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Background: High-throughput measurement of transcript intensities using Affymetrix type oligonucleotide
microarrays has produced a massive quantity of data during the last decade. Different preprocessing techniques
exist to convert the raw signal intensities measured by these chips into gene expression estimates. Although these
techniques have been widely benchmarked in the context of differential gene expression analysis, there are only
few examples where their performance has been assessed in respect to coexpression-based studies such as sample

Results: In the present paper we benchmark the three most used normalization procedures (MAS5, RMA and
GCRMA) in the context of inter-array correlation analysis, confirming and extending the finding that RMA and
GCRMA consistently overestimate sample similarity upon normalization. We determine that median polish
summarization is responsible for generating a large proportion of these over-similarity artifacts. Furthermore, we
show that most affected probesets show also internal signal disagreement, and tend to be composed by individual
probes hitting different gene transcripts. We finally provide a correction to the RMA/GCRMA summarization
procedure that massively reduces inter-array correlation artifacts, without affecting the detection of differentially

Conclusions: We propose tRMA as a modification of RMA to normalize microarray experiments for correlation-

Background

High density oligonucleotide microarrays are widely
used in many areas of biological research for quantita-
tive, high-throughput measurements of gene expression.
Although ultra-deep sequencing techniques promise to
replace them in the near future [1], it would be a mis-
take to ignore the biological importance of the massive
quantity of data already produced through this platform.
Publicly available databases alone store a huge (and
growing) quantity of microarray experiments (e.g.
338947 samples in Gene Expression Omnibus [2] and
251711 in ArrayExpress [3]), comprising hundreds of
different species.

Among microarrays, the single-channel Affymetrix
GeneChip platform [4] is by far the most popular (for
instance, in Gene Expression Omnibus they represent
97.9% of all arrays available for Arabidopsis thaliana,
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and 99.0% for Homo sapiens). In this technology each
transcript is typically measured by a set of 11-20 pairs
of 25 bases-long probes, collectively referred to as
“probeset”.

For every “perfect match” probe (PM), Affymetrix
chips contain a “mismatch” counterpart (MM), with a
single nucleotide change in the middle of the PM probe
sequence. The role of MM probes, located adjacent to
the respective PM, is to measure probe-specific back-
ground signal associated to any perfect-match signal
intensity.

In general, the process of obtaining a single gene expres-
sion value out of raw probe intensity measurements is
called “microarray preprocessing”. Three steps are usually
required: background correction, normalization and sum-
marization. Many different methods or combinations of
methods were proposed over the years [5,6].

The most popular manufacturer-provided method,
MASS5 [7], uses a scale normalization approach, then
corrects the background by subtracting the mean
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intensity of the lowest 2% spots in every microarray
region, and then MM intensities from the respective PM
ones. Wherever MM intensity is higher than a PM one,
in order to avoid negative signal intensities typical of the
MASS5 predecessor, MAS4 [4,8], MASS5 replaces the MM
signal with an “idealized mismatch” value (IM) derived
from other values in the same probeset. To extract final
probeset intensities, MAS5 calculates a robust average
(Tukey’s biweight) of all the contained probes.

Many alternative techniques have challenged MAS5
supremacy for preprocessing. Being a single-array tech-
nique, MAS5 doesn’t model probes’ behaviour across
different samples, and therefore suffers from high var-
iance and is theoretically less robust than multi-array
algorithms [9,10].

Two of the most popular multi-array normalization
techniques are RMA [9] and GCRMA [11]. RMA
doesn’t use information contained in MM probes, and
calculates background signal by performing a modelled
global correction of all PM intensities. Then it applies a
quantile normalization step and a median polish sum-
marization, which accounts for probe intensities over
multiple arrays. GCRMA applies the same normalization
and summarization steps as RMA, but it differs in the
background correction method, which is based on the
probe sequence. Other multi-array methods which don’t
discard MM intensities exist, one of them being dChip
[12]. However, in the present paper we will focus on
RMA, GCRMA and MASS5, which are possibly the most
popular microarray normalization methods [13,14].
Their popularity is illustrated by the fact that they are
the most popular normalization techniques in online
databases [15].

Most benchmarks have tried to assess the quality of
different preprocessing methods in differential gene
expression scenarios, the original purpose for which
microarrays were developed [16]. To do so, golden set
spike-in samples were used, with known concentrations
of transcripts [17,6], or Real Time PCR measurements
were performed for comparison [18]. The outcome of
these benchmarks has not identified any technique as
the top performer, although single-array techniques
such as MAS5 have been outperformed by multi-array
ones such as RMA [9,18,19].

However, many different approaches to biological
investigation have relied on microarrays, ranging from
gene and sample clustering [20] to gene-gene network
reverse-engineering [21], from sample classification [22]
to global transcript models [23]. The field of microarray
data correlation and clustering based on the principle of
coexpression has developed at a quite considerable pace
[24]; despite this, the effects of preprocessing on coex-
pression analyses have been generally overlooked, with a
few exceptions. [25] used bacterial operons to validate
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the different normalization techniques for correlation
analysis and concluded that a combination of different
methods works best. On the other hand, [26] have
pointed out how the use of the multi-array techniques
RMA and GCRMA can yield inter-array correlation arti-
facts and generally lower quality networks than the
older MASS5. In particular, a specific step in GCRMA
background correction (the gene-specific binding correc-
tion, or GSB) has been identified as partially responsible
for the spurious correlations generated by GCRMA.
Notably however, the correction of this step is not suffi-
cient to remove all artifact effects, and no explanation
was provided for artifacts produced by RMA.

In the present paper, we extend the analysis per-
formed by [26], aiming to shed more light on the beha-
viour of multi-array techniques specifically in the
context of inter-array correlation. We will describe the
characteristics of probesets which induce these artifacts
and provide both a mathematical and a biological expla-
nation for the phenomenon. Finally, we introduce a
slightly changed version of the RMA code which mas-
sively reduces inter-array correlation artifacts, while
retaining RMA features in the context of differential
gene expression analysis.

Results

Multi-array preprocessing effects

In order to compare the behaviour of three of the most
popular microarray preprocessing techniques (MASS5,
RMA and GCRMA), Lim and colleagues [26], tested
these on a single dataset of 10 microarrays hybridized
with human samples. We extended this analysis on a
considerably larger Arabidopsis thaliana dataset com-
prising 3707 microarrays, selecting different sample sizes
(see Material and Methods), according to the realistic
size of a single experiment dataset (2 to 100 samples).
First, we calculated inter-array correlations on randomly
selected groups of original arrays (Figure 1A). The plots
show us that many genes’ relative expression will remain
constant across different treatments and genotypes, indi-
cating a certain robustness of Arabidopsis’ genetic
machinery in varying environmental conditions and
other perturbations (e.g. gene knock-outs). The sample
size doesn’t seem to influence the high correlation
between arrays, although some evident oscillations could
be detected for RMA and GCRMA at lower sample
sizes. The comparison of the three preprocessing meth-
ods shows that RMA and GCRMA yield somewhat
more similar microarray expression values than the
Affymetrix algorithm MAS5.

In order to compare real data with a null dataset, we
analyzed the behaviour of the three preprocessing tech-
niques on permutated arrays (see Material and Meth-
ods). Since permutated arrays are entirely shuffled and
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Figure 1 Inter-array similarity calculated on the Arabidopsis dataset normalized by RMA, GCRMA and MAS5. 1000 groups of arrays for
each sample size were selected, and then the averages and standard deviations of inter-array Spearman correlation coefficients were calculated.
The averages are reproduced as symbols which are connected by a broken line and averages plus minus one standard deviation are shown as
shaded areas bordered by a solid line of the same color. Values for MAS5 are shown in red, RMA in blue and GCRMA in green. A) real samples.
B) samples with their raw signal intensities internally permutated.

uninformative, we expect them to be, on average, not
correlated at all. However as previously reported by Lim
and colleagues [26], this is not the case for the non-
Affymetrix techniques we used (Figure 1B). RMA and
GCRMA show a high mean inter-array correlation,
which is decreasing with the sample size and this corre-
lation is also much higher for odd sample sizes, and
reminiscent of the oscillating behaviour in real arrays

(Figure 1A). Average values for Figure 1 are shown in
Table 1. In order to assess if these artifacts were due to
the choice of correlation coefficient we repeated our
analysis using Pearson’s and Lin’s correlation, but
obtained nearly identical results (Additional File 1, Sup-
plemental Figure S2 and Additional File 2 Figure S3).
MASS5 alone shows the expected no-correlation beha-
viour. It must be noted that, unlike the other two
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Table 1 average values for inter-array correlation
coefficients

Sample size Original arrays Permutated arrays

MAS5 RMA GCRMA MAS5 RMA GCRMA
2 07704 08113 07825  331* 00456 0.1795
3 07721 08547 08524 -988° 07761 09144
4 07601 08220 08039 -463% 01154 02647
5 07604 08460 08432  301° 04316 07140
6 07557 08144 07949 -590° 01086 02544
7 07584 08357 08212 -109° 02481 05436
8 0.7555 08210  0.7981 100% 00913 02274
9 07529 08334 08125 346° 01587 04140
10 0.7536 08163  0.8048 120% 00757 01929
11 07536 08242 08097 -101" 01118 03170
12 07552 08156 08000  903° 00637 0.1665
13 0.7523 08264  0.8061 1857 00843 02546
14 07531 08154 08014  690° 00547 0.1482
15 07537 08217 08087 282° 00659 02048
16 07511 08146 08052  768° 00467  0.1307
17 07511 08232 08062 -680° 00540 0.1654
18 07532 08159 08022 -789° 00411 0.1150
19 07546 08247 08059  965° 00460 0.1418
20 07592 08228 08024  469° 00364 0.1008
30 07602 08208 08022  309° 00226 00620
50 07578 08233 08038 772° 00124 00326
100 07543 08190 08023 -241° 00058 00157

average inter-array correlation coefficients at different sample sizes, using
three different normalization procedures.

techniques, MAS5 uses a single-array summarization
technique (a robust Tukey-biweight average of the
probe values) which treats each sample separately.

We will focus on the cause of this behaviour observed
when using RMA and GCRMA, trying to understand
the mathematical and biological scenarios that could
introduce such a massive artificial inter-array correlation
for these two methods.

Causes of RMA and GCRMA artifact generation

We have already seen that the introduction of artificial
similarities between arrays by RMA and GCRMA is par-
ticularly strong for small and odd sample sizes. In Figure
2 we show how adding an increasing amount of noise to
microarray samples in the Arabidopsis dataset (see
Material and methods) results in the expected loss-of-
correlation behaviour for MAS5, GCRMA and RMA for
an even sample size (Figure 2B). However, for sample
size 3 (Figure 2A), RMA and GCRMA actually add
inter-array correlation as noise is combined with the
biological signal. The situation is still atypical for the
next odd sample size (5 samples, Figure 2C).
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Returning to our original Arabidopsis dataset, we
observed that many probesets seem to yield completely
identical values across different samples when processed
by RMA or GCRMA. Datasets of three arrays normal-
ized by RMA and GCRMA show, respectively, around
20% and 12% of the probesets population with identical
values across all samples. The effect will decrease with
increasing sample size (see Figure 1B) as previously
reported in [15]. We therefore measured the tendency
to yield identical expression estimates for any particular
probeset after RMA normalization (ID tendency, see
Materials and Methods) and compared it to several pro-
beset characteristics.

The ID tendency is inversely correlated (Spearman
correlation coefficient = -0.624) to the probeset internal
consistency (Figure 3), which we measured using the fit
of the probeset to a linear model that measures concor-
dance between probes.

This phenomenon is also particularly evident for lowly
expressed probesets (Additional file 3, Figure S6) and
those hybridizing to multiple targets (Additional file 4,
Figure S7), especially if the different targets fall into dif-
ferent biological classes (Additional file 5, Figure S8).

In summary, RMA and GCRMA tend to yield identi-
cal values for probesets containing probes that yield
grossly different measurements across samples, and
therefore are either noise-driven or have multiple inde-
pendent targets.

As the problem of bad probesets has been discussed
before and been tackled by providing updated probeset
definitions in the customCDF project [27], we assessed
whether the oscillating behaviour for real data was still
observable when using such an updated definition. How-
ever, qualitatively identical results were still obtained
using such an updated probeset annotation (Additional
file 6, Figure S1). This might be explained by the fact
that expression is also inversely correlated to a probe-
sets’ tendency to give identical values across arrays.

Taken together, these results tell us that RMA (and
GCRMA) introduce artificial correlation across microar-
rays driven by lowly expressed, internally inconsistent,
multi-target and/or multi-function probesets.

Median polish inconsistency

RMA [9] and the closely related method, GCRMA [11],
differ only in the initial background correction step.
Since the same effect is present in both methods (Figure
1B), we reasoned that the artifact generation should
depend on either the shared normalization step (which
is quantile normalization in both cases [28]), or on the
probe summarization step (median polish [29]). We
concluded that the effect cannot arise from quantile
normalization, since substituting it by scale normaliza-
tion or removing it completely yields qualitatively
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identical plots whereas the inclusion of a median polish
step always introduced the effect, regardless of back-
ground correction and normalization procedures (Addi-
tional file 7, Figure S4). The shared artifact can
therefore only be generated within the median polish
summarization step. Indeed, substituting the median
polish step with any other alternative available in the
BioConductor RMA implementation eliminates the arti-
ficial inter-array correlation effect (Figure 4 and Addi-
tional file 7, Figure S4). As an example of multi-array
summarization, we substituted the RMA default sum-
marization with the robust least squares linear model
summarization, described by [30], and show that this
procedure almost completely removes inter-array corre-
lation (magenta dashed line in Figure 4). On the other
hand, as an example of single-array summarization, we
used RMA with an “average of log” summarization,
which simply computes the average of the logarithms of
probe intensities for every probeset. This single-array
summarization yields a predictable 0 correlation among
all arrays (orange dashed line in Figure 4).

To identify why this artifact arises during the median
polish procedure, we investigated the algorithm further.
RMA and GCRMA apply median polish by creating a
matrix from the measured values within each probeset,
placing probes along each row, and samples along each
column. The medians are subtracted from the intensities
to cumulate residuals in each step and the grand effect
(or median of medians) is subtracted from medians to
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cumulate probe effects in each step (Additional file 8,
Figure S10).

This algorithm is more likely to introduce identical
values with odd and small sample sizes, like the one
depicted in Additional file 8, Figure S10. In such a case,
the row medians will fall on a specific value and be
transformed to zero during the first row sweep (Addi-
tional file 8, Figure S10B, top panel), this will increase
the chance to have a zero as column median during col-
umn sweep (Additional file 8, Figure S10C, top panel).

Overall, the RMA implementation of the median pol-
ish algorithm shrinks all values in the probeset matrix
to similar or identical values, with a stronger effect for
samples, since it starts subtracting probe (row) medians.
In the example of Additional file 8, Figure S10, the final
sample values will be calculated by adding the grand
effect to each column effect, and will therefore be equal
to 8 for all samples.

It could be argued that the median polish summariza-
tion step could be helpful in the context of Differential
Gene Expression analysis, since it will flatten unclear
probeset matrices and therefore highlight strong signals.
However, the result of generating completely identical
expression values across arrays is not always beneficial.
Moreover, this effect can be dramatically reduced by
swapping the order of row/column median subtraction
within median polish, or equivalently, by transposing the
matrix created for each probeset, placing samples on
rows and probes on columns. This alteration will

Sampling of permutated ATH1 microarrays
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Figure 4 Comparison of alternative RMA summarization steps on permutated datasets. The original median polish summarizaion step is
plotted with BioConductor alternatives and the transposed median polish of the tRMA method. 1000 groups of arrays for each sample size were
selected, and then the averages and standard deviations of inter-array Spearman correlation coefficients were calculated and plotted as in
Figure 1.




Giorgi et al. BMC Bioinformatics 2010, 11:553
http://www.biomedcentral.com/1471-2105/11/553

introduce a presumably harmless similarity between
probes within a probeset (which are assumed to be mea-
suring the same quantity, and which don’t form part of
the output) while massively reducing the artificial sam-
ple identity.

To confirm this, we re-implemented the median polish
summarization by inverting the order of the two sweep
steps (Additional file 8, Figure S10), in what we call
“transposed RMA” or tRMA. As shown in Figure 4, the
inversion of median subtraction steps alone reduces the
median polish effect to a very small residual inter-array
correlation. This can be explained by the fact that the
likelihood for the sample effects to give a zero value in
tRMA is very low during the first iteration, as it would
require perfectly identical medians of raw probe values
(Additional file 8, Figure S10). Effectively, tRMA transfers
the artifact of inter-correlation between sample to an
inter-correlation between probe (in a common probeset)
effects, which might be more plausible biologically (as all
probes in a probeset should measure the same target)
and remains contained within the procedure and not
yielded as output of the preprocessing method.

The inter-array artificial correlation effect introduced
by the median polish step is increased in GCRMA (Fig-
ure 4, dark green dotted line). As previously discussed
by [26], GCRMA contains a potential problem in its
background correction step, that adjusts probe intensity
values through gene-specific binding. This introduces
artificial inter-array correlations between probes with
similar binding affinity, and therefore strengthens the
effect of the following summarization step. However,
substituting the median polish step with our transposed
alternative “tGCRMA” (Figure 4, dark green line), mas-
sively reduces the inter-array correlation between per-
mutated samples.

Comparison between RMA and tRMA in biological
contexts

The AffyComp open challenge benchmark [6,17] is a
well known tool to evaluate summaries of Affymetrix
probe level data, based on known concentration of tran-
scripts in the so-called “spike-in” experiments by Affy-
metrix [4]. In order to demonstrate that our tRMA
procedure still performs nearly as well as the original
RMA implementation, we used the latest implementa-
tion of the AffyComp benchmark ("Affycompll”) to
compare the performance of the original RMA with our
tRMA implementation. In Table 2 we show some of the
most relevant scores, as calculated for the HGU95 Affy-
metrix spike-in series.

The differences between RMA and tRMA are minor
when compared to the results for an independent
method (MAS5): tRMA shares most of the qualities of
RMA, without introducing inter-array correlations. It is

Page 7 of 12

Table 2 comparison between RMA and tRMA in the
affycomp benchmark

MAS5 RMA tRMA  Best possible
Signal detect slope 0.71 0.63 063 1
Signal detect R2 0.86 0.80 0.80 1
Obs-intended-fc slope 0.69 061 061 1
Obs-(low)int-fc slope 0.65 0.36 0.36 1
null log-fc IQR 0.85 0.19 0.20 0
null log-fc 99.9% 448 057 0.58 0
low AUC 0.07 040 039 1
med AUC 0.00 087 0.86 1
high AUC 0.00 046 044 1
weighted avg AUC 0.05 0.52 0.51 1
Median SD 0.63 0.11 0.12 0
low.slope 0.72 0.35 0.35 1
med.slope 0.80 0.76 0.76 1
high.slope 045 047 047 1

affycompll most indicative results (as in [6]) for MAS5, RMA and tRMA, spike-in
HGU95 dataset. Differences between RMA and tRMA are trivial, especially
when compared to other methods (see also [6]).

interesting to highlight the fact that tRMA yields a
higher median standard deviation (Median SD, in bold
in Table 2) between spike-in replicates. This effect can
be wrongly interpreted as tRMA’s lower sensitivity; how-
ever, we now know that the original RMA median pol-
ish implementation is introducing identical values across
experiments, and therefore artificially reducing the var-
iance between spike-in replicates as well.

Since median polish alters inter-array correlation,
sample classification is a common analysis that could be
affected by this summarization step. Thus, we analyzed
the AtGenExpress stress dataset for Arabidopsis [31],
and calculated the capability of both preprocessing tech-
niques to separate roots and shoots samples (see Mate-
rial and Methods).

As can be seen in Figure 5A, tRMA outperforms RMA
as it increases the distance between different tissue sam-
ples (Wilcoxon test: p-value <2.2*107'¢), while keeping
similar low distances between samples coming from the
same tissue (Figure 5B, Wilcoxon test: p-value = 0.935).
As variance filtering is a common procedure for microar-
ray clustering, we used only the 50% most varying genes
in every subset and obtained similar results (Additional
file 9, Figure S9A, inter-tissue distance, p-value<2.2*10™'
and Additional file 9, Figure S9B, intra-tissue distance,
p-value = 0.141). It can be concluded that tRMA
increases the capability to discern different array condi-
tions, when only a small number of microarrays have
been used.

In order to compare the relative performance of RMA
and tRMA when filtering on differentially expressed
genes, we used a dataset that was previously used by [32],
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to tune classification where the origin of the RNA in each
sample was known. Choosing a sample size of 5 where 2
pairs of 2 samples each came from the same specimen
and one sample came from a different specimen, tRMA
yields better classification results for almost all FDR cor-
rected p-value thresholds (Additional file 10, Figure S5).

However, when filtering out lowly expressed genes
[33], RMA performed generally as well as tRMA when
performing sample classification on this dataset (data
not shown). Unlike for the tissue sample dataset, RMA
performed better than tRMA when filtering based on
variance in this use case even when adding random
noise to all samples (Additional file 11, Figure S11A).
Only when noise was selectively added to non-paired
samples did tRMA outperform RMA (Additional file 11,
Figure S11B).

Furthermore, RMA performs slightly better than
tRMA in 7 out of 14 of the Affycomp tests shown.
Although objectively minor, these differences point out
that tRMA may not necessarily be an improvement over
RMA in all types of analyses.

Discussion
The use of GCRMA and RMA preprocessing algorithms
for Affymetrix GeneChip technology has received a
remarkably broad adoption in the community due to
their low computation time and to their superiority with
respect to other methods in previous benchmarks.
However, one of the most relevant advantage of RMA
and GCRMA in the Affycompll challenge [17], the low
variance across replicates, seems to be partially the
result of artificial inter-array correlation. Extending what
was already noted by [26], we show that the artificially
high similarity between samples given by RMA and
GCRMA is caused by the shared median polish

summarization step. This artificial behaviour is particu-
larly strong in internally inconsistent, noise-driven and
multi-hit probesets, and as a consequence identical
results across arrays are generated. We analyzed this
artifact effect for the Arabidopsis thaliana ATH1 Affy-
metrix GeneChip, but we found highly similar results in
exploratory experiments on other organisms and plat-
forms (specifically, human HG133 and E. coli Asv2 -
data not shown).

The median polish step doesn’t seem to pose a parti-
cular problem in differential gene expression analyses,
because, on the contrary, it could enhance the differ-
ences of changing transcripts by shrinking most unclear
probesets to identical values across experiments. In any
case, the small underlying change in gene expression of
such an unclear probeset would generally be below the
cut-off value to be considered an ‘interesting’ gene. It is
interesting to note, however, that median polish has
already been shown to work poorly when compared to
MASS5 summarization in correlation between E. coli
operon members [25].

However, this artificial correlation can’t be ignored in
contexts where unbiased measurements are needed,
like transcript clustering [20], genetic network reverse-
engineering [21], sample classification [22,34] or global
transcript models [23], and we show in the present paper
how RMA can artificially decrease the gap between sam-
ples coming from different tissue types. Furthermore, we
could show that filtering of differentially expressed genes
leads to a worse sample classification performance for
small odd sample sizes samples for RMA, when compared
to tRMA. Nevertheless, depending on the use case, RMA
performed better when filtering based on variance. Thus,
our results raise issues, especially when small sample sizes
are used, on the validity of many studies obtained on the
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basis of correlation measures after these normalization
procedures were applied.

Conclusions

We propose a minor change to the median polish algo-
rithm that will almost eliminate the correlation artifacts
without significantly affecting any of the positive RMA/
GCRMA qualities. We provide a modified version of
RMA named tRMA as a standalone R package (addi-
tional files 12 and 13). The method contains a modified
version of the BioConductor [35] preprocessCore and
affy packages that alter the median polish summariza-
tion step as described in Additional file 8, Figure S10
(bottom panel). Our tRMA method will offer the possi-
bility to use an unbiased normalization technique both
for differential gene expression analyses and for correla-
tive studies based on microarray data.

Methods

Datasets

In order to obtain a vast, robust and condition-
independent dataset, we downloaded all Arabidopsis
thaliana ATH1 microarrays available from GEO [2]
and removed truncated or unreadable files and geno-
mic DNA experiments. This dataset comprised 3707
arrays and is henceforth referred to as the “Arabidopsis
dataset”.

To test the abilities of RMA and tRMA to correctly
cluster different tissue samples, we analyzed microarrays
from the AtGenExpress stress study [31], contained in
the Gene Expression Omnibus series GSE5620-
GSE5628. This dataset (root-shoot dataset) comprises
248 samples, evenly distributed in shoot and root
tissues.

To further assess sample classification performance of
RMA and tRMA, we focused on a human breast cancer
dataset published by [36] and reanalyzed by [32]. This
dataset contains 98 surgical specimens, 18 of which
belong to 9 replicate pairs in which two samples were
taken from adjacent sections of the same frozen block.

Permutation of CEL files

In order to compare real samples with completely unin-
formative samples, we decided to randomly permute the
raw signal intensities of the Arabidopsis dataset as in
[26]. In brief, every Perfect Match (PM) probe and its
Mismatch (MM) counterpart were reassigned to a ran-
dom probeset within the same microarray. This gener-
ates information-less probesets while keeping the
properties of the original probe intensity distribution.

Microarray preprocessing procedures
We compared the microarray preprocessing procedures
RMA [9], GCRMA [11] and MAS5 [7] using the

Page 9 of 12

software implementations available from BioConductor
[35]. In every case, the default parameters were used.
All final outputs, including MAS5 ones, were analyzed
on the log2 scale.

Inter-array correlation analysis
The behaviour of the three microarray preprocessing
procedures was analyzed in the context of randomly
selected subsets of the Arabidopsis dataset. Different
sample sizes were selected (2, 3, 4, 5, 6, 7, 8, 9, 10, 11,
12, 13, 14, 15, 16, 17, 18, 19, 20, 30, 50 and 100) accord-
ing to the realistic scale of a single-experiment dataset.
For each sample size, 1000 subsets were selected and
normalized. For each normalized subset, we calculated
inter-array Spearman correlations and then plotted the
overall mean and standard deviation of these correla-
tions for each sample size.

The same procedure was then repeated for the permu-
tated Arabidopsis dataset.

Noise robustness analysis

In order to assess the response of RMA, GCRMA and
MASS5 to data perturbation, we generated increasingly
noisy samples using the formula:

I=w,*O+w,*P

where I is the final probe intensity, O and P are,
respectively, the original intensity and a permuted inten-
sity. w, and w, are the weights given to both (where
Wo+Ww, = 1). W, is referred to as noise level.

Linear model for measuring internal probeset consistency
Internal probeset consistency was analyzed by develop-
ing a linear model. Given a matrix for each probeset,
where columns are samples and rows are probes, we
ranked the values row-wise and determined the model

pij=W*Sj+i+S

The model tries to predict every i probe intensity
rank in the j™ sample (pyj) using as explanatory variable
the j™ sample effect, S;, calculated as the probe’s mean
rank for the sample. The model will then try to adjust
the sample effect weight w and the intercept i to mini-
mize the unexplained error &.

It is apparent that the R? for this model will be high
when all probes within a probeset behave consistently
relative to each other across different experiments, i.e.
when the probe rank in a specific experiment is pre-
dicted quite well by the probe’s mean rank across
experiments. On the other hand, a low R* will result
from probes acting inconsistently across experiments,
e.g. with some probes ranking particularly highly in
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some experiments yet poorly in others. The modelling
procedure is provided as an R function (fitLM, Addi-
tional file 14) to determine internal consistency of pro-
besets together with a function to reproduce the figures
(Additional File 15).

Transposed RMA

With the goal of reducing inter-array correlation arti-
facts without losing the positive features of RMA, we
modified the RMA median polish source code of the
preprocessCore library available on BioConductor [35].
Our method simply changes the order of median substi-
tution, starting from column (sample-wise medians)
instead of from rows (probe-wise medians), and was
therefore called “transposed RMA” (or tRMA). tRMA
code is available in the Additional files 12 and 13 and
can be run in the R environment [27].

Affycomp benchmark

In order to evaluate and benchmark our newly proposed
preprocessing method, tRMA, we adopted the criteria
developed for the Affycompll challenge [9,6] using the
two Affymetrix spike-in datasets HGU95 and HGU133
and the Affycomp online tool [6].

Sample classification performance

From the root-shoot dataset, we randomly selected
10000 groups of 5 arrays composed of 3 samples from
one tissue type, and 2 from the other. Each dataset was
normalized using tRMA or RMA and distances between
arrays coming from the same tissue (intra-tissue dis-
tance) and between arrays coming from different tissues
(inter-tissue distance) were determined. Distances were
calculated as (1-Spearman correlation coefficient) using
either all probe sets or only the 50% showing the highest
variance.

Secondly, a dataset previously used by [32] to assess
microarray performance was used to determine the per-
centage of correctly clustered subsets of 5 microarrays.
From the dataset, two couples of samples coming from
the same tumor or non tumor specimen, plus a different
specimen were sampled. Probe-sets were selected based
on differential expression between the samples using the
limma package applying different p-value thresholds
corrected using the Benjamini-Hochberg method [37].
These p-values are obtained by a specific combination
of empirical Bayes methods and linear models described
in [35]. The outcome of the normalization was defined
as “correct” if, for every sample in a couple, its highest
correlation coefficient against all other samples is the
other correct member of the couple, which would lead
to them being clustered together. The sampling was
repeated 1000 times for each different p-value. The
increase in the performance of tRMA when compared
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to RMA was assessed using a Fisher’s exact test with
Benjamini Hochberg correction.

The human dataset was used also to perform a test on
clustering perfomance on groups of genes sorted by var-
iance, as described by [32], but using only subsets of
five samples (belonging to three groups). This test was
performed for RMA and tRMA at different probe noise
levels, added following the procedure described pre-
viously in the “Noise robustness analysis” paragraph.
The noise was either added to all samples uniformly
(Additional file 11, Figure S11A) or only to two unre-
lated samples (i.e. belonging to different replicate
groups) (Additional file 11, Figure S11B).

Additional material

Additional file 1: Figure S2. drawn as in Figure 1 of the main paper,
inter-array correlation for real (A) and permutated (B) Arabidopsis ATH1
microarrays, with different sample sizes, using Pearson correlation.

Additional file 2: Figure S3. drawn as in Figure 1 of the main paper,
inter-array correlation for real (A) and permutated (B) Arabidopsis ATH1
microarrays, with different sample sizes, using Lin correlation.

Additional file 3: Figure S6. inverse correlation between probeset
tendency to yield identical expression values and mean probeset
expression. On the x axis the log2 of the mean probeset expression
across 3707 Arabidopsis microarrays is shown. On the y axis the fraction
of 3 samples subsets yielding 3 identical arrays for a given probeset is
shown (10000 randomly picked groups were selected).

Additional file 4: Figure S7. positive correlation between the number
of distinct targets hybridized by a probeset and the tendency of a
probeset to yield identical expression values across arrays. This tendency
is calculated as the fraction of RMA normalized subsets of 3 arrays
yielding 3 identical results for the given probeset. Within each boxplot
the number of probesets in the category is indicated.

Additional file 5: Figure S8. identical arrays output for multi-target
probesets matching only one (left) or multiple (right) MapMan functional
classes [38,39].

Additional file 6: Figure S1. drawn as in Figure 1 of the main paper,
inter-array correlation for real (A) and permutated (B) Arabidopsis ATH1
microarrays, with different sample sizes, and updated probeset mapping
provided by CustomCDF [27].

Additional file 7: Figure S4. drawn as in Figure 1 of the main paper,
however standard deviation is plotted by using bars. Several
combinations of background correction, normalization and
summarization steps, on real arrays (left side) and permutated arrays
(right side) are reproduced. Background methods: RMA.2 = RMA
background correction, MAS = MAS5 background correction, GCRMA =
GCRMA background correction, NA = no background correction
Normalization methods: scaling normalization, quantile normalization, NA
= no normalization, Summarization methods: median.polish = median
polish (default method in RMA and GCRMA), tukey.biweight = Robust
estimation based on Tukey's biweight function (default method in
MASS5), average.log = average of log of probe intensities (single-array
technique), median.log = median of log of probe intensities (single-array
technique), rlm = robust linear model, tRMA = transposed median polish
(method used by tRMA)

Additional file 8: Figure S10. detail of the (t)\RMA median polish
procedures for a single probeset. Using alternating row and column
sweeps, medians are calculated and subtracted until convergence is
reached. In the case of RMA (upper panel), this can lead to the
generation of many zeroes in a column, which subsequently could lead
to the column effect also being zero, since the column effect is
calculated as the median of the column residuals. In the case of tRMA



http://www.biomedcentral.com/content/supplementary/1471-2105-11-553-S1.PDF
http://www.biomedcentral.com/content/supplementary/1471-2105-11-553-S2.PDF
http://www.biomedcentral.com/content/supplementary/1471-2105-11-553-S3.PDF
http://www.biomedcentral.com/content/supplementary/1471-2105-11-553-S4.PDF
http://www.biomedcentral.com/content/supplementary/1471-2105-11-553-S5.PDF
http://www.biomedcentral.com/content/supplementary/1471-2105-11-553-S6.PDF
http://www.biomedcentral.com/content/supplementary/1471-2105-11-553-S7.PDF
http://www.biomedcentral.com/content/supplementary/1471-2105-11-553-S8.PDF

Giorgi et al. BMC Bioinformatics 2010, 11:553
http://www.biomedcentral.com/1471-2105/11/553

(lower panel) zeroes introduced during a column sweep would lead to
rather similar row (i.e. probe) effects.

Additional file 9: Figure S9. distances between Arabidopsis microarrays
belonging to (A) different tissues (roots and shoots) and (B) the same
tissue in 1000 5-samples subsets, calculated after RMA (left)
preprocessing or tRMA (right) preprocessing. Distances are reported on
the y axis and calculated as (1-Spearman’s correlation coefficient). For
every subset, only the top 50% variance-wise probesets were used for
calculating the distance.

Additional file 10: Figure S5. percentage of correctly clustered subsets
of 1000 samples of 5 microarrays using a clinical dataset from [32].
Different p-value thresholds to select genes used in the sample
classification are shown. P-values were calculated using limma [38] and
corrected using Benjamini-Hochberg method [37]. Significant differences
(corrected p-value <0.05) in the proportions of the right classification
determined by a Fisher's exact test are indicated by a blue line.

Additional file 11: Figure S11. clustering performance for RMA (red
solid line) and tRMA (black dashed line) over five-samples subsets of a
human cancer dataset. Increasing number of genes, sorted by variance,
are used in the calculation of clustering. Different noise levels are added
to all samples (top panel A) or only to two unrelated samples (bottom
panel B).

Additional file 12: trma source code for R (any Operating System),
compatible with R.2.10.0 or later. R package source code of the trma
procedure, where the median polish summarization step implements a
“column-first” median calculation

Additional file 13: tRMA package for R (Windows), compatible with
R.2.10.0 or later. R package for Windows of the trma procedure, where
the median polish summarization step implements a “column-first”
median calculation

Additional file 14: fitLM function and probesets examples. a small R
function to detect internal probesets’ inconsistencies. The function,
included in the tRMA package, here provides two probesets’ examples.

Additional file 15: supplementary R code for plot generation. a
collection of R scripts used to generate the paper’s pictures.
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RMA: Robust Multiarray Algorithm; tRMA: transposed Robust Multiarray
Algorithm; MASS5: MicroArray Suite 5; PM: Perfect Match probe; MM:
MisMatch probe
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