
08 July 2024

Alma Mater Studiorum Università di Bologna
Archivio istituzionale della ricerca

Tagliavini, G., Marongiu, A., Benini, L. (2020). FlexFloat: A Software Library for Transprecision Computing.
IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, 39(1), 145-
156 [10.1109/TCAD.2018.2883902].

Published Version:

FlexFloat: A Software Library for Transprecision Computing

Published:
DOI: http://doi.org/10.1109/TCAD.2018.2883902

Terms of use:

(Article begins on next page)

Some rights reserved. The terms and conditions for the reuse of this version of the manuscript are
specified in the publishing policy. For all terms of use and more information see the publisher's website.

Availability:
This version is available at: https://hdl.handle.net/11585/677699 since: 2019-02-28

This is the final peer-reviewed author’s accepted manuscript (postprint) of the following publication:

This item was downloaded from IRIS Università di Bologna (https://cris.unibo.it/).
When citing, please refer to the published version.

http://doi.org/10.1109/TCAD.2018.2883902
https://hdl.handle.net/11585/677699

This is the post peer-review accepted manuscript of:

G. Tagliavini, A. Marongiu and L. Benini, "FlexFloat: A Software Library for Transprecision Computing",

- IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 2018. doi: 10.1109/

TCAD.2018.2883902

The published version is available online at: https://doi.org/10.1109/TCAD.2018.2883902

© 2018 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any

current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating

new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in

other works

https://doi.org/10.1109/TCAD.2018.2883902

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. XX, NO. XX, YY YYYY 1

FlexFloat: A Software Library for
Transprecision Computing

Giuseppe Tagliavini, Member, IEEE, Andrea Marongiu, Member, IEEE, and Luca Benini, Fellow, IEEE

Abstract—In recent years approximate computing has been
extensively explored as a paradigm to design hardware and
software solutions that save energy by trading off on the quality
of the computed results. In applications that involve numerical
computations with wide dynamic range, precision tuning of
floating-point (FP) variables is a key knob to leverage the
energy/quality trade-off of program results. This aspect assumes
maximum relevance in the transprecision computing scenario,
where accuracy of data is tuned at fine grain in application
code. Performing precision tuning at fine grain requires a
software development flow that streamlines the assessment of
which variables have “precision slack” within an application.
In this paper we introduce FlexFloat, an open-source software
library that has been expressly designed to aid the development of
transprecision applications. FlexFloat provides a C/C++ interface
for supporting multiple FP formats. Unlike alternative libraries,
FlexFloat enables to control the bit-width of mantissa and
exponent fields and provides advanced features for the collection
of runtime statistics, reducing the FP emulation time compared
to the state-of-the-art solutions. Its design allows to emulate the
behavior of standard IEEE FP types and custom extensions for
reduced-precision computation. This makes the library suitable
for adoption in multiple contexts, from manual exploration to
integration into automatic tools. Experimental findings demon-
strate that our approach can be used to perform a complete
precision analysis from which deriving multiple program versions
depending on the energy/quality trade-off. Furthermore, we show
that the adoption of our methodology can lead to a significant
reduction of energy consumption even on current commercial
hardware (an embedded GPGPU).

Index Terms—transprecision computing, floating-point emula-
tion, precision tuning, energy-quality trade-off

I. INTRODUCTION

The energy consumption of computing systems is constantly
growing [1], which makes the development of energy-efficient
design methodologies an evergreen research area. In this
context approximate computing techniques [2] [3] have been
proposed in a variety of domains to design hardware and
software systems capable of trading quality of the computed
results off for energy savings [4]. A wide variety of strategies

Copyright (c) 2009 IEEE. Personal use of this material is permitted.
However, permission to use this material for any other purposes must be
obtained from the IEEE by sending a request to pubs-permissions@ieee.org.

This work has been partially supported by the European H2020 FET project
OPRECOMP under Grant 732631.

G. Tagliavini and L. Benini are with the Department of Electrical, Electronic
and Information Engineering “Guglielmo Marconi” (DEI), University of
Bologna. e-mail: {giuseppe.tagliavini, luca.benini}@unibo.it.

A. Marongiu is with the Department of Computer Science and Engineering
(DISI), University of Bologna, Italy. Email: a.marongiu@unibo.it

L. Benini is also with the Department of Information Technology and
Electrical Engineering of the Swiss Federal Institute of Technology Zurich
(ETH Zurich). e-mail: {luca.benini}@iis.ee.ethz.ch

has been explored in the literature, ranging from programming
language approaches [5] [6] to transistor-level ones [7] [8] [9].
Among these strategies particular attention has been paid to
precision scaling [10] [11] [12], a methodology which consists
of changing the bit-width of program data to reduce storage
and/or computing requirements.

Since most applications involving numerical computations
with large dynamic range adopt floating-point (FP) data types,
researchers have studied a number of software techniques
focused on reducing the precision of FP formats [13] [14]
[15] [16]. The execution of FP computations and related data
transfers emerge as a major contributor to energy consumption;
it has been shown that very significant power savings can
be achieved by a careful combination of different precision
levels for FP arithmetic [17] [18]. Nevertheless, in the general
practice programmers usually assign the maximum precision
provided by target platforms (32 bits, 64 bits or even more)
to all program variables, following the most conservative
approach to guarantee the precision of final results.

Recent research trends are moving towards a novel
paradigm, known as transprecision computing [19] [20], in
which rather than tolerating errors implied by imprecise
hardware or software components systems are explicitly de-
signed to systematically deliver “just enough quality”. This is
achieved by controlling approximation at a fine grain through
the computation steps, not only focusing on final results but
also tuning the precision of intermediate computations. In
the context of FP workloads this is steering research efforts
towards methodologies to understand which variables have
“precision slack” within an application (i.e., variables for
which precision requirements can be relaxed without impact-
ing the results beyond the acceptable error threshold).

The IEEE Standard for Floating-Point Arithmetic (IEEE
754) [21] describes representation and memory encoding
of five binary formats: binary16 (half-precision), binary32
(single-precision), binary64 (double-precision), binary128
(quadruple-precision) and binary256 (octuple-precision).
These formats defines the dynamic range as the ratio
between the largest and smallest representable values, and
the precision as the number of digits used to represent
the mantissa. Considering for instance the C language,
single-precision and double-precision formats correspond to
float and double primitive types; on some platforms
quad-precision is also available as long double, while
octuple-precision is rarely implemented and smaller formats
are typically not supported.

The adoption of smaller formats (16 bits or even less) offers
significant potential to reduce the energy consumption of FP

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. XX, NO. XX, YY YYYY 2

FlexFloat

Fig. 1: FlexFloat: main uses and contributions.

computations. We have compared the energy consumption of
three versions of a linear algebra kernel (SAXPY) running on
the NVidia Tegra X2 GPU (see Section ?? for details on our
experimental setup), where we associate the program variables
to FP types binary16, binary32 and binary64, respectively. The
adoption of binary16 variables consumes 2.2× less energy
than binary32 variables, which in turn consume 1.9× less
energy than binary64. This confirms that even in currently
commercially available hardware reduced-precision variables
bring quasi-linear energy savings (at the system level). How-
ever, the IEEE-standardized FP formats are only a small subset
of the possible options in terms of total bit-width and of
mantissa vs. exponent allocation of the available bits, and
researchers have started to explore custom formats for future
platforms.

Despite the major energy saving opportunity, system design
and software development flows still lack a mature methodol-
ogy to assess which FP variables in applications are amenable
to precision reduction and which reduced-precision formats
are most convenient. State-of-the art tools for precision tuning
such as PROMISE [22] are often limited to standard data
types (binary32 and binary64), which misses the potential
savings enabled by smaller formats (e.g., binary16 is nowa-
days available on several platforms) and prevents their use for
custom hardware design exploration. fpPrecisionTuning [15]
relies on the GNU Multiple Precision Floating-Point Reliably
(MPFR) [23] library to emulate arbitrary FP types, performing
a heuristic search to find the minimum precision that can be
associated to each variable in the program [24] [25] [26] [27].

While FP emulation coupled to precision tuning is the right
approach to target both (i) precision reduction in applications
being developed for existing hardware (targeting available
IEEE FP formats) and (ii) the specification of custom FP
formats for new hardware being designed, state-of-the-art FP
emulation libraries such as MPFR [23] and SoftFloat [28]
were not designed for this purpose and consequently have
a number of shortcomings. Emulation libraries should be
(i) fast, to minimize the time required to complete iterative
precision tuning processes; (ii) accurate, to allow to correctly
capture the accuracy that a custom HW type would deliver;
(iii) easy to augment, as the definition of custom types should
not require complex rewrites of the emulation library (the
focus of application developers should stay on the application);

float a,b,c;

…

c = a + b;

flexfloat_t a,b,c,t1,t2;

ff_cast(&t1, &a, E_t, M_t);

ff_add(&c, &t1, &t2);

float a, c, t2;

half b;

t2 = half2float(b);

c = a + t2;

SCENARIO 1

SCENARIO 2

SCENARIO 3

Fig. 2: Main application scenarios.

(iv) informative in terms of the achieved quality of results
(QoR), as the convergence time of the search heuristics could
be significantly reduced if better insight on the individual
variables was propagated to the precision tuning tool.

In this paper we introduce FlexFloat, an open-source soft-
ware library1 that has been expressly designed to aid the de-
velopment of transprecision applications. FlexFloat defines a
C/C++ Application Programming Interface (API) for support-
ing multiple (standard or custom) FP formats and arithmetic
operations among them. Unlike other libraries, FlexFloat:

1) uses an emulation methodology that leverages native
host platform types to significantly reduce the time
required to emulate custom types. Our results show that
FlexFloat is up to 2.8× and 2.4× faster than MPFR and
SoftFloat, respectively;

2) enables accurate emulation of formats with arbitrary bit-
width of mantissa and exponent fields (whereas MPFR
does not allow to model the exponent field with a custom
number of bits2);

3) requires no modification at all to support custom types
(whereas the use of a new FP format in SoftFloat
requires to deeply modify the library sources);

4) provides advanced statistics on program variables (casts
and evolution of the error compared to a full-precision
value) that can be used by optimization models to
enhance the solution and/or decrease the search time
(which no other emulation libraries provide).

Figure I highlights these concepts and visually shows what
FlexFloat does and how it interacts with external tools. In
this setting, the application designer takes care of defining a
representative error metric and to outline QoR requirements
for the application and input data set(s) at hand. Precision
tuning tools first execute the program as is to derive a golden
reference, then iteratively explore different precisions for FP
variables, at each step comparing the result with the reference
to guide the search heuristics.

1FlexFloat is available at this link: https://github.com/oprecomp/
2Only 32 or 64 bits words are used, which is adequate to precisely represent

any value needed by scientific applications operating on very large numbers
(the original application target of MPFR), but which can produce inaccurate
results (and thus imply the derivation of wrong hardware specification) if used
for hardware FP emulation, where a smaller number of bits is required.

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. XX, NO. XX, YY YYYY 3

Figure I depicts several conceptual scenarios FlexFloat can
be used in. Programmers can manually (scenario 1) modify
the program to adopt FlexFloat, then execute the program
and compare the results with the golden model [29]. The
process can be repeated multiple times by associating program
variables to different precisions, with the aim to derive a final
program version that uses the most convenient FP types. Pro-
grammers can integrate the library with external tools for
precision tuning (scenario 2), making the exploration process
(semi-)automatic. In this case the burden for the developer
boils down to providing a wrapper interface for integration
of the tools with the library. The error tracking at variable
level can be used to guide the fine-grained tuning process.
The third scenario is more forward looking, as it envisions the
full integration of FlexFloat into compilation toolchains.
This makes the FP precision tuning and the generation of the
most efficient binary code for the target hardware/precision
constraints (almost) entirely transparent to programmers.

Our experimental results section presents an assessment
of the emulation performance of the library. We also report
measurements for execution time and energy consumption
on a commercial hardware platform executing different
program versions (derived from the precision analysis),
showing that FlexFloat leads to a significant reduction of
energy consumption even on hardware that has not been fully
designed based on transprecision principles. We conclude the
experimental section with an example which illustrates the
advanced features of the library.

The rest of the paper is organized as follows. Section ??
discusses the related work. Section ?? introduces the FlexFloat
API and its common use cases. Section ?? describes the
internals of the library. Section ?? introduces the framework
setup and reports the experimental results. Finally Section ??
concludes and points out to future work directions.

II. RELATED WORK

The research area of approximate computing [2] [3] includes
a wide set of techniques, ranging from software-oriented
methodologies [5] [6] to ad-hoc hardware designs [7] [8] [9],
with the aim to increase performance and power efficiency
of computing systems. In this field many approaches deal
with “statistical approximation”, i.e., saving energy by running
on unreliable but energy-efficient hardware. In the last years
several tools have been released to perform statistical analysis
and compute error bound of approximate software running on
unreliable hardware [30] [31] [32]. In this paper we focus on
approximation and energy reduction by executing programs on
low-precision but deterministic (i.e., fully reliable) hardware,
which is currently a major industry trend, especially thanks
to the deep learning boom – as applications in this domain
lend themselves to run extremely efficiently on low-precision
hardware [33] [34].

Focusing on commercial hardware platforms with support
for reduced-precision FP types, GPUs are widely used in sev-
eral computing domains and reducing their energy consump-
tion by adopting reduced-precision FP types is now widely

acknowledged as a viable approach for several application
domains. Mukunoki et al. [24] explore custom FP formats
for GPUs. They show that performance can be significantly
improved at whole-system level going to smaller formats and
forcing data word-aligned memory locations; adopting these
techniques the memory interface will use fewer transactions,
which are among the most significant contributors to sys-
tem energy consumption. NVidia Pascal has been the first
GPU architecture to provide support to the binary16 type,
with major benefits for compute intensive domains such as
machine learning [35] and linear algebra [36], and the new
micro-architecture (Volta) further extends support to reduced
precision types (e.g. mixed-precision multiply-and-add instruc-
tions). In this work we perform a set of experiments on this
class of GPUs to show how FlexFloat can be practically used
to aid the development of transprecision applications to reduce
their energy consumption.

All commercial hardware platforms implement a subset of
the IEEE 754 standard, whose limitations are starting to be
highlighted by researchers. For example, the universal number
format (unum) [37] has been recently proposed to overcome
the problem of unsupervised accumulation of rounding errors.
unum extends the IEEE standard by adding a metadata field
(called utag) which enables support to variable-width storage
and interval arithmetic [38]. The main shortcomings of unum
– a very high hardware cost implied for practical implementa-
tions and a very high code refactoring effort – have generated
some criticisms. A recent evolution of the specification, known
as unum-v3 or posit [39], mitigates both problems, which
might in the future make its practical adoption feasible.
Moreover, the IEEE FP formats represent only a small subset
of all the possible options that custom hardware design could
implement. In this field recent works have proposed dedicated
FP units for reduced-precision [25] [26] and variable-precision
[27] arithmetic. Focusing more specifically on reconfigurable
hardware platforms (e.g., FPGAs), analytical techniques for
range and precision analyses can be adopted to design fixed-
point arithmetic circuits which guarantee the accuracy of
hardware-implemented algorithms minimizing area and power
consumption [40] [41]. As discussed in Section ??, FlexFloat
can be used inside compilation toolchains to perform preci-
sion tuning and produce efficient binary code tailored to the
execution on any reduced-precision or tunable hardware unit.

In the area of FP emulation, several arithmetic libraries
have been proposed to perform calculations on numbers with
arbitrary precision. The GNU Multiple Precision Arithmetic
Library (GMP) [42] has been one of the first libraries for
arbitrary-precision arithmetic; it supports integers, rational
numbers and also FP numbers. The GNU Multiple Preci-
sion Floating-Point Reliably (MPFR) [23] is based on GMP,
adding to its arbitrary-precision representation the support for
rounding modes, exceptions and special values as defined in
the IEEE 754 standard. These libraries provide a basic C
interface, but wrappers exist for other languages. For instance
Boost Multiprecision [43] is a C++ library that can adopt
both GMP and MPFR as a backend interface. ARPREC [44]
is a library natively written in C++ with support for high-
precision real, integer and complex types. These libraries are

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. XX, NO. XX, YY YYYY 4

widely used in application areas where an “almost unbound”
dynamic range is required and higher computation time is
considered an unavoidable side-effect, such as some areas of
scientific computing [45]. However they are not suitable for the
exploration of reduced-precision FP types to increase perfor-
mance and energy efficiency. As discussed in Section ??, these
libraries lack important features such as exponent bounding
and the collection of execution statistics. Some features could
be supported by refactoring the code at program level, for
instance exponent bounding could be obtained by checking the
exponent field after any operation, but this solution is neither
general nor efficient in terms of emulation time. In Section ??
we show that FlexFloat provides up to 2.8× faster emulation
than other libraries.

A different approach to emulate arbitrary FP types consists
of emulating FP computations using a series of simpler fixed-
point arithmetic operations that run on the integer arithmetic
logic unit. SoftFloat [28] is a library that implements standard
IEEE formats, enabling a bit-accurate emulation of the FP
operations performed by FP hardware units. SoftFloat in-
cludes support for IEEE 754 types and can be extended to
support custom formats. Some operations on custom formats
are slower, since the library executes all the computations
in software. This issue can be solved by using acceleration
techniques based on SIMD integer units [46]. However the
use of a new FP format requires to deeply modify the library
sources, while FlexFloat allows to describe any format by
invoking an API function to initialize the variable format.

Many research tools are available to perform automatic
or semi-automatic precision tuning of program variables. fp-
PrecisionTuning [15] implements a distributed algorithm to
find the near-optimal precision for each FP variable in the
program. Its main configuration parameter is the precision
of the result, expressed as a value of signal-to-quantization-
noise ratio (SQNR) that program results must satisfy. The tool
executes the program multiple times, performing a heuristic
search of the minimum precision that can be associated to
each variable (for a fixed input set). A second phase performs
a statistical refinement to join the precision bindings derived
from different input sets. PROMISE [22], Precimonious [47]
and Blame analysis [48] adopt more advanced techniques but
their search space is restricted to a small subset of FP types
(binary32 and binary64).

All the discussed approaches for precision tuning adopt
heuristic and simulation-based approaches. Recent efforts in
rigorous FP error estimation are based on combinations of
abstract interpretation and conservative range calculations.
Gappa [49] and Boost Interval library [50] are tools based
on interval arithmetic. FPTuner [16] is a rigorous tool for
automatic precision-tuning of real-valued expressions, it gener-
ates a mixed-precision allocation (single, double, or quadruple
precision) on a given input domain that is guaranteed to have
error below a given threshold. PRECISA (Program Round-
off Error Certifier via Static Analysis) [51] is a tool for
the automatic estimation of round-off errors of functional
expressions with an associated real domain (i.e., an interval).
As a general consideration, these approaches are orthogonal
and synergistic with our work; in addition most tools for

C code

double a, b, c;

b = 10.3;

…

c = a * b;

FlexFloat C API

flexfloat_t a, b, c;

ff_init(&c, 5, 10);
ff_init(&a, 5, 10);
ff_init_d(&b, 10.5, 5, 10);
…

ff_mul(&c, &a, &b);

1

2

3

4

5

FlexFloat C++ wrapper

flexfloat<5, 10> a, b, c;

b = 10.3;

…

c = a * b;

Fig. 3: C code transformed to use the FlexFloat API.

precision tuning make use of MPFR or primitive types, but
they can be easily extended to support FlexFloat with the
aim to overcome MPFR limitations that have been highlighted
earlier.

III. USING FLEXFLOAT

A. Basic concepts

Figure III-A shows by means of an example how a C
program has to be transformed to use FlexFloat primitives.
First, the native FP types provided by the C language must be
replaced with flexfloat_t types (referred to as target type
in the following) (line 1). Before its first use each FlexFloat
variable must be given an initial value for exponent and
mantissa bit-widths (two unsigned integers). In lines 2-3 we
invoke function ff_init to set 5 bits for the exponent and 10
bits for the mantissa, which characterize the IEEE 754 half-
precision formatas the target type of the declared variables.
Users can also (optionally) specify an initialization value
expressed as a native C type (line 4). Since an initialization
value might not be exactly representable in a target type with
a lower number of bits, it is typically rounded to its nearest
representable value (for advanced details on the rounding
modes see Section ??). Second, the FlexFloat API includes
a set of functions to perform arithmetic operations involving
operands of the same FP type. Using an approach common
to other C libraries for arbitrary precision arithmetic (e.g.,
MPFR), such operations must be replaced by function calls
that implement equivalent functionality on top of the emulated
types (line 5).

FlexFloat also comes with a C++ wrapper, which further
raises the level of abstraction for the replacement of FP
types/operations in a program. The adoption of a C API
combined with the availability of a C++ wrapper is a common
solution for the development of software libraries whenever
they are intended for multiple use scenarios. The C++ wrapper
provides a generic FP type by defining a template class
(flexfloat<e,m>) and a set of auxiliary functions for
debugging and collecting statistics. This only requires users
to replace original variable declarations with instantiations
of this template class. No other part of the program needs
modification since class methods include operator overloading
(see Figure III-A). While the C++ wrapper simplifies the
manual use of FlexFloat for FP precision tuning in target
applications (less modifications requires, type checking upon

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. XX, NO. XX, YY YYYY 5

C code

double a, b, c;
double x, y;

x = a + b;

…

y = b * c;

FlexFloat C API

flexfloat_t a, b, c;
flexfloat_t x, y;
flexfloat_t t1, t2, t3;
flexfloat_t t4, t5, t6;

ff_init(&a, E_A, M_A);
…
ff_init(&t1, E_EXPR1, M_EXPR1);
…
ff_init(&t6, E_EXPR2, M_EXPR2);

ff_cast(&t1, &a);
ff_cast(&t2, &b);
ff_add(&t3, &t1, &t2);
ff_cast(&x, &t3);

…

ff_cast(&t4, &b);
ff_cast(&t5, &c);
ff_mul(&t6, &t1, &t2);
ff_cast(&y, &t6);

1

2

3

4

7

8

9

10

11

12

13

14

5

6

15

Fig. 4: A slightly more complex C code snippet with interme-
diate FlexFloat temporaries to improve precision tuning.

template instantiation with error reports in case of type mis-
matches, etc.), the lower-level C interface is better suited for
integration with external tools, since it facilitates the creation
of an optimized binary for which native bindings are provided
by all the mainstream compilers (e.g., gcc and LLVM) and
programming environments (e.g., Java and Python)3.

B. Precision tuning

Figure III-B shows a slightly more complex C code where
the same variables are used in multiple expressions. In the
original code there are 5 variables, while the FlexFloat version
declares 11 variables (lines 3-4). An additional variable is
declared for each operand of an expression, with the aim to
expose the precision of all intermediate computations during
the tuning process. The flexfloat_t instances replacing
the original variable declarations initialize their exponent and
mantissa bit-widths with variable-specific values (i.e., E_A and
M_A for variable a in line 5). The flexfloat_t instances
representing temporary variables initialize their exponent and
mantissa bit-widths with values that are specific of the ex-
pression they are invoked in (i.e., the precision of the target
operator). In Figure III-B, t1, t2 and t3 are initialized with
E_EXPR1 and M_EXPR1, while t4, t5 and t6 are initialized
with E_EXPR2 and M_EXPR2 (lines 6-7). Since all operations
must be performed on operands of the same type (lines 10
and 14), operands are initially converted to the type of the
related expression using the intermediate variables by invoking
ff_cast (lines 8-9 and 12-13); finally the result is cast to
its target type (lines 11 and 15).

All the values introduced in the program to represent
exponents and mantissas (E_i and M_i) are defined as pre-
processor symbols, so that a different version of the program
can be obtained simply changing the value associated with
these tunable parameters. Hence precision tuning is performed

3As the exploration space for non-trivial applications is typically huge, auto-
mated approaches will become mandatory for establishing solid transprecision
computing methodologies. Much of our engineering effort has thus gone into
optimizing the design of the low-level C interface.

half a, b;
float c;

half x;
float y;

x = a + b;

…

y = half_to_float(b) * c;

Fig. 5: Platform-specific code derived from precision tuning
of the example in Figure III-B.

TABLE I: Result of precision tuning for the code in Fig-
ure III-B.

E A 5 bits M A 10 bits
E B 5 bits M B 10 bits
E C 8 bits M C 23 bits
E X 5 bits M X 10 bits
E Y 8 bits M Y 23 bits

E EXPR1 5 bits M EXPR1 10 bits
E EXPR2 8 bits M EXPR2 23 bits

assigning different values to E_i and M_i parameters and
performing an evaluation of the result quality for each version
that has been explored. In our example, suppose that x and y
are the program outputs, with precision requirements defined
as |x − xref | ≤ 10−4 and |y − yref | ≤ 10−6 (xref and yref
are the output values of the original program). The exploration
can be performed by substituting E_i and M_i with the values
corresponding to the FP types supported by the target platform.
For each assignment of all parameters the program must be
executed to check the result quality against requirements.

Considering a concrete instance of the example depicted
in Figure III-B, we perform precision tuning for a target
architecture including three standard FP formats (binary16,
binary32 and binary64). Table III-B shows the final outcomes
of the tuning process. Using these numbers, programmers can
derive a version using the primitive FP types available on the
target platform (Figure III-B). a, b and x can be declared as
binary16 variables, x and y as binary32 variables. Since the
type of the second expression is binary32 while the type of b
is binary16, a cast is required.

C. Execution statistics

The FlexFloat API includes functions to start, stop and reset
the collection of execution statistics. The final report includes
the number of arithmetic operations (grouped by operator
name) and the number of casts (grouped by source+destination
type pairs). This is a key feature of FlexFloat, since it allows
to evaluate the overhead due to the casts that have been
introduced by the transprecision computing transformation
methodology, where the precision of computations is changed
at a fine granularity.

These statistics can be used to derive policies that drive
the transformation of a program into a new mixed-precision
version by taking into account the overhead introduced by
casts (see Section ??). This feature is totally transparent to
the user and does not impact the usability of FlexFloat.

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. XX, NO. XX, YY YYYY 6

flexfloat_t sum, data[N];
…
ff_init_d(&sum, 0.0, 5, 10);
ff_track_callback(&sum, plot, &i);
…
for(i=0; i<N; i++) {
ff_acc(&sum, data[i]); // sum += data[i];

}

1

2

3

4

5

0

0.2

0.4

0.6

0.8

1

1.2

0 20 40 60 80 100 120
R

e
la

v

e
 E

rr
o

r
[%

]

Loop itera on

void plot (flexfloat_t *v,
void *arg) {

…
i = *((int *)arg);
v = ff_track_get_exact(v);
e = ff_track_get_error(v);
rel = e * 100 / v:
add_to_chart(i, rel);

}

6

7

8

9

10

Fig. 6: Example of fine-grain tracking: Evolution of the
relative error for a single variable during program execution.

FlexFloat provides an advanced feature to track at fine
grain the accumulation of errors on program variables. When
this feature is enabled, programmers (or automatic tools) can
retrieve the exact value of a computation stored in a variable
(or its current error w.r.t. the exact value) at any point in the
program. In addition users can add a callback to a program
variable, that is a function invoked at any update of the
variable. This feature can be useful for different purposes, for
instance it can be used to track which internal expression has
more impact on the result quality, to study the evolution of the
error over time to implement custom cost metric evaluation
(e.g., the cost of cast operations) to be used to steer the
precision tuning heuristics.

Figure III-C shows an example of fine-grained tracking
of the result of an expression inside a loop (lines 4–5). A
callback function is set for variable sum in line 3; plot
is invoked at each update of the related variable (the accu-
mulation in line 5) with two parameters. The first param-
eter of a callback function is always the modified variable
while the second parameter is custom and its purpose is
context-dependent. In this example the second parameter is
the loop variable i, which is converted back to an integer
variable (line 6). Calls to ff_track_get_exact (line 7)
and ff_track_get_error (line 8) are used to retrieve the
values required to compute the relative error (line 9). Finally,
this value is used to build a x-y plot of the error evolution
over multiple loop iterations (as shown in Figure III-C). This
feature enables the adoption of sample-based methodologies
for error analysis, which can be more focused on critical
variables compared to end-to-end metrics.

IV. FLEXFLOAT INTERNALS

The following sections provide more insight on the internals
and the design choices of FlexFloat.

A. Internal representation of FP types

FlexFloat provides an ADT (flexfloat_t) which encap-
sulates two unsigned integers (e and m) and a FP field (v).
e and m represent the number of bits used for exponent and
mantissa. Fixed values for e and m determine unambiguously

a target type. v contains the current FP value for an instance
of the target type and it is referred as backend value. The
type of v is fixed for all instances of the FlexFloat ADT,
it can be chosen at compile time among float, double
(default) and _Float1284. In the rest of the paper we
will consider a backend value of double type for practical
reasons, since it is the highest precision considered in our
benchmark suite; however the adoption of _Float128 as
backend value enables the emulation of FP types up to quad-
precision.

The format of a generic target type follows the conventions
of IEEE standard:

• the binary representation includes 1 bit for the sign,
e bits for the exponent and m bits for the mantissa:
bm+ebm+e−1...bmbm−1...b0;

• the value encoded in the exponent field is biased by
2e−1 − 1;

• the associated real value is:
−1bm+e × 0.(bm−1...b0)2 × 2(bm+e−1...bm)2−bias

• the values 00..0 and 11..1 of the exponent are dedicated to
encode the special cases considered by the standard, that
are ±0, denormal numbers, ±infinity and not-a-number
(NaN).

Figure IV-A depicts the format of a generic FP type, reporting
the number of bits dedicated to exponent and mantissa in IEEE
754 formats.

When a primitive value is provided at initialization time, it
is stored into the backend value and then it is sanitized. More
in detail, the sanitizing process for a FP type performs the
following steps to derive the backend value:

• a primitive value equal to ±infinity or NaN is encoded
as-is in double format;

• a primitive value that exceeds the range of the target type
is encoded as ±infinity in double format;

• a primitive value that is smaller than ±2−2n−1−2 is
converted to a denormalized notation; if its exponent is
smaller than −2n−1 − 2 then it is encoded as ±0;

• in all other cases the result is encoded in double format,
i.e. the sign bit is preserved, the exponent is biased by
1023 and the 53− e least significant bits of the mantissa
are set to zero.

After these steps, the backend value contains a value encoded
in double format which conveys the same precision and
dynamic range of the correspondent value encoded in the target
format. The sanitizing step is always transparent to FlexFloat
users.

B. Arithmetic operations and casts

Arithmetic operations are directly performed on backend
values in double format. An arithmetic function initializes a
flexfloat_t instance of the same type of operands width
and store the result in the backend value, which is sanitized
and returned as result. This methodology guarantees shorter

4This format is introduced by ISO/IEC TS 18661-3:2015 standard. Note
that on most architectures long double is not mapped on a quad-precision
FP type.

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. XX, NO. XX, YY YYYY 7

Fig. 7: Format of a generic FP type and number of bits
dedicated to exponent and mantissa in IEEE 754 formats.

execution times w.r.t. an approach based on full emulation of
arithmetic hardware units (e.g., SoftFloat) while preserving
bit-level accuracy.

FlexFloat provides a specific API function to perform a
conversion between different FP types. In detail, a cast from
a variable a of type A to a variable b of type B is performed
by sanitizing the backend value of a with the sanitize function
of B and finally storing the result in the backend value of b.

C. Rounding modes

FlexFloat supports the four rounding rules defined in the
IEEE 754 standard, that are:

• round-to-nearest (default) – results are rounded to the
nearest representable value;

• round-to-0 – results are rounded to the largest repre-
sentable value whose magnitude is less than that of the
result (truncation);

• round-toward-+∞ – results are rounded to the smallest
representable value which is greater than the result (ceil-
ing);

• round-toward-−∞ – results are rounded to the largest
representable value which is less than the result (floor).

The current rounding mode is set by calling the fesetround
function declared in the <fenv.h> header file, which is de-
fined by the ISO C standard for FP computations. In FlexFloat
the rounding process is realized as a preamble to the sanitize
step, applying an adjustment to the backend value whenever it
is required to produce a correct result. Considering for instance
the round-to-nearest mode, an addendum of −1bm+e × 253−m

is summed to the backend value if and only if the mantissa
bit at position 53 −m − 1 is equal to 1. This design allows
users to selectively disable the support to rounding modes to
speed up program execution. round-to-0 mode is automatically
applied when rounding support is disabled with the aim to
minimize the library overhead (see the experimental results in
Section ??).

V. EXPERIMENTAL EVALUATION

We compare FlexFloat with other libraries in terms of
emulation time (Sec. ??), we show how it can be used
to perform precision tuning on existing GPU hardware for
improved performance and energy (Sec. ??) and we discuss
the use of its advanced features (Sec. ??).

We have selected a set of benchmarks implemented in C
which use the double type for all FP variables. Our bench-
mark suite includes ten programs from different application
domains. Linear algebra kernels (SAXPY, FWT) are used by
many applications, recent surveys report that almost 50% of
these kernels are amenable to lower-than-32-bits precision cal-
culations [52]. Several algorithms for image processing make
use of prefix sum (SCAN) as a preliminary step; its reduced-
precision versions are typically used in resource-constrained
embedded systems [53]. In the field of computational finance
(BSCHOLES) a research study shows that adopting lower
precision types in Black-Scholes code provides more precise
outputs than other algorithms (e.g., Monte Carlo simulation)
[54]. The area of scientific computing (JACOBI) is one of the
most reluctant at introducing reduced-precision computations,
but some recent works follow this direction with the aim to
better exploit the computational power of GPUs [55] [56]
[57]. Reduced-precision convolutions (CONV) are widely used
by machine learning algorithms to improve the accuracy of
both training and inference of deep neural networks [58] [33].
Fixed-point versions of discrete wavelet transforms (DWT)
and support vector machines (SVM) have been demonstrated
to be beneficial for energy efficiency in designing seizure de-
tection algorithms for resource-constrained embedded systems
[59]. Their analysis can be naturally extended to reduced-
precision FP types. Algorithms for data mining (KMEANS,
CORR) can use half-precision arithmetic to perform fast
classifications and similarity search on GPUs [60] [61].

We target the embedded GPU on the NVidia Drive CX2
development board; this platform includes a Tegra X2 SoC
which contains 2 Denver cores, 4 ARM A57 cores and a GPU
from the Pascal generation with 256 CUDA cores grouped
in two Streaming Multi-processors (SMs) sharing a 512KB
L2 (last-level) cache. This platform supports three standard
FP data types (binary16, binary32, binary64) and provides
efficient conversion operations in its instruction set which can
be used to scale precision at runtime. Moreover, the compute
pipeline includes 2-way vector half-precision arithmetic units
which can issue two binary16 operations at the same rate as
a single binary32 operation. Overall half-precision arithmetic
has twice the throughput of single-precision arithmetic and
four times the throughput of double precision.

In our experiments on precision tuning we have consid-
ered as a quality metric the value of signal-to-quantization-
noise ratio (SQNR) computed over result elements in the
benchmark result set. Concerning the quality of results, we
consider four different requirements expressed as four SQNR
values (1010, 105, 103, 10: the higher the value the smaller the
tolerated error).

To evaluate the energy consumption of the target platform
we use a digital multimeter to measure the current consump-
tion of the entire board with only an Ethernet connection
and no other off-board peripherals. Combining the current
measurement with the input voltage of the board (12 V) and
the execution times of a native CUDA version of the program
(discussed in Section ??) we estimate the energy consumption
of each benchmark.

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. XX, NO. XX, YY YYYY 8

TABLE II: Percentage of variables associated to a FP type (binary16, binary32, binary64) by the precision tuning process,
considering four alternative targets of result quality.

SQNR
1010 105 103 10

Bench.
Type binary64 binary32 binary16 binary64 binary32 binary16 binary64 binary32 binary16 binary64 binary32 binary16

SAXPY 0% 66.7% 33.3% 0% 0% 100% 0% 0% 100% 0% 0% 100%
SCAN 0% 100% 0% 0% 66.7% 33.3% 0% 0% 100% 0% 0% 100%

BSCHOLES 100% 0% 0% 0% 73.3% 26.7% 0% 40% 60% 0% 26.7% 73.3%
JACOBI 100% 0% 0% 0% 48% 52% 0% 48% 52% 0% 36% 64%
CONV 0% 100% 0% 0% 25% 75% 0% 0% 100% 0% 0% 100%
SVM 0% 100% 0% 0% 83.3% 16.7% 0% 33.3% 66.7% 0% 33.3% 66.7%
DWT 100% 0% 0% 0% 71.4% 28.6% 0% 71.4% 28.6% 0% 71.4% 28.6%

KMEANS 0% 100% 0% 0% 80% 20% 0% 0% 100% 0% 0% 100%
FWT 100% 0% 0% 0% 100% 0% 0% 100% 0% 0% 100% 0%

CORR 0% 42.9% 57.1% 0% 42.9% 57.1% 0% 42.9% 57.1% 0% 42.9% 57.1%

A. Emulation results

We have performed a set of experiments to compare the
emulation time of the current implementation of FlexFloat
with two libraries, SoftFloat (version 3d) and MPFR (version
3.1.3). We have designed a synthetic benchmark which in-
cludes an instance of all arithmetic operators with forward data
dependencies among variables (i.e., the result of an expression
is used as operand in the next one); operands are initialized
with random values and operations are executed in a single
loop of one billion iterations. We have implemented three
variants for FP emulation, one for each API. Since SoftFloat
does not support arbitrary types we have focused our analysis
on binary16; similar considerations are valid for the emulation
of any smaller-than-32-bits type. In the MPFR version we
have set the precision parameter to size of the mantissa of
a binary16 type (11 bits), but it is not possible to limit the
exponent to the 5 bits mandated by the IEEE standard. To
prevent unfair comparisons with those APIs that limit the
exponent to 5 bits the benchmark has been designed to prevent
overflows in the dynamic range. The source code has been
compiled using GCC 4.9 with optimization level O3 and target
x86 64-linux-gnu, then executed on a Core i7-6500U CPU.

Figure V-A reports the execution times of the different
versions of the synthetic benchmark compared to the baseline
FlexFloat (fast math); in this configuration both rounding
support and execution statistics are disabled with the aim to
optimize arithmetic computations to the detriment of strict
IEEE compliance. The Native case reports the execution time
when using the native double type for all variables: This
case is clearly much faster than any emulation scheme, as the
double type is natively supported in hardware. The numbers
labeling the arrows report the slow-down of the emulation
time compared to the baseline. MPFR is 2.8 times slower
than FlexFloat (fast math), while SoftFloat is 2.4 times
slower. When the emulation of the various rounding modes
is enabled the emulation speed of FlexFloat is obviously
reduced: Even in this case it is 31% and 11% faster than
MPFR and SoftFloat, respectively. In case both rounding
modes and execution statistics are activated the execution
time of FlexFloat is equivalent to the other libraries; however
in this configuration the library is providing unique advanced
features and consequently these results cannot be directly

Fig. 8: Comparison with MPFR and SoftFloat.

compared.

Precision tuning. Next, we couple FlexFloat to a precision
tuning tool [15]. The tuning process analyzes multiple config-
urations in which each FP variable is assigned to one of the
available types. The tuner re-executes the program for each
configuration and computes the error on its output values to
provide a measure of the result accuracy5.

Table V-A reports the percentage of variables that are
associated to different FP types for each benchmark at the end
of the tuning process. If no relaxation on the output quality
is considered (SQNR = 1010) a large number of program
variables will be mapped onto high precision types (binary64
and binary32). As the error tolerance increases (SQNR gets
lower) a higher number of program variables is mapped onto
low precision types.

In some (lucky) cases all the variables can be lowered in
precision to the same FP type (e.g., all variables in SAXPY
are half- precision for any value of SQNR less than 1010),
but in general this is not true. When variables cannot be all
lowered to the same type cast operations are required. As such
operations are costly, it is important to assess the trade-off be-

5Different error metrics can be provided by passing a function as a
parameter to the script.

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. XX, NO. XX, YY YYYY 9

Fig. 9: Execution time of each benchmark normalized to the double version.

TABLE III: Ratio between the number of casts and the number
of FP operations after precision tuning.

Bench.
SQNR

1010 105 103 10

SAXPY 0.50
SCAN 1.00

BSCHOLES 0.16 0.10 0.14
JACOBI 0.60 0.30 0.30
CONV 0.35
SVM 0.54 0.10 0.10
DWT 0.26 0.26 0.26

KMEANS 0.60
FWT

CORR 0.21 0.21 0.21 0.21

tween this cost and the benefits introduced by lower precision
arithmetic. Using FlexFloat we can obtain execution statistics
– that no other library provides – which include the number
of cast operations required at runtime. Table V-A reports the
ratio between the number of casts and the number of FP
operations (Casts/Ops) for all the configurations (benchmark
and target quality) which require different FP types from the
previous analysis. Casts add an overhead to the execution
time that reduces the speed-up of the tuned version of a
benchmark compared to the double-precision reference. We
have empirically determined that mixed-precision computation
is profitable when the value of Casts/Ops is smaller than 0.50
(i.e., the number of casts should be smaller than half the
number of arithmetic operations).

B. Case study: FlexFloat for transprecise GPU computation

We have implemented multiple CUDA versions of each
benchmark. The baseline version uses only double-precision
variables (binary64), whereas the other versions use the mix
of FP types shown in Table V-A. The mixed-precision versions
always make use of vectorial FP types and operations in order
to maximize the utilization of hardware units and the reduction
in energy consumption. Figure V-A reports the execution time
of each benchmark normalized to the baseline.

On average mixed-precision computation allows 20% (for
the lowest accuracy relaxation) to 52% (for the highest ac-

curacy relaxation) reduction in execution time. Looking at
Table V-A we can see that benchmarks SAXPY, SCAN,
CONV, KMEANS all achieve precision lowering to binary16
for 100% of their program variables when SQNR = {10, 103}.
This theoretically allows to reduce their execution time to 25%
of the baseline (binary64). This is indeed the case for SAXPY
and SCAN. The slightly higher execution time for CONV and
KMEANS is justified by the fact that only part of the half-
precision computations are vectorized due to the presence of
control flow statements.

Although the totality of the program variables in CORR can
be lowered in precision to a mix of binary32 and binary16, this
only enables a small reduction in execution time (< 10%). The
reason for this behavior is that a large portion of the program
is spent over synchronization (CUDA barriers).

BSCHOLES shows higher-than-ideal reduction in execu-
tion time for SQNR = {10, 103, 105}. The baseline version
of this benchmark is characterized by a high communica-
tion/computation ratio that forces long idle periods on the
processing cores. The memory bandwidth request reduction
implied by the adoption of the half-precision types has the
side effect of significantly reducing the stall time.

Figure V-B depicts the energy consumption of each bench-
mark normalized to the double-precision version. On average
the results follow the trends observed for the execution time
plot, with an even more pronounced advantage in energy
savings, which range from 22% (for the lowest accuracy
relaxation) to 60% (for the highest accuracy relaxation). BSC-
HOLES and CORR deserve further discussion. The former
seemingly exhibits lower benefits compared to the execution
time results. This is due to the fact that while memory transfers
and computations are overlapped in time, they are cumulative
to the total energy consumption (note that energy consumption
of the processing elements in idle/stall state is negligible).
The latter shows higher improvements in energy efficiency
compared to the execution time alone. As already mentioned,
energy consumption in idle state is nearly negligible, which
makes the large part (in execution time) of synchronizations
irrelevant in terms of energy. As a consequence, the savings
implied by the adoption of lower-precision arithmetic are

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. XX, NO. XX, YY YYYY 10

Fig. 10: Energy consumption of each benchmark normalized to the double version.

Original code

void scan(double *out,
double *data,
int n)

{
int i;
out[0] = 0;
for(i=1; i<n; i++)
out[i] = data[i-1] +

out[i-1];

}

FlexFloat version

ff_init(&out[i], 5, 10);
ff_track_callback(&out[i],adapt,&i);
…

void adapt(flexfloat_t *v, void *idx)
{
int i = *((int *) idx);
if(ff_track_get_error(v) < 0.1) return;
printf(“Index %d:\n”, i);
flexfloat_desc_t prec = promote_prec(v);
double exact_val = ff_track_get_exact(v);
ff_init_d(v, exact_val, prec);

}

Pla!orm-specific version

void scan_h(half *out, half *data, int n);
void scan_f(float *out, half *data, int n);
void scan_d(double *out, half *data, int n);

…

if(n < 31) {
half *out = malloc(n*sizeof(half));
scan_h(out, data, n);

}
else if(n < 8271) {
float *out = malloc(n*sizeof(float));
scan_f(out, data, n);

}
else {
…

Index 31:
Promote precision from FP16 to FP32
Index 8271:
Promote precision from FP32 to FP64

execu�on

report

Fig. 11: Example of adaptive code based on a one-dimensional version of SCAN.

“magnified” in this plot.
It is worth noting that the energy savings for SCAN in

the configurations SQNR = {105, 1010} are also smaller than
the “savings” in execution time. This is a visible effect of
the cost introduced by the cast operations. It is possible
to see from Table V-A that the Casts/Ops value for these
configurations is very high. This is an important observation,
since it demonstrates the importance of integrating the cost of
cast operations into optimization models for precision tuning.
Overall, these results show that the adoption of FlexFloat
is effective in exploring the trade-offs between quality and
energy consumption in transprecision computing.

C. Advanced features
In this last part of the experimental section we show how

the advanced profiling features of FlexFloat (introduced in
Section ??) can be used to identify parameters that are more
critical for error propagation. Indeed the findings of this
analysis can be used to derive multiple variants for limited
portions of the original program, each one characterized by
a specific precision binding for inner variables. Using this
approach, a programmer can derive an adaptive version of
the program that includes multiple code variants and the logic
required to switch among them.

Figure V-B shows an example of adaptive code based on a
one-dimensional version of SCAN. The quality requirement on
the program output is |out[i]−outref [i]| < 0.1. A first analysis
on a half-precision version of the program has confirmed the
intuition that the computation of out[i] is the most critical
statement for error accumulation, while the data array can
be declared as half-precision since input data are provided in
decimal format with only 3 significant digits. Moreover, the
error on out[i] is heavily affected by the parameter n, that is
the number of elements in the input array. We have explored
the dependence between n and error propagation providing
a new program version which uses the tracking feature of
FlexFloat. More in detail, we have defined a callback function
(adapt) that executes these steps:

1) if the current error is less than 0.1, it returns with no
side effect;

2) (else) it calls the promote_prec function to promote
the precision of the current output element to the next
available one (from half-precision to single-precision
and finally to double-precision);

3) it retrieves the exact value of the current output element;
4) it re-initializes the current output element with its exact

value (from step 3) and the precision computed at step
2.

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. XX, NO. XX, YY YYYY 11

The execution of this code produces a report (Figure V-B, on
the bottom) that highlights which iterations require a precision
change to fulfill the quality constraint. We have used this report
to derive a platform-specific version of the original program
(Figure V-B, on the right), declaring three variants of the scan
function. The logic required to switch among these variants
checks the current value of the iteration variable.

VI. CONCLUSION

FlexFloat is an open-source software library designed to
aid the development of transprecision systems by providing
a C/C++ API for supporting multiple FP formats. FlexFloat
enables the control of the bit-width of mantissa and exponent
fields and provides advanced features for the collection of
runtime statistics. These features allow to emulate the behavior
of standard or custom FP types and make the library suitable
for adoption in multiple contexts, from manual explorations
to the integration with advanced tools for precision tuning.
Experimental results show that FlexFloat outperforms other
libraries in emulation speed, with up to 2.8× faster program
execution. This is key to enable the exploration of multiple
precision configurations within reasonable time. Moreover, the
adoption of a methodology based on FlexFloat is effective
in finding the best trade-off between quality and energy
consumption on a real computing platform. On a commercial
embedded GPU based on the NVidia Tegra X2 SoC we have
observed that mixed-precision computation allows on average
20% to 52% reduction in execution time and 22% to 60%
reduction in energy consumption for a wide set of benchmarks.

Our future work will be focused on integrating FlexFloat
within toolchains aimed at automating the development of
transprecision applications, enabling a conversion from source
code to a FlexFloat representation that can be used to perform
precision tuning. The results of this analysis can be injected
in the compilation toolchain with a feedback loop and used to
produce a final version based on primitive types available in
the compiler backend. We also plan to extend the library to
support more FP formats (e.g., unum and posit).

REFERENCES

[1] M. Avgerinou, P. Bertoldi, and L. Castellazzi, “Trends in Data Centre
Energy Consumption under the European Code of Conduct for Data
Centre Energy Efficiency,” Energies, vol. 10, no. 10, p. 1470, 2017.

[2] Q. Xu, T. Mytkowicz, and N. S. Kim, “Approximate computing: A
survey,” IEEE Design & Test, vol. 33, no. 1, pp. 8–22, 2016.

[3] S. Mittal, “A survey of techniques for approximate computing,” ACM
Computing Surveys (CSUR), vol. 48, no. 4, pp. 1–33, 2016.

[4] M. Alioto, “Energy-quality scalable adaptive VLSI circuits and systems
beyond approximate computing,” in 2017 Design, Automation & Test in
Europe Conference & Exhibition (DATE). IEEE, 2017, pp. 127–132.

[5] S. Sidiroglou-Douskos, S. Misailovic, H. Hoffmann, and M. Rinard,
“Managing performance vs. accuracy trade-offs with loop perforation,”
in Proceedings of the 19th ACM SIGSOFT symposium and the 13th
European conference on Foundations of software engineering. ACM,
2011, pp. 124–134.

[6] B. Nongpoh, R. Ray, S. Dutta, and A. Banerjee, “AutoSense: A Frame-
work for Automated Sensitivity Analysis of Program Data,” IEEE Trans.
on Software Engineering, vol. 43, no. 12, pp. 1110–1124, 2017.

[7] V. Gupta, D. Mohapatra, A. Raghunathan, and K. Roy, “Low-power
digital signal processing using approximate adders,” IEEE Trans. on
Computer-Aided Design of Integrated Circuits and Systems, vol. 32,
no. 1, pp. 124–137, 2013.

[8] B. Li, P. Gu, Y. Shan, Y. Wang, Y. Chen, and H. Yang, “RRAM-
based analog approximate computing,” IEEE Trans. on Computer-Aided
Design of Integrated Circuits and Systems, vol. 34, no. 12, pp. 1905–
1917, 2015.

[9] M. Imani, D. Peroni, and T. Rosing, “CFPU: Configurable Floating Point
Multiplier for Energy-Efficient Computing,” in Proceedings of the 54th
Annual Design Automation Conference 2017. ACM, 2017, p. 76.

[10] A. Sampson, W. Dietl, E. Fortuna, D. Gnanapragasam, L. Ceze, and
D. Grossman, “EnerJ: Approximate data types for safe and general low-
power computation,” in ACM SIGPLAN Notices, vol. 46, no. 6. ACM,
2011, pp. 164–174.

[11] C.-C. Hsiao, S.-L. Chu, and C.-Y. Chen, “Energy-aware hybrid precision
selection framework for mobile GPUs,” Computers & Graphics, vol. 37,
no. 5, pp. 431–444, 2013.

[12] Y. Tian, Q. Zhang, T. Wang, F. Yuan, and Q. Xu, “Approxma: Approx-
imate memory access for dynamic precision scaling,” in Proceedings of
the 25th edition on Great Lakes Symposium on VLSI. ACM, 2015, pp.
337–342.

[13] C. Bekas, A. Curioni, and I. Fedulova, “Low-cost data uncertainty quan-
tification,” Concurrency and Computation: Practice and Experience,
vol. 24, no. 8, pp. 908–920, 2012.

[14] P. Klavı́k, A. C. I. Malossi, C. Bekas, and A. Curioni, “Changing
computing paradigms towards power efficiency,” Philosophical Trans. of
the Royal Society of London A: Mathematical, Physical and Engineering
Sciences, vol. 372, no. 2018, 2014.

[15] N.-M. Ho, E. Manogaran, W.-F. Wong, and A. Anoosheh, “Efficient
floating point precision tuning for approximate computing,” in 22nd Asia
and South Pacific Design Automation Conference (ASP-DAC). IEEE,
2017, pp. 63–68.

[16] W.-F. Chiang, M. Baranowski, I. Briggs, A. Solovyev, G. Gopalakr-
ishnan, and Z. Rakamarić, “Rigorous floating-point mixed-precision
tuning,” in Proceedings of the 44th ACM SIGPLAN Symposium on
Principles of Programming Languages. ACM, 2017, pp. 300–315.

[17] C. Bekas and A. Curioni, “A new energy aware performance metric,”
Computer Science-Research and Development, vol. 25, no. 3, pp. 187–
195, 2010.

[18] S. Mach, D. Rossi, G. Tagliavini, A. Marongiu, and L. Benini, “A Trans-
precision Floating-Point Architecture for Energy-Efficient Embedded
Computing,” in Circuits and Systems (ISCAS), 2018 IEEE International
Symposium on. IEEE, 2018, pp. 1–5.

[19] A. C. I. Malossi, M. Schaffner, A. Molnos, L. Gammaitoni, G. Tagli-
avini, A. Emerson, A. Tomás, D. S. Nikolopoulos, E. Flamand, and
N. Wehn, “The transprecision computing paradigm: Concept, design,
and applications,” in Design, Automation & Test in Europe Conference
& Exhibition (DATE). IEEE, 2018, pp. 1105–1110.

[20] G. Tagliavini, S. Mach, D. Rossi, A. Marongiu, and L. Benin, “A
transprecision floating-point platform for ultra-low power computing,” in
Design, Automation & Test in Europe Conference & Exhibition (DATE),
2018. IEEE, 2018, pp. 1051–1056.

[21] D. Zuras, M. Cowlishaw, A. Aiken, M. Applegate, D. Bailey, S. Bass,
D. Bhandarkar, M. Bhat, D. Bindel, S. Boldo et al., “IEEE standard for
floating-point arithmetic,” IEEE Std 754-2008, pp. 1–70, 2008.

[22] S. Graillat, F. Jézéquel, R. Picot, F. Févotte, and B. Lathuilière, “Auto-
tuning for floating-point precision with Discrete Stochastic Arithmetic,”
Jun. 2016, preprint. [Online]. Available: https://hal.archives-
ouvertes.fr/hal-01331917

[23] L. Fousse, G. Hanrot, V. Lefèvre, P. Pélissier, and P. Zimmermann,
“MPFR: A multiple-precision binary floating-point library with correct
rounding,” ACM Trans. on Mathematical Software (TOMS), vol. 33,
no. 2, p. 13, 2007.

[24] D. Mukunoki and T. Imamura, “Reduced-Precision Floating-Point For-
mats on GPUs for High Performance and Energy Efficient Computation,”
in IEEE International Conference on Cluster Computing (CLUSTER),
2016, pp. 144–145.

[25] J. Y. F. Tong, D. Nagle, and R. A. Rutenbar, “Reducing power by
optimizing the necessary precision/range of floating-point arithmetic,”
IEEE Trans. on Very Large Scale Integration (VLSI) Systems, vol. 8,
no. 3, pp. 273–286, 2000.

[26] T. Rzayev, S. Moradi, D. H. Albonesi, and R. Manchar, “Deep-
Recon: Dynamically reconfigurable architecture for accelerating deep
neural networks,” in International Joint Conference on Neural Networks
(IJCNN), 2017, pp. 116–124.

[27] H. Kaul, M. Anders, S. Mathew, S. Hsu, A. Agarwal, F. Sheikh,
R. Krishnamurthy, and S. Borkar, “A 1.45GHz 52-to-162GFLOPS/W
variable-precision floating-point fused multiply-add unit with certainty
tracking in 32nm CMOS,” in IEEE International Solid-State Circuits
Conference, 2012, pp. 182–184.

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. XX, NO. XX, YY YYYY 12

[28] J. R. Hauser, “Handling floating-point exceptions in numeric programs,”
ACM Trans. on Programming Languages and Systems (TOPLAS),
vol. 18, no. 2, pp. 139–174, 1996.

[29] A. Willème, A. Descampe, S. Lugan, and B. Macq, “Quality and
Error Robustness Assessment of Low-Latency Lightweight Intra-Frame
Codecs for Screen Content Compression,” IEEE Journal on Emerging
and Selected Topics in Circuits and Systems, vol. 6, no. 4, pp. 471–483,
2016.

[30] S. Misailovic, M. Carbin, S. Achour, Z. Qi, and M. C. Rinard, “Chisel:
Reliability-and accuracy-aware optimization of approximate computa-
tional kernels,” in ACM SIGPLAN Notices, vol. 49, no. 10. ACM,
2014, pp. 309–328.

[31] B. Boston, A. Sampson, D. Grossman, and L. Ceze, “Probability type
inference for flexible approximate programming,” in ACM SIGPLAN
Notices, vol. 50, no. 10. ACM, 2015, pp. 470–487.

[32] R. Venkatagiri, A. Mahmoud, S. K. S. Hari, and S. V. Adve, “Approxi-
lyzer: Towards a systematic framework for instruction-level approximate
computing and its application to hardware resiliency,” in 49th Annual
IEEE/ACM International Symposium on Microarchitecture (MICRO).
IEEE, 2016, pp. 1–14.

[33] P. Micikevicius, S. Narang, J. Alben, G. Diamos, E. Elsen, D. Garcia,
B. Ginsburg, M. Houston, O. Kuchaev, G. Venkatesh et al., “Mixed
Precision Training,” arXiv preprint arXiv:1710.03740, 2017.

[34] K. Guo, L. Sui, J. Qiu, J. Yu, J. Wang, S. Yao, S. Han, Y. Wang,
and H. Yang, “Angel-Eye: A Complete Design Flow for Mapping CNN
Onto Embedded FPGA,” IEEE Trans. on Computer-Aided Design of
Integrated Circuits and Systems, vol. 37, no. 1, pp. 35–47, 2018.

[35] N.-M. Ho and W.-F. Wong, “Exploiting half precision arithmetic in
Nvidia GPUs,” in High Performance Extreme Computing Conference
(HPEC), 2017 IEEE. IEEE, 2017, pp. 1–7.

[36] S. Eliuk, C. Upright, and A. Skjellum, “dMath: A Scalable Linear
Algebra and Math Library for Heterogeneous GP-GPU Architectures,”
arXiv preprint arXiv:1604.01416, 2016.

[37] J. L. Gustafson, The End of Error: Unum Computing. Chapman and
Hall/CRC, 2015.

[38] F. Glaser, S. Mach, A. Rahimi, F. K. Grkaynak, Q. Huang, and L. Benini,
“An 826 MOPS, 210uW/MHz Unum ALU in 65 nm,” in 2018 IEEE
International Symposium on Circuits and Systems (ISCAS), May 2018,
pp. 1–5.

[39] J. L. Gustafson and I. T. Yonemoto, “Beating Floating Point at its Own
Game: Posit Arithmetic,” Supercomputing Frontiers and Innovations,
vol. 4, no. 2, pp. 71–86, 2017.

[40] S. Vakili, J. P. Langlois, and G. Bois, “Enhanced precision analysis for
accuracy-aware bit-width optimization using affine arithmetic,” IEEE
Trans. on Computer-Aided Design of Integrated Circuits and Systems,
vol. 32, no. 12, pp. 1853–1865, 2013.

[41] M. Grailoo, B. Alizadeh, and B. Forouzandeh, “Improved Range Anal-
ysis in Fixed-Point Polynomial Data-Path,” IEEE Trans. on Computer-
Aided Design of Integrated Circuits and Systems, vol. 36, no. 11, pp.
1925–1929, 2017.

[42] T. Granlund et al., GNU MP 6.0 Multiple Precision Arithmetic Library.
Samurai Media Limited, 2015.

[43] C. Kormanyos, Real-time C++: efficient object-oriented and template
microcontroller programming. Springer, 2015.

[44] D. H. Bailey, H. Yozo, X. S. Li, and B. Thompson, “ARPREC: An
arbitrary precision computation package,” Lawrence Berkeley National
Laboratory, 2002.

[45] D. H. Bailey, R. Barrio, and J. M. Borwein, “High-precision compu-
tation: Mathematical physics and dynamics,” Applied Mathematics and
Computation, vol. 218, no. 20, pp. 10 106–10 121, 2012.

[46] L. Gerlach, G. Payá-Vayá, and H. Blume, “Efficient Emulation of
Floating-Point Arithmetic on Fixed-Point SIMD Processors,” in 2016
IEEE International Workshop on Signal Processing Systems (SiPS).
IEEE, 2016, pp. 254–259.

[47] C. Rubio-González, C. Nguyen, H. D. Nguyen, J. Demmel, W. Kahan,
K. Sen, D. H. Bailey, C. Iancu, and D. Hough, “Precimonious: Tuning
assistant for floating-point precision,” in Proceedings of the International
Conference on High Performance Computing, Networking, Storage and
Analysis. ACM, 2013, p. 27.

[48] C. Nguyen, C. Rubio-González, B. Mehne, K. Sen, J. Demmel, W. Ka-
han, C. Iancu, W. Lavrijsen, D. H. Bailey, and D. Hough, “Floating-point
precision tuning using blame analysis,” in International Conference on
Software Engineering (ICSE). ACM, 2016.

[49] F. De Dinechin, C. Q. Lauter, and G. Melquiond, “Assisted verification
of elementary functions using Gappa,” in Proceedings of the 2006 ACM
symposium on Applied computing. ACM, 2006, pp. 1318–1322.

[50] H. Brönnimann, G. Melquiond, and S. Pion, “The design of the Boost
interval arithmetic library,” Theoretical Computer Science, vol. 351,
no. 1, pp. 111–118, 2006.

[51] M. Moscato, L. Titolo, A. Dutle, and C. A. Munoz, “Automatic Estima-
tion of Verified Floating-Point Round-Off Errors via Static Analysis,” in
International Conference on Computer Safety, Reliability, and Security.
Springer, 2017.

[52] A. Abdelfattah, H. Anzt, and A. Bouteiller, “Roadmap for the Develop-
ment of a Linear Algebra Library,” month, 2017.

[53] S. Ehsan, A. F. Clark, K. D. McDonald-Maier et al., “Integral images:
efficient algorithms for their computation and storage in resource-
constrained embedded vision systems,” Sensors, vol. 15, no. 7, pp.
16 804–16 830, 2015.

[54] K. Ścibisz-Mordelska and R. Nielek, “Lower Precision calculation for
option pricing,” Computer Science, vol. 18, no. 4, 2017.

[55] S. Le Grand, A. W. Götz, and R. C. Walker, “SPFP: Speed without
compromise – A mixed precision model for GPU accelerated molecular
dynamics simulations,” Computer Physics Communications, vol. 184,
no. 2, pp. 374–380, 2013.

[56] A. Dawson, P. D. Düben, D. A. MacLeod, and T. N. Palmer, “Reliable
low precision simulations in land surface models,” Climate Dynamics,
pp. 1–10, 2017.

[57] J. Dongarra, S. Tomov, P. Luszczek, J. Kurzak, M. Gates, I. Yamazaki,
H. Anzt, A. Haidar, and A. Abdelfattah, “With Extreme Computing, the
Rules Have Changed,” Computing in Science & Engineering, vol. 19,
no. 3, pp. 52–62, 2017.

[58] S. Gupta, A. Agrawal, K. Gopalakrishnan, and P. Narayanan, “Deep
learning with limited numerical precision,” in Proceedings of the 32nd
International Conference on Machine Learning (ICML-15), 2015, pp.
1737–1746.

[59] S. Benatti, F. Montagna, D. Rossi, and L. Benini, “Scalable EEG seizure
detection on an ultra low power multi-core architecture,” in Biomedical
Circuits and Systems Conference (BioCAS), 2016 IEEE. IEEE, 2016,
pp. 86–89.

[60] J. Johnson, M. Douze, and H. Jégou, “Billion-scale similarity search
with GPUs,” arXiv preprint arXiv:1702.08734, 2017.

[61] A. Cano, “A survey on graphic processing unit computing for large-
scale data mining,” Wiley Interdisciplinary Reviews: Data Mining and
Knowledge Discovery, 2017.

Giuseppe Tagliavini received the MS degree in
Computer Engineering in 2010 and the PhD degree
in Electronic Engineering in 2017 from the Uni-
versity of Bologna. He is currently a post-doctoral
researcher at the Department of Electrical, Elec-
tronic and Information Engineering (DEI) at the
University of Bologna. His research interests include
programming models and run-time optimization for
many-core accelerators, software design for low-
power embedded systems and advanced frameworks
(compilers, runtime environments, exploration tools)

for emerging computing architectures.
Andrea Marongiu received the MSc degree in elec-
tronic engineering from the University of Cagliari,
Italy, in 2006 and the PhD degree in electronic
engineering from the University of Bologna, Italy,
in 2010. Since 2013 he has been a Research Fellow
at ETH Zurich. He currently is an Assistant Pro-
fessor at the University of Bologna. His research
interests concern parallel programming model and
architecture design in the single-chip multiproces-
sors domain, with special emphasis on compilation
for heterogeneous architectures, efficient usage of

on-chip memory hierarchies and SoC virtualization. He has published more
than 100 papers in peer reviewed international journals and conferences. He
is a member of the IEEE.

Luca Benini holds the chair of Digital Circuits and
Systems at ETHZ and is Full Professor at the Univer-
sity of Bologna. Dr. Benini’s research interests are
in energy-efficient system design for embedded and
high-performance computing. He is also active in the
area of energy-efficient smart sensors and ultra-low
power VLSI design. He has published more than 800
papers, five books and several book chapters. He is a
Fellow of the IEEE and a member of the Academia
Europaea. He is the recipient of the 2016 IEEE CAS
Mac Van Valkenburg award.

