB

i and uθ
i as suitable

functions of fi and f0i , as described below.

A. Control Input uB
i

The input vector uB
i includes the forces acting along the

pedestrian’s forward direction (identified by the heading θi)
and the sideward direction (i.e., orthogonal to the heading θi).
Given the total social force fi, a natural choice for computing
uf
i and uo

i is to project fi along the forward and sideward
directions, respectively. This is done by rotating fi according
to the matrix R(θi)′. In order to avoid sideward motions if
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Fig. 1. Block diagram of the Headed Social Force Model.

not strictly needed, i.e. in order to reproduce a nonholonomic
behavior as much as possible, the components uf

i and uo
i

can be weighted differently, the weight assigned to uo
i being

smaller than that assigned to uf
i . Finally, in order to drive

to zero the sideward velocity voi when the sideward force is
zero, a damping term proportional to −voi can be added to
uo
i . Hence, the control input uB

i is computed as

uB
i = KBR(θi)

′fi − kdvoi , (9)

where

KB =

[

kf 0
0 ko

]

, kd =

[

0
kd

]

,

and kf , ko, and kd are positive constant parameters. Notice
that if kf = ko = 1, kd = 0 and the pedestrian’s heading
is constant, i.e. θ̇i = 0 for all t, then the dynamic model
(5)-(6), with uB

i given by (9), boils down to the traditional
SFM (1)-(2). However, if θi varies with time, the trajectories
generated by (5)-(6) with input (9) are in general different
from those resulting from (1)-(2).

B. Control Input uθ
i

The input uθ
i represents the torque about the vertical axis

which drives the dynamics of the pedestrian’s heading. This
term is designed on the basis of the force f0i defined in (4).
Recall that such a term accounts for the individual’s intent of
moving according to a desired velocity vector v0

i . In a sense,
f0i models long-term objectives, such as passing through a
given sequence of way-points, whereas the forces fpi and fwi
accounts for short-term corrective actions, such as maneuvers
needed to avoid nearby obstacles or pedestrians. Denote by
f0
i and θ0i the magnitude and the phase in the global reference

frame of the force term f0i . Notice that both quantities are
in general time-varying. The input uθ

i is computed as

uθ
i = −kθ(θi − θ0i )− kωωi. (10)

The parameters kθ and kω are designed in order to achieve a
suitable dynamic performance. It can be easily verified that,
with uθ

i defined as in (10), the orientation error θ̃i
.
= θi− θ0i

evolves according to the dynamic model

¨̃θi +
kω

Ii
˙̃θi +

kθ

Ii
θ̃i = −

kω

Ii
θ̇0i − θ̈0i . (11)

A possible design procedure is to select the values of kθ

and kω on the basis of the desired poles λ1 and λ2 of the
dynamic system (11). In this work, desired real poles are
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Fig. 2. Scenario I. A single pedestrian has to move back and forth between
A and B, starting from an arbitrary initial position S, with a desired speed
v0 = 1.5 ms−1: SFM (red) and HSFM (blue).
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Fig. 3. Scenario I. A single pedestrian has to move from A to B, starting
with the point B behind her back, with a desired speed v0 = 1.5 ms−1:
SFM (red) and HSFM (blue).

considered, so that λ2 = αλ1 < 0, for some α > 1. In turn,
the dominant pole λ1 is selected as a function of f0

i

λ1 = −

√

kλf0
i

α
,

where kλ > 0 is a constant parameter. The corresponding
expressions of kθ and kω are then

kθ = Iik
λf0

i , kω = Ii(1 + α)

√

kλf0
i

α
. (12)

The choice of time-varying poles allows one to modulate the
responsiveness of the system with the intensity of the driving
force f0i . The underlying idea is that the more authoritative
the f0i , the faster the change in the pedestrian’s heading. In
this way, the heading convergence rate is proportional to f0

i .

IV. NUMERICAL RESULTS

In this section, numerical simulations are presented to
demonstrate how, using the HSFM, each agent smoothly
switches between holonomic and nonholonomic behaviors,
depending on the current external conditions. The value of
the parameters of the SFM are taken from [10] and are
reported in the Appendix. The reference velocity vector v0

i

in (4) is generated as v0
i = v0e0i . The desired speed v0 is

assumed constant in all the simulations. The unit vector e0i ,
which identifies the desired direction of motion, is computed
from a sequence of way-points encoding the desired pedes-
trian path, similarly to [9]. The inertia moment Ii in (8) is
computed from the pedestrian’s mass mi and radius ri as
Ii = 1

2mir2i . The following parameters of the control law
(9)-(12) have been used in all the simulations: kf = 1, ko =
0.3, kd = 5, α = 3 and kλ = 0.02. Three different scenarios



are simulated, each of them highlighting a characteristic fea-
ture of the proposed model. Videos of some simulations are
available at http://control.dii.unisi.it/MobileRoboticsPage.

A. Scenario I: The Nonholonomic Behavior

Empirical evidence shows that when a single pedestrian is
moving in an open space, she tends to move as a unicycle
[12]. In this respect, a good model is expected to be able to
reproduce such a nonholonomic behavior.

Let us consider a simple example, in which a single pedes-
trian walks between two points A and B, alternately, starting
from an arbitrary point S. In this case, the trajectory resulting
from the SFM is quite unnatural. Once point A is reached
for the first time, the trajectory boils down to a segment (see
red line in Fig. 2). This phenomenon is due to the SFM
neglecting the information about the pedestrian’s heading,
so that forward or backward motions become equivalent. On
the contrary, the trajectory generated by the HSFM is more
realistic thanks to the existence of a preferred direction of
motion (see blue line in Fig. 2). Although the HSFM allows
a pedestrian to have her velocity vector not aligned with her
heading, the control input uB

i tends to drive the orthogonal
component of the velocity to zero if no lateral forces are
present (“almost nonholonomic” behavior).

In the same scenario, consider the case in which a
pedestrian has to move from A to B, starting with the
initial heading θi(0) = π, i.e. the goal point B is behind
pedestrian’s back. As shown in Fig. 3, using the HSFM, the
pedestrian takes a step back to turn towards the goal, and
then moves forward to reach the target. Clearly, the SFM
trajectory lies on a segment once again, since the heading is
neglected.

The previous examples confirm that, in the considered
scenario, the HSFM yields a more realistic behavior, giving
to the pedestrian the ability of moving in a nonholonomic
way when she is expected to do so.

B. Scenario II: The Adaptive Behavior

While human motion tends to be fully nonholonomic in
open spaces, a holonomic behavior is typically observed in
crowded environments. This second set of simulations aim at
showing the HSFM ability of adapting to external conditions
by automatically switching between the two behaviors. In
Scenario II, a group of 20 pedestrians, walking in the same
direction in a 7m-wide corridor at a desired speed v0 = 1.5
ms−1, have to pass through a 2m-wide door. In Fig. 4, a
snapshot of a simulation run, taken while pedestrians are
crossing the door, is depicted. The adaptive behavior of the
HSFM can be inferred by looking at Fig. 5, where the ratio
vo
i

vf
i

is shown for all the pedestrians. Such a quantity is a

measure of the misalignment between the velocity vector and
the pedestrian’s heading, being zero in correspondence of a
nonholonomic motion. It can be seen that, after a transient
during which all the pedestrians align their velocity vector

towards the desired direction of motion, the ratio
vo
i

vf
i

is

always almost zero, except during the door crossing. This
means that, in the corridor, where the pedestrians’ density is

Fig. 4. Scenario II. A group of 20 pedestrians walking in the same direction
in a 7m-wide corridor at a desired speed v0 = 1.5 ms−1. A snapshot of a
simulation run of the HSFM, taken while pedestrians are crossing the door.
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relatively low, the resulting trajectories do not differ much
from those of a traditional unicycle. On the contrary, during
the door crossing, significant sideward motions are taken by
the pedestrians in order to avoid contacts. It is worth stressing
that this qualitatively different beahviors are automatically
reproduced by a single instance of the HSFM, without the
need of modifying the value of any of its parameters.

In order to compare the trajectories generated by the SFM
and the HSFM, a Monte Carlo analysis has been performed.
Starting from random initial positions and headings of the
pedestrians (with zero initial velocity), 100 runs of the SFM
and the HSFM have been simulated for 20 s. For comparison
purposes, the following indicators have been considered:

• the average exit frequency of pedestrians F , i.e. the
average number of pedestrians that pass through the
door per unit time;



• the average bending energy of the trajectories

B =
1

n

n
∑

i=1

1

T

∫ T

0
κi(t)

2dt, (13)

where the curvature κi(t) of the i-th trajectory is defined
as

κi =
ẋiÿi − ẍiẏi

(ẋ2
i + ẏ2i )

3

2

; (14)

• the average squared magnitude of the jerk of the trajec-
tories

J =
1

n

n
∑

i=1

1

T

∫ T

0
||ji(t)||

2dt, (15)

where ji = v̈i is the jerk vector of the i-th trajectory.

The first indicator has been selected as a measure of the
macroscopic behavior of the models. The last two indicators
are used to evaluate the regularity of the resulting trajectories.
The bending energy is a measure of the smoothness of a
trajectory [16], whereas the jerk is commonly used in trans-
portation systems to evaluate the user’s comfort associated
to a given trajectory.

Concerning the exit frequency, both models give similar
results, with average values FHSFM = 2.73 s−1 and
FSFM = 2.77 s−1. Also the empirical distributions of the
exit frequency, computed from the trajectories generated by
the SFM and the HSFM, are very similar. Overall the two
models seem to reproduce the same macroscopic behavior.
However, significant differences can be appreciated by look-
ing at the regularity of the resulting trajectories. The average
bending energy is BHSFM = 85 m−2 and BSFM = 1.440
m−2, for the HSFM and the SFM, respectively. Also the
squared magnitude of the jerk is very different in the two
cases, with average values JHSFM = 2.14 · 10−5 m2s−6

and JSFM = 1.57 · 10−4 m2s−6. These figures capture
the different qualitative behaviors that can be observed by
looking at the resulting trajectories. When compared to the
HSFM, in the proximity of the door, the SFM tends to
generate vibrations, sudden changes of direction and even
“bounces” among pedestrians or between pedestrians and
walls. To get an idea of the very different motion patterns
resulting from the two models, in Fig. 6 the magnitude of
the jerk and the curvature as a function of time, during a
single run, are reported for all the pedestrians.

C. Scenario III: A Highly Crowded Environment

The objective of simulations carried out in the third
scenario is to evaluate to what extent the HSFM is able to
preserve the good predictive capability of the SFM in the
presence of a high density of pedestrians. As a matter of fact,
the SFM is very accurate when modeling highly crowded
environment, such as escape panic situations.

To this aim, we have simulated the same evacuation
example presented in [10], in which 200 pedestrians must
evacuate a 15m×15m room through a door of width 1 m. In
these conditions, the exit becomes a bottleneck and arching
and clogging arise in the proximity of the door. In [10], it
was studied how the exit frequency varies with the desired
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(second row) for the trajectories generated by the SFM (first column) and
the HSFM (second column).

speed v0 of the pedestrians. As expected, at slow speeds,
the frequency grows with v0. However, when v0 exceeds
a threshold value (about 1.5 ms−1) the frequency drops
due to the increased jam induced by panic (the so called
“faster-is-slower” effect). In order to evaluate the ability of
the HSFM to reproduce such a phenomenon, the evacuation
experiment has been simulated for 60 s, at different desired
speeds, ranging from 0.5 ms−1 to 6 ms−1. For each simula-
tion run, the average exit frequency resulting from the SFM
and the HSFM has been computed. The results are pretty
similar (see Fig. 7), thus confirming the adequateness of the
HSFM also in highly crowded environments.
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HSFM (solid green).



V. CONCLUSIONS

In this paper, a new human motion model, called Headed
Social Force Model, has been proposed. It combines together
the pros of the traditional Social Force Model with a more
realistic dynamic model of human locomotion. It is shown
that the HSFM is able to reproduce both nonholonomic
motion patterns (like those typically followed by pedes-
trians moving in free spaces) and holonomic behaviors,
such as sideward motions that naturally arise in crowded
environments. One key feature of the proposed model is
its ability to automatically adapt the characteristics of the
generated trajectory to the external conditions, without the
need of changing the values of the model parameters or even
switching between different models.

This work is still in a preliminary stage and a number
of developments are currently under investigation. Among
them, the most important one is the enhancement of the
model with the inclusion of additional force terms to re-
produce the typical behavior of people moving in group.

APPENDIX

A. Repulsive Forces in the SFM

The complete expressions of fpi and fwi in (3) are reported
hereafter. Let the radius of the i-th pedestrian be denoted by
ri. Moreover, let us define

rij = ri + rj , (16)

dij = ∥ri − rj∥, (17)

nij =
ri − rj

∥ri − rj∥
.
= [nij(1), nij(2)]

′, (18)

tij = [−nij(2), nij(1)]
′, (19)

∆v(t)ij = (vj − vi)
′tij . (20)

• The term f
p
i , modeling the repulsive effects of other

pedestrians on individual i, is given by f
p
i =

∑

j, j≠i f
p
ij . The force exerted by pedestrian j on pedes-

trian i is

f
p
ij =

[

Aie
(rij−dij)/Bi + k1g(rij − dij)

]

nij

+ k2g(rij − dij)∆v(t)ij tij , (21)

where g(x) = max{0, x} and Ai, Bi, k1 and k2 are
constant parameters. Notice how fij is composed by
three terms. The first one, Aie(rij−dij)/Binij , repre-
sents the repulsive term, while k1g(rij − dij)nij and

k2g(rij − dij)∆v(t)ij tij represent the compression and
friction forces, respectively, and come into play only if
dij < rij .

• The term fwi , modeling the repulsive effects of obstacles
or boundaries such as walls on individual i, is given
by fwi =

∑

w fwiw. The force exerted by wall w on
pedestrian i is

fwiw =
[

Awe
(ri−diw)/Bw + k1g(ri − diw)

]

niw

− k2g(ri − diw)∆v(t)iw tiw . (22)

The expression of fwiw is is pretty similar to that of the
repulsive force between pedestrians f

p
ij . Quantities diw,

niw, tiw and ∆v(t)iw are defined according to (17)-(20),
by replacing rj with the coordinates of the closest point
of wall w to pedestrian i and setting vj = 0.

In this paper, the radius ri and the mass mi of each
pedestrian have been randomly generated in the intervals
[0.25 m, 0.35 m] and [60 kg, 90 kg], respectively, assuming
uniform distributions. In accordance with [10], the following
parameters have been used for all i and w: τi = 0.5 s, Ai =
Aw = 2 · 103 N, Bi = Bw = 0.08m, k1 = 1.2 · 105 kg s−2,
k2 = 2.4 · 105 kg m−1s−1.
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