
26 November 2024

Alma Mater Studiorum Università di Bologna
Archivio istituzionale della ricerca

Renzini, F., Rossi, D., Franchi Scarselli, E., Mucci, C., Canegallo, R. (2018). A Fully Programmable eFPGA-
Augmented SoC for Smart-Power Applications. IEEE [10.1109/ICECS.2018.8617970].

Published Version:

A Fully Programmable eFPGA-Augmented SoC for Smart-Power Applications

Published:
DOI: http://doi.org/10.1109/ICECS.2018.8617970

Terms of use:

(Article begins on next page)

Some rights reserved. The terms and conditions for the reuse of this version of the manuscript are
specified in the publishing policy. For all terms of use and more information see the publisher's website.

Availability:
This version is available at: https://hdl.handle.net/11585/663403 since: 2019-04-17

This is the final peer-reviewed author’s accepted manuscript (postprint) of the following publication:

This item was downloaded from IRIS Università di Bologna (https://cris.unibo.it/).
When citing, please refer to the published version.

http://doi.org/10.1109/ICECS.2018.8617970
https://hdl.handle.net/11585/663403

This is the post peer-review accepted manuscript of:

F. Renzini, D. Rossi, E. F. Scarselli, C. Mucci and R. Canegallo

 "A Fully Programmable eFPGA-Augmented SoC for Smart-Power

Applications"

2018 25th IEEE International Conference on Electronics, Circuits and Systems

(ICECS),

The published version is available online at: 10.1109/ICECS.2018.8617970

© 2018 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other

uses, in any current or future media, including reprinting/republishing this material for advertising or

promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse

of any copyrighted component of this work in other works.

A Fully Programmable eFPGA-Augmented SoC for
Smart-Power Applications

F. Renzini, D. Rossi, E. Franchi Scarselli
ARCES – DEI, University of Bologna

Bologna 40126, Italy
{francesco.renzini, davide.rossi, eleonora.franchi}@unibo.it

C. Mucci, R. Canegallo
STMicroelectronics

Agrate Brianza 20864, Italy
{claudio.mucci, roberto.canegallo}@st.com

Abstract—This paper proposes a reconfigurable System-on-
Chip (SoC) for Smart-Power applications. The system is composed
of an ultra-low-power microcontroller for standard software
programmability, coupled to an embedded-FPGA (eFPGA) to
perform control-driven applications, featuring digital elaboration
with small computational load, at a lower power consumption and
higher responsiveness compared to processor-based
implementation. Added value of the proposed system is that the
whole digital system is synthesizable, since also the eFPGA is based
on a soft-core approach. In the paper we discuss the application
domain and present the results of integrating an eFPGA with a
computational capability of ≈1K equivalent gates in the
STMicroelectronics 0.13 µm Bipolar, CMOS, DMOS (BCD)
Smart-Power technology featuring only four metal layers. As
expected, eFPGA integration in the SoCs introduces a significant
area-overhead (about 20÷25%), but has a straightforward benefit
in terms of energy consumption reduction compared to processor-
based implementations. On average, based on our analysis, the
energy gain achievable in this scenario can be quantified in a
couple of orders of magnitude.

Keywords—Smart Power; Microcontroller; Embedded FPGA;

I. INTRODUCTION

In the Internet of Things (IoT) era, the widespread
interaction of the end-nodes with the real-world (cyber-physical
interaction) requires systems capable of sensing the
environment, elaborating the acquired data, transmitting
compressed information and - last but not least - providing a
feedback to physical objects. In this work we focus on Smart-
Power applications (e.g. motion- and lighting-control [1] [2]),
which are mostly based on a control-driven paradigm which
leverages simple controllers - e.g. finite-state machines (FSM) -
with few inlets/outlets and states.

Traditional Smart-Power SoCs feature analog circuits (for
sensing), hardwired FSMs (for control) and high-power circuits
(for driving), leveraging the capabilities of Smart-Power
technologies such as BCD which integrates bipolar (for analog),
CMOS (for digital) and DMOS (for high-voltage) transistors.
The limited flexibility of the digital control in traditional systems
is mainly caused by the slower scaling of technology nodes
implementing BCD with respect to CMOS technologies, driven
by the need to include high-voltage devices on the same
manufacturing process. These scaled processes allow to
integrate more complex digital circuits in Smart-Power SoCs,
such as small (ARM Cortex-M class) processors. Such
integration between software programmable processors and

power electronics is enabling new generations of Smart-Power
IoT applications.

On the application side, while most traditional ASIC
approach does not allow for reuse of the same system for
multiple applications, typical programmable digital controllers
usually follow two approaches, based on microprocessors and
programmable logic devices (PLDs). Pioneeristic works [3] and
[4] show the silicon realization of hybrid systems, with the
processor coupled to an eFPGA as data computer for either high-
density elaborations, coprocessing or configurable I/Os for
customizable external peripherals. In this context of
multipurposeness, a relevant evolution of eFPGA architecture
has been presented in [5], through the introduction of a new
interconnect network, based on a regular multiplexer-based
structure, which shows properties looking toward full softcore
approach, hence full synthesizability. On the other hand, all
those previous works were realized targeting advanced CMOS
technologies and high performance eFPGAs were implemented
as custom-designed hard-macros technique for
area/performance optimization.

The introduction of reconfigurable SoCs in the Smart-Power
arena is a new challenge for the technologies driving this area,
due to the peculiarity of both system and technology. In this
context, we present an energy-aware analysis of a Smart-Power
SoC integrating a soft-core eFPGA architecture [6] tailored to
small-computational tasks within the open-source PULPino
microcontroller system [7] on STMicroelectronics 0.13 µm
BCD technology.

II. SYSTEM-LEVEL ARCHITECTURE

The digital system is composed of the open-source ultralow-
power microcontroller PULPino [7] coupled with our softcore
eFPGA [6]. Interfacing is done through AMBA Advanced
Peripheral Bus (APB) as shown in Fig. 1. Therefore, the eFPGA

Fig. 1. Reconfigurable Smart-Power SoC.

can be configured by the processor to implement small
controllers as Pulse-Width Modulator (PWM) and pure Finite-
State Machines (FSMs). The whole system is controlled by the
processor, that can be switched in sleep-mode to reduce the
dynamic power consumption when computation is not required.

PULPino processor core is based on an implementation of
the RISC-V instruction set architecture optimized for energy-
efficient digital signal processing [9]. PULPino is also equipped
with the traditional peripherals e.g. serial communication
interfaces, timers, interrupt controller. The system described in
this paper is implemented with 32-bit 4K-Words static RAM for
both instruction and data memory.

Soft-core embedded-FPGA [6] we adopted is a fully-
synthesizable and reconfigurable IP. Fig. 2 represents the
eFPGA subsystem, composed of a frequency divider (prescaler),
a configuration loader, the PLD core and the interface toward
APB, including the configuration registers which allow the
processor to handle the subsystem.

Target technology is BCD that is typically based on metal
stacks with few levels, which challenge digital design -
especially for programmable-logic - in terms of routing
congestion. The eFPGA soft-core approach based on standard-
cells is advantageous to provide easier floorplan management.
In fact, the main area occupation is due to high-power devices
and analog sections, then digital section can fully adapt among
other parts, contrary to eFPGA hard-macros approach.

Since the target is control-driven application and not high-
density computation, the computational capability required has
been estimated in ≈1K equivalent-gates, provided by 16 CLBs
and 64 primary inlets/outlets. Each CLB has 12 I/Os and 3 Basic
Logic Elements (BLEs), which can be used as either 2×LUT 4:2,
2×LUT 5:1 or 1×LUT 6:1. Connectivity of the device is founded
on a Multi-Stage Switching Network (MSSN) with butterfly-
oriented topology, as shown in [6], which guarantees
synthesizability and non-blocking routing properties. As shown
in Fig. 2, the inputs and outputs of the eFPGA are directly
connected to primary I/Os and to two 64-bit registers (with 8-bit
banks) accessible through APB bus, to mix the activity of the
processor with that one of eFPGA. The prescaler, fully
configured by the processor, is used to divide the system-clock
frequency by a factor ndiv = 1÷215 depending on application
critical-path and end-user reactivity needs, as well as to sleep the
eFPGA subsystem when it is not required. The configuration
loader is in charge to load the bitstream into the eFPGA latches,

TABLE I. SYNTHESIS RESULTS

 Min Area Max Speed

Freq. 10 MHz 80 MHz

System Area 3.63 mm2 3.9 mm2

eFPGA Area 0.77 mm2 0.98 mm2

eFPGA Area % 21 % 25 %

TABLE II. ESTIMATED POWER CONSUMPTION

Power Min Area Max Speed

Core 2.83 mW (49.3%) 22.3 mW (49.3%)

Pheripherals 2.51 mW (43.7%) 20.9 mW (46.3%)

eFPGA (ndiv=8) 102 µW (1.78%) 912 µW (2%)

Other logic 397 µW (7%) 1.961 mW (4.4%)

Tot. 5.73 mW 45.2 mW

which replace traditional custom SRAM cells. The configuration
structure is disabled during the normal operation of the eFPGA,
although the processor can whenever program the PLD, PLD
I/Os and prescaler thanks to APB-interfaced registers.

III. SMART POWER APPLICATIONS DOMAIN

The “smart” keyword is typically applied when
programmability is added to control methodologies [8],
implemented through finite-state machines that generate signal
patterns for the high/medium power drivers. As an example,
FSM-based applications in motion control domain are brushed
and stepper motor controllers, digital PWM for power
management and lighting control. For such a class of
applications energy efficiency is a more and more critical issue.
A simple example is a controller for both unipolar and bipolar
stepper motors with full-step, half-step and wave-drive control
modes. The corresponding computational model is a FSM with
≈10 states (thus implementable with 4 flip-flops) with 5 inputs
(clock, enable, direction and 2 mode selectors) and 4 outputs (for
phases generation). This example will be used in the following
of the paper to show the different energy budget required for the
various implementation approaches under analysis. The
implementation of Smart Power applications on microprocessor
systems is generally based on interrupt policies, because this
class of applications is strongly event-driven. For the previous
example of the stepper controller, the interrupt service routine of
PULPino needs to update the state through a finite-state machine
requiring about 46 assembly instructions (RISC-V ISA):

 15 instructions are used for both prologue and epilogue
of the procedure, including instructions required to
manage the stack pointer, to avoid interrupt nesting and
to save relevant registers used by the interrupt handler;

 4 instructions are required for the GPIO management;

 remaining 27 instructions are for state control of FSM,
performed through 8 branch/jump, 4 arithmetical
operations and 15 load/store for data management.

 As a general rule, interrupt-based event-driven applications
always require the overhead of prologue/epilogue to preserve the
consistency of the computation and this payload depends on the
complexity of the operation to be executed (e.g. the number of
used registers and the need to be saved/restored) whereas the

Fig. 2. The eFPGA subsystem interfaced through APB bus.

same FSM can be directly mapped into the eFPGA. The soft-
core approach guarantees more versatility allowing the end- user
to define the device based on the application constraints.

IV. IMPLEMENTATION RESULTS

The whole digital section of the SoC has been synthesized
with Synopsys Design-Compiler Graphical in 0.13 µm BCD
technology of STMicroelectronics, optimizing either area
occupation or speed, and the synthesis results are reported in
Table I. The frequency target for minimum area has been relaxed
down to 10 MHz, while the maximum frequency (max-speed)
target is 80 MHz. In both the cases the critical path of the system
remains inside the microprocessor, as expected and as required
to avoid extra speed-tax due to reconfigurability. For that, the
two physical-synthesis show similar area occupations - 3.63 and
3.9 mm2 respectively - as well as it happen focusing on the
eFPGA-subsystem. The area overhead due to the reconfigurable
IP is not negligible and it is approximately 21÷25% of the
overall SoC area. Fig. 3 shows a synthesis floorplan where is
possible to see the two different SRAM macros (bottom-side big
rectangles), soft-core eFPGA, RISC-core and other control
logics and peripherals. It is clear how the soft-core approach
favors area/floorplan optimization contrary to a hard-macros
approach, especially when the free space is small and needs to
be reshaped depending on top-level Smart-Power IC
accommodation.

Table II summarizes the post-synthesis estimated power
consumption of the whole digital system for a control-driven
application that uses processor for computing and some
peripherals i.e. serial communication, general purpose I/Os and
eFPGA. Power estimation has been carried out in typical
condition (1.8 V and 25 °C) using Synopsys PrimeTime-PX and
parasitic back-annotation coming from physical synthesis. The
average dynamic power is estimated annotating simulation-
based switching activity. The estimated power data shows that
eFPGA has a negligible impact - 1.78% for min area and 2% for
max speed - on the overall power consumption for ndiv = 8. It can
be observed as for this technology the leakage is negligible
compared to dynamic power, because the power consumption is
about proportional to the clock frequency as shown in Table I
and II where there is an ≈8x scaling-factor between max-speed
and min-area implementations for operative frequency and
dynamic power consumption.

A. Power Consumption Models

RISC processor power consumption is mainly due to
memory accesses - read and write - and to pipeline evolution,
with an intrinsic relationship to the specific architecture. In

general, the power consumption drivers of the processor-based
computation are the complexity of the instructions-set
architecture (and its bit-width), the number of pipeline stages
and the specific memory hierarchy (for data locality
optimization). On the contrary, for a given architecture and a
given implementation technology, the average power
consumption of a single-datapath RISC processor is roughly
constant, since the dominant factor is the access to memory for
instructions fetching. In our case, for applications with different
complexity in Smart-Power sphere, the average power
consumption of the processor is 3.15 mW ± 12%, under min-
area condition, and to 25.45 mW ± 13% at the max-speed case.
As expected, the average values are mostly related to the
intrinsic processor architecture, while fluctuations are due to the
different applications under analysis and the specific input data.
For additional energy saving, it’s possible to switch the
processor in sleep-mode, thus to obtain a significant power
reduction from 2.83 mW to 0.41 mW for min-area and from 22.3
mW to 1.92 mW for max-speed still in typical conditions. In the
sleep-mode, processor pipeline is flushed and clock disabled,
while all peripherals continue to operate to allow the wake-up
when an interrupt or an event occurs. In sleep-mode the
switching contribution to power consumption decreases and thus
leakage contribution becomes dominant.

The power-consumption model of a programmable-logic
device like our eFPGA is similar to that one of a hardwired
circuit, although the undeniable overhead due to
programmability which act as an upscaling factor (e.g. logical
net switching is replaced by the switching of the programmable
interconnect structure). As an example, from a logical point of
view, the few bits related to a FSM evolution impact the power-
consumption on the eFPGA, while on the processor there is the
whole activity related to a 32bitwise pipeline evolution.

V. PROCESSOR VS. EMBEDDED-FPGA

The power consumption of the processor is hence more or
less constant, while for the eFPGA is strictly related to data
elaboration. For this reason, we have compared the energy
efficiency of both processor and eFPGA architecture to execute
some typical Smart-Power elaborations. As an example, the
simple motor-drive FSM with few inputs/outputs discussed in
Section III has been mapped on 5 CLBs of eFPGA and also
implemented in the processor, using interrupt and timer to
trigger the routine with the same frequency of the eFPGA and
leaving the processor in sleep-mode otherwise. The energy of
the eFPGA subsystem is:

𝐸ிீ =
ಷುಸಲ

ಷುಸಲ
=

ಷುಸಲ

ೖ
∙ 𝑛ௗ௩ (1)

where ndiv is the frequency divider factor (set to 8, in this case).
The processor energy for a software-implemented routine is:

𝐸ௌௐ = 𝐸 ௦ ∙ 𝑛௦௧ =
ೀೃಶ

ೖ
∙ 𝑛௦௧ (2)

where Eper instr is the average energy per instruction, ninstr is the
number of the instructions of the routine - 46 in this case - and
PCORE is the power consumption of the processor that includes
RISC-core and memories. We define the energy efficiency as:

𝐸 =
ாೄೈ

ாಷುಸಲ
 (3)

Fig. 3. Physical synthesis floorplan.

that compares the necessary energy for both architectures to
carry out the same functionality. This model is clearly
pessimistic for the eFPGA because, in our estimation, the ESW
evaluation doesn’t take into account the power consumption of
peripherals like timer, interrupt controller and GPIOs. In
addition, to simplify the analysis, we don’t take into account
processor pipeline stalls, assuming to execute one instruction per
cycle. For this example, the energy consumption related to
processor-based execution of the FSM is around 11 mW/MHz
for 46 instructions, while the same task implemented in eFPGA
requires just ≈67 µW/MHz. Those numbers take into account the
average dynamic power, estimated annotating simulation-based
switching activity. The leakage power is a common background
and for the technology node we are targeting its contribution in
power is roughly one order of magnitude less than dynamic
power when the system is fully on.

 To provide a general analysis taking care the complexity of
both processor- and eFPGA-based implementation, we
extrapolated from (1), (2) and (3) an energy-efficiency
parametrizing both the number of CLBs and number of
assembly instructions required to satisfy a specific functionality.
The results are reported in Fig.4, that represents the ratio
function between processor energy and eFPGA energy
depending on the number of instructions and on the number of
CLBs. As visible in Fig. 4, the energy efficiency Eeff can be - in
log scale - both greater and smaller than 1. When the energy
efficiency is lesser than 1, it means that the energy required to
eFPGA to carry out the specification is greater than that related
to microprocessor. This situation happens, for example, when
the task requires arithmetical operations not well mapped on
eFPGA (i.e. big number of CLBs) but well matching processor
instruction set capability. This case, in Fig. 4, corresponds to ≈16
#CLB and < 2 #insn. On the other hand, when Eeff is greater than
1, the energy consumption of the microprocessor is greater than
the one of eFPGA: this is quite typical for Smart-Power
applications, where the required assignments are usually few-
bits FSM-based computation. In those cases, programmable
logic devices can implement more efficiently the Smart-Power
controller, as a matter of fact, in real applications - where the
number of required CLBs is 5÷10 and related processor
instructions are 50÷100 - is possible to easily achieve 100÷200
energy gains.

 If performances are not relevant at all for the application, it’s
possible to use other processing cores to further decrease
consumption, like the Zero-RISCY [10] [7], a 32-bit processor
with just 2-stages pipeline and latch-based register-file which

allows to further halve the power consumption during the
normal computation. Zero-RISCY has around half-area of
RI5CY, thus in sleep-mode also the leakage consumption is
halved. In any case, it helps halving the energy efficiency gap,
but it doesn’t allow to close it, leaving at the best a 50 factor gap.

VI. CONCLUSION

 In this work we have analysed the energy benefit of a
reconfigurable and fully synthesizable System-on-Chip based on
an open-source low-power microcontroller PULPino augmented
with a soft-core embedded-FPGA. Our analysis focused on the
Smart-Power application domain and in particular the control-
driven application sector where both the processor and the
eFPGA can be used to trigger actuators or to control sensing
platform. Starting from physical-synthesis results, we analysed
the different power consumption models of both
microprocessors and eFPGAs, to derive a comparison between
the energy required to execute the same task with the processor
or eFPGA. For this application scenario, despite the undeniable
area overhead, the embedded-FPGA proves to be an excellent
solution in terms of energy efficiency with a couple of order of
magnitude gain. Therefore, although challenging for BCD
technology, the proposed System-on-Chip can be considered
appealing for the Internet-of-Things scenario in Smart-Power
applications, where the eFPGA acts more efficiently than the
processor for control-driven task, while the main processor can
be switched in sleep mode or can manage other computation like
communications or data elaborations.

ACKNOWLEDGMENT

This work has been partially funded by R2POWER300
project that has received funding from ECSEL JU Joint
Undertaking Call 2014-2, grant agreement n◦ 653933.

REFERENCES
[1] STLUX385A Datasheet,

http://www.st.com/en/power-management/stlux385a.html

[2] STSPIN Datasheet, http://www.st.com/en/motor-drivers.html

[3] M. Borgatti et al., “A reconfigurable system featuring dynamically
extensible embedded microprocessor, FPGA, and customizable I/O,”
IEEE Journal of Solid-State Circuits, 2003, 38.3: 521-529.

[4] A. Lodi et al., “XiSystem: a XiRisc-based SoC with reconfigurable IO
module,” IEEE Journal of Solid-State Circuits, 2006, 41.1: 85-96.

[5] F.L. Yuan et al., “A multi-granularity FPGA with hierarchical
interconnects for efficient and flexible mobile computing,” IEEE Journal
of SolidState Circuits, 2015, 50.1: 137-149.

[6] M. Cuppini et al., “Soft-core Embedded-FPGA Based on Multistage
Switching Networks: A Quantitative Analysis,” IEEE Transactions on
VLSI Systems, 2015, 23.12: 3043-3052.

[7] PULP-Platform http://www.pulp-platform.org/documentation/.

[8] M. Cuppini et al., “Soft-core eFPGA for Smart Power applications,”
International Symposium on System-on-Chip (SoC), 2014, 1-4.

[9] M. Gautschi et al., “Near-Threshold RISC-V Core With DSP Extensions
for Scalable IoT Endpoint Devices,” IEEE Transactions on VLSI
Systems, vol. 25, no. 10, pp. 2700-2713, Oct. 2017.

[10] P. D. Schiavone et al., “Slow and Steady Wins the Race? A Comparison
of Ultra-Low-Power RISC-V Cores for Internet-of-Things Applications,”
PATMOS, 2017.

Fig. 4. The eFPGA subsystem interfaced through APB bus.

