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Abstract—This paper proposes a reconfigurable System-on-
Chip (SoC) for Smart-Power applications. The system is composed 
of an ultra-low-power microcontroller for standard software 
programmability, coupled to an embedded-FPGA (eFPGA) to 
perform control-driven applications, featuring digital elaboration 
with small computational load, at a lower power consumption and 
higher responsiveness compared to processor-based 
implementation.  Added value of the proposed system is that the 
whole digital system is synthesizable, since also the eFPGA is based 
on a soft-core approach. In the paper we discuss the application 
domain and present the results of integrating an eFPGA with a 
computational capability of ≈1K equivalent gates in the 
STMicroelectronics 0.13 µm Bipolar, CMOS, DMOS (BCD) 
Smart-Power technology featuring only four metal layers. As 
expected, eFPGA integration in the SoCs introduces a significant 
area-overhead (about 20÷25%), but has a straightforward benefit 
in terms of energy consumption reduction compared to processor-
based implementations. On average, based on our analysis, the 
energy gain achievable in this scenario can be quantified in a 
couple of orders of magnitude. 
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I.  INTRODUCTION 

In the Internet of Things (IoT) era, the widespread 
interaction of the end-nodes with the real-world (cyber-physical 
interaction) requires systems capable of sensing the 
environment, elaborating the acquired data, transmitting 
compressed information and - last but not least - providing a 
feedback to physical objects. In this work we focus on Smart-
Power applications (e.g. motion- and lighting-control [1] [2]), 
which are mostly based on a control-driven paradigm which 
leverages simple controllers - e.g. finite-state machines (FSM) - 
with few inlets/outlets and states. 

Traditional Smart-Power SoCs feature analog circuits (for 
sensing), hardwired FSMs (for control) and high-power circuits 
(for driving), leveraging the capabilities of Smart-Power 
technologies such as BCD which integrates bipolar (for analog), 
CMOS (for digital) and DMOS (for high-voltage) transistors. 
The limited flexibility of the digital control in traditional systems 
is mainly caused by the slower scaling of technology nodes 
implementing BCD with respect to CMOS technologies, driven 
by the need to include high-voltage devices on the same 
manufacturing process. These scaled processes allow to 
integrate more complex digital circuits in Smart-Power SoCs, 
such as small (ARM Cortex-M class) processors. Such 
integration between software programmable processors and 

power electronics is enabling new generations of Smart-Power 
IoT applications.  

On the application side, while most traditional ASIC 
approach does not allow for reuse of the same system for 
multiple applications, typical programmable digital controllers 
usually follow two approaches, based on microprocessors and 
programmable logic devices (PLDs). Pioneeristic works [3] and 
[4] show the silicon realization of hybrid systems, with the 
processor coupled to an eFPGA as data computer for either high-
density elaborations, coprocessing or configurable I/Os for 
customizable external peripherals. In this context of 
multipurposeness, a relevant evolution of eFPGA architecture 
has been presented in [5], through the introduction of a new 
interconnect network, based on a regular multiplexer-based 
structure, which shows properties looking toward full softcore 
approach, hence full synthesizability. On the other hand, all 
those previous works were realized targeting advanced CMOS 
technologies and high performance eFPGAs were implemented 
as custom-designed hard-macros technique for 
area/performance optimization.  

The introduction of reconfigurable SoCs in the Smart-Power 
arena is a new challenge for the technologies driving this area, 
due to the peculiarity of both system and technology. In this 
context, we present an energy-aware analysis of a Smart-Power 
SoC integrating a soft-core eFPGA architecture [6] tailored to 
small-computational tasks within the open-source PULPino 
microcontroller system [7] on STMicroelectronics 0.13 µm 
BCD technology.   

II. SYSTEM-LEVEL ARCHITECTURE 

The digital system is composed of the open-source ultralow-
power microcontroller PULPino [7] coupled with our softcore 
eFPGA [6]. Interfacing is done through AMBA Advanced 
Peripheral Bus (APB) as shown in Fig. 1. Therefore, the eFPGA 

 
Fig. 1. Reconfigurable Smart-Power SoC. 



can be configured by the processor to implement small 
controllers as Pulse-Width Modulator (PWM) and pure Finite-
State Machines (FSMs). The whole system is controlled by the 
processor, that can be switched in sleep-mode to reduce the 
dynamic power consumption when computation is not required. 

PULPino processor core is based on an implementation of 
the RISC-V instruction set architecture optimized for energy-
efficient digital signal processing [9]. PULPino is also equipped 
with the traditional peripherals e.g. serial communication 
interfaces, timers, interrupt controller. The system described in 
this paper is implemented with 32-bit 4K-Words static RAM for 
both instruction and data memory.  

Soft-core embedded-FPGA [6] we adopted is a fully-
synthesizable and reconfigurable IP. Fig. 2 represents the 
eFPGA subsystem, composed of a frequency divider (prescaler), 
a configuration loader, the PLD core and the interface toward 
APB, including the configuration registers which allow the 
processor to handle the subsystem. 

Target technology is BCD that is typically based on metal 
stacks with few levels, which challenge digital design - 
especially for programmable-logic - in terms of routing 
congestion. The eFPGA soft-core approach based on standard-
cells is advantageous to provide easier floorplan management. 
In fact, the main area occupation is due to high-power devices 
and analog sections, then digital section can fully adapt among 
other parts, contrary to eFPGA hard-macros approach. 

Since the target is control-driven application and not high-
density computation, the computational capability required has 
been estimated in ≈1K equivalent-gates, provided by 16 CLBs 
and 64 primary inlets/outlets. Each CLB has 12 I/Os and 3 Basic 
Logic Elements (BLEs), which can be used as either 2×LUT 4:2, 
2×LUT 5:1 or 1×LUT 6:1. Connectivity of the device is founded 
on a Multi-Stage Switching Network (MSSN) with butterfly-
oriented topology, as shown in [6], which guarantees 
synthesizability and non-blocking routing properties. As shown 
in Fig. 2, the inputs and outputs of the eFPGA are directly 
connected to primary I/Os and to two 64-bit registers (with 8-bit 
banks) accessible through APB bus, to mix the activity of the 
processor with that one of eFPGA. The prescaler, fully 
configured by the processor, is used to divide the system-clock 
frequency by a factor ndiv = 1÷215 depending on application 
critical-path and end-user reactivity needs, as well as to sleep the 
eFPGA subsystem when it is not required. The configuration 
loader is in charge to load the bitstream into the eFPGA latches,  

TABLE I.  SYNTHESIS RESULTS 

 Min Area Max Speed 

Freq. 10 MHz 80 MHz 

System Area 3.63 mm2 3.9 mm2 

eFPGA Area 0.77 mm2 0.98 mm2 

eFPGA Area % 21 % 25 % 

TABLE II.  ESTIMATED POWER CONSUMPTION 

Power Min Area Max Speed 

Core 2.83 mW (49.3%) 22.3 mW (49.3%) 

Pheripherals 2.51 mW (43.7%) 20.9 mW (46.3%) 

eFPGA (ndiv=8) 102 µW (1.78%) 912 µW (2%) 

Other logic 397 µW (7%) 1.961 mW (4.4%) 

Tot. 5.73 mW 45.2 mW 

 

which replace traditional custom SRAM cells. The configuration 
structure is disabled during the normal operation of the eFPGA, 
although the processor can whenever program the PLD, PLD 
I/Os and prescaler thanks to APB-interfaced registers. 

III. SMART POWER APPLICATIONS DOMAIN 

The “smart” keyword is typically applied when 
programmability is added to control methodologies [8], 
implemented through finite-state machines that generate signal 
patterns for the high/medium power drivers. As an example, 
FSM-based applications in motion control domain are brushed 
and stepper motor controllers, digital PWM for power 
management and lighting control. For such a class of 
applications energy efficiency is a more and more critical issue. 
A simple example is a controller for both unipolar and bipolar 
stepper motors with full-step, half-step and wave-drive control 
modes. The corresponding computational model is a FSM with 
≈10 states (thus implementable with 4 flip-flops) with 5 inputs 
(clock, enable, direction and 2 mode selectors) and 4 outputs (for 
phases generation). This example will be used in the following 
of the paper to show the different energy budget required for the 
various implementation approaches under analysis. The 
implementation of Smart Power applications on microprocessor 
systems is generally based on interrupt policies, because this 
class of applications is strongly event-driven. For the previous 
example of the stepper controller, the interrupt service routine of 
PULPino needs to update the state through a finite-state machine 
requiring about 46 assembly instructions (RISC-V ISA): 

 15 instructions are used for both prologue and epilogue 
of the procedure, including instructions required to 
manage the stack pointer, to avoid interrupt nesting and 
to save relevant registers used by the interrupt handler; 

 4 instructions are required for the GPIO management; 

 remaining 27 instructions are for state control of FSM, 
performed through 8 branch/jump, 4 arithmetical 
operations and 15 load/store for data management. 

 As a general rule, interrupt-based event-driven applications 
always require the overhead of prologue/epilogue to preserve the 
consistency of the computation and this payload depends on the 
complexity of the operation to be executed (e.g. the number of 
used registers and the need to be saved/restored) whereas the  

 

Fig. 2. The eFPGA subsystem interfaced through APB bus. 



same FSM can be directly mapped into the eFPGA. The soft-
core approach guarantees more versatility allowing the end- user 
to define the device based on the application constraints. 

IV. IMPLEMENTATION RESULTS 

The whole digital section of the SoC has been synthesized 
with Synopsys Design-Compiler Graphical in 0.13 µm BCD 
technology of STMicroelectronics, optimizing either area 
occupation or speed, and the synthesis results are reported in 
Table I. The frequency target for minimum area has been relaxed 
down to 10 MHz, while the maximum frequency (max-speed) 
target is 80 MHz. In both the cases the critical path of the system 
remains inside the microprocessor, as expected and as required 
to avoid extra speed-tax due to reconfigurability. For that, the 
two physical-synthesis show similar area occupations - 3.63 and 
3.9 mm2 respectively - as well as it happen focusing on the 
eFPGA-subsystem. The area overhead due to the reconfigurable 
IP is not negligible and it is approximately 21÷25% of the 
overall SoC area. Fig. 3 shows a synthesis floorplan where is 
possible to see the two different SRAM macros (bottom-side big 
rectangles), soft-core eFPGA, RISC-core and other control 
logics and peripherals. It is clear how the soft-core approach 
favors area/floorplan optimization contrary to a hard-macros 
approach, especially when the free space is small and needs to 
be reshaped depending on top-level Smart-Power IC 
accommodation. 

Table II summarizes the post-synthesis estimated power 
consumption of the whole digital system for a control-driven 
application that uses processor for computing and some 
peripherals i.e. serial communication, general purpose I/Os and 
eFPGA. Power estimation has been carried out in typical 
condition (1.8 V and 25 °C) using Synopsys PrimeTime-PX and 
parasitic back-annotation coming from physical synthesis. The 
average dynamic power is estimated annotating simulation-
based switching activity. The estimated power data shows that 
eFPGA has a negligible impact - 1.78% for min area and 2% for 
max speed - on the overall power consumption for ndiv = 8. It can 
be observed as for this technology the leakage is negligible 
compared to dynamic power, because the power consumption is 
about proportional to the clock frequency as shown in Table I 
and II where there is an ≈8x scaling-factor between max-speed 
and min-area implementations for operative frequency and 
dynamic power consumption. 

A. Power Consumption Models 

RISC processor power consumption is mainly due to 
memory accesses - read and write - and to pipeline evolution, 
with an intrinsic relationship to the specific architecture. In 

general, the power consumption drivers of the processor-based 
computation are the complexity of the instructions-set 
architecture (and its bit-width), the number of pipeline stages 
and the specific memory hierarchy (for data locality 
optimization). On the contrary, for a given architecture and a 
given implementation technology, the average power 
consumption of a single-datapath RISC processor is roughly 
constant, since the dominant factor is the access to memory for 
instructions fetching. In our case, for applications with different 
complexity in Smart-Power sphere, the average power 
consumption of the processor is 3.15 mW ± 12%, under min-
area condition, and to 25.45 mW ± 13% at the max-speed case. 
As expected, the average values are mostly related to the 
intrinsic processor architecture, while fluctuations are due to the 
different applications under analysis and the specific input data. 
For additional energy saving, it’s possible to switch the 
processor in sleep-mode, thus to obtain a significant power 
reduction from 2.83 mW to 0.41 mW for min-area and from 22.3 
mW to 1.92 mW for max-speed still in typical conditions. In the 
sleep-mode, processor pipeline is flushed and clock disabled, 
while all peripherals continue to operate to allow the wake-up 
when an interrupt or an event occurs. In sleep-mode the 
switching contribution to power consumption decreases and thus 
leakage contribution becomes dominant. 

The power-consumption model of a programmable-logic 
device like our eFPGA is similar to that one of a hardwired 
circuit, although the undeniable overhead due to 
programmability which act as an upscaling factor (e.g. logical 
net switching is replaced by the switching of the programmable 
interconnect structure). As an example, from a logical point of 
view, the few bits related to a FSM evolution impact the power-
consumption on the eFPGA, while on the processor there is the 
whole activity related to a 32bitwise pipeline evolution.  

V. PROCESSOR VS. EMBEDDED-FPGA  

The power consumption of the processor is hence more or 
less constant, while for the eFPGA is strictly related to data 
elaboration. For this reason, we have compared the energy 
efficiency of both processor and eFPGA architecture to execute 
some typical Smart-Power elaborations. As an example, the 
simple motor-drive FSM with few inputs/outputs discussed in 
Section III has been mapped on 5 CLBs of eFPGA and also 
implemented in the processor, using interrupt and timer to 
trigger the routine with the same frequency of the eFPGA and 
leaving the processor in sleep-mode otherwise. The energy of 
the eFPGA subsystem is: 

𝐸ிீ =
ಷುಸಲ

ಷುಸಲ
=

ಷುಸಲ

ೖ
∙ 𝑛ௗ௩                     (1) 

where ndiv is the frequency divider factor (set to 8, in this case). 
The processor energy for a software-implemented routine is: 

𝐸ௌௐ = 𝐸 ௦ ∙ 𝑛௦௧ =
ೀೃಶ

ೖ
∙ 𝑛௦௧            (2) 

where Eper instr is the average energy per instruction, ninstr is the 
number of the instructions of the routine - 46 in this case - and 
PCORE is the power consumption of the processor that includes 
RISC-core and memories. We define the energy efficiency as: 

𝐸 =
ாೄೈ

ாಷುಸಲ
                                  (3) 

 

Fig. 3. Physical synthesis floorplan. 



that compares the necessary energy for both architectures to 
carry out the same functionality. This model is clearly 
pessimistic for the eFPGA because, in our estimation, the ESW 
evaluation doesn’t take into account the power consumption of 
peripherals like timer, interrupt controller and GPIOs. In 
addition, to simplify the analysis, we don’t take into account 
processor pipeline stalls, assuming to execute one instruction per 
cycle. For this example, the energy consumption related to 
processor-based execution of the FSM is around 11 mW/MHz 
for 46 instructions, while the same task implemented in eFPGA 
requires just ≈67 µW/MHz. Those numbers take into account the 
average dynamic power, estimated annotating simulation-based 
switching activity. The leakage power is a common background 
and for the technology node we are targeting its contribution in 
power is roughly one order of magnitude less than dynamic 
power when the system is fully on. 

 To provide a general analysis taking care the complexity of 
both processor- and eFPGA-based implementation, we 
extrapolated from (1), (2) and (3) an energy-efficiency 
parametrizing both the number of CLBs and number of 
assembly instructions required to satisfy a specific functionality. 
The results are reported in Fig.4, that represents the ratio 
function between processor energy and eFPGA energy 
depending on the number of instructions and on the number of 
CLBs. As visible in Fig. 4, the energy efficiency Eeff can be - in 
log scale - both greater and smaller than 1. When the energy 
efficiency is lesser than 1, it means that the energy required to 
eFPGA to carry out the specification is greater than that related 
to microprocessor. This situation happens, for example, when 
the task requires arithmetical operations not well mapped on 
eFPGA (i.e. big number of CLBs) but well matching processor 
instruction set capability. This case, in Fig. 4, corresponds to ≈16 
#CLB and < 2 #insn. On the other hand, when Eeff is greater than 
1, the energy consumption of the microprocessor is greater than 
the one of eFPGA: this is quite typical for Smart-Power 
applications, where the required assignments are usually few-
bits FSM-based computation. In those cases, programmable 
logic devices can implement more efficiently the Smart-Power 
controller, as a matter of fact, in real applications - where the 
number of required CLBs is 5÷10 and related processor 
instructions are 50÷100 - is possible to easily achieve 100÷200 
energy gains. 

 If performances are not relevant at all for the application, it’s 
possible to use other processing cores to further decrease 
consumption, like the Zero-RISCY [10] [7], a 32-bit processor 
with just 2-stages pipeline and latch-based register-file which 

allows to further halve the power consumption during the 
normal computation. Zero-RISCY has around half-area of 
RI5CY, thus in sleep-mode also the leakage consumption is 
halved. In any case, it helps halving the energy efficiency gap, 
but it doesn’t allow to close it, leaving at the best a 50 factor gap. 

VI. CONCLUSION 

 In this work we have analysed the energy benefit of a 
reconfigurable and fully synthesizable System-on-Chip based on 
an open-source low-power microcontroller PULPino augmented 
with a soft-core embedded-FPGA. Our analysis focused on the 
Smart-Power application domain and in particular the control-
driven application sector where both the processor and the 
eFPGA can be used to trigger actuators or to control sensing 
platform. Starting from physical-synthesis results, we analysed 
the different power consumption models of both 
microprocessors and eFPGAs, to derive a comparison between 
the energy required to execute the same task with the processor 
or eFPGA. For this application scenario, despite the undeniable 
area overhead, the embedded-FPGA proves to be an excellent 
solution in terms of energy efficiency with a couple of order of 
magnitude gain. Therefore, although challenging for BCD 
technology, the proposed System-on-Chip can be considered 
appealing for the Internet-of-Things scenario in Smart-Power 
applications, where the eFPGA acts more efficiently than the 
processor for control-driven task, while the main processor can 
be switched in sleep mode or can manage other computation like 
communications or data elaborations.  
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