
24 November 2024

Alma Mater Studiorum Università di Bologna
Archivio istituzionale della ricerca

Rahimi, A., Kanerva, P., Benini, L., Rabaey, J.M. (2019). Efficient Biosignal Processing Using
Hyperdimensional Computing: Network Templates for Combined Learning and Classification of ExG
Signals. PROCEEDINGS OF THE IEEE, 107(1), 123-143 [10.1109/JPROC.2018.2871163].

Published Version:

Efficient Biosignal Processing Using Hyperdimensional Computing: Network Templates for Combined Learning
and Classification of ExG Signals

Published:
DOI: http://doi.org/10.1109/JPROC.2018.2871163

Terms of use:

(Article begins on next page)

Some rights reserved. The terms and conditions for the reuse of this version of the manuscript are
specified in the publishing policy. For all terms of use and more information see the publisher's website.

Availability:
This version is available at: https://hdl.handle.net/11585/673283 since: 2019-02-25

This is the final peer-reviewed author’s accepted manuscript (postprint) of the following publication:

This item was downloaded from IRIS Università di Bologna (https://cris.unibo.it/).
When citing, please refer to the published version.

http://doi.org/10.1109/JPROC.2018.2871163
https://hdl.handle.net/11585/673283

This is the post peer-review accepted manuscript of:

Abbas Rahimi ; Pentti Kanerva ; Luca Benini ; Jan M. Rabaey, Efficient Biosignal Processing Using

Hyperdimensional Computing: Network Templates for Combined Learning and Classification of ExG

Signals, in Proceedings of the IEEE, Year: 2019 , Vol: 107 , Issue: 1, Page s: 123 – 143, DOI:

10.1109/JPROC.2018.2871163

The published version is available online at: https://doi.org/10.1109/JPROC.2018.2871163

© 2018 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any

current or future media, including reprinting/republishing this material for advertising or promotional purposes,

creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of

this work in other works

1

Efficient Biosignal Processing Using
Hyperdimensional Computing: Network Templates
for Combined Learning and Classification of ExG

Signals
Abbas Rahimi, Member, IEEE, Pentti Kanerva, Luca Benini, Fellow, IEEE, and Jan M. Rabaey, Fellow, IEEE

Abstract—Recognizing the very size of the brain’s circuits,
hyperdimensional (HD) computing can model neural activity
patterns with points in a HD space, that is, with HD vectors.
Key examined properties of HD computing include: a versatile
set of arithmetic operations on HD vectors, generality, scalability,
analyzability, one-shot learning, and energy efficiency. These
make it a prime candidate for efficient biosignal processing where
signals are noisy and nonstationary, training data sets are not
huge, individual variability is significant, and energy efficiency
constraints are tight. Purely based on native HD computing oper-
ators, we describe a combined method for multiclass learning and
classification of various ExG biosignals such as electromyography
(EMG), electroencephalography (EEG), and electrocorticography
(ECoG). We develop a full set of HD network templates that
comprehensively encode body potentials and brain neural activity
recorded from different electrodes into a single HD vector without
requiring domain expert knowledge or ad-hoc electrode selection
process. Such encoded HD vector is processed as a single unit
for fast one-shot learning, and robust classification. It can be
interpreted to identify the most useful features as well. Compared
to state-of-the-art counterparts, HD computing enables online,
incremental, and fast learning as it demands less than a third as
much training data as well as less preprocessing.

Index Terms—Brain-inspired computing, Hyperdimensional
computing, Vector symbolic architectures, Network architectures,
One-shot learning, Interpretable machine learning, Biosignal
classification, EMG, EEG, ECoG, Error-related potential, Motor
imagery, Human–machine interface, Brain–machine interface,
seizure detection.

I. INTRODUCTION

Some of the most compelling application domains of the
Internet of things (IoT) relate to how humans interact with

Manuscript received February 5, 2018; revised July 26, 2018; accepted
September 1, 2018

A. Rahimi is with the Department Electrical Engineering and Computer
Sciences at the University of California, Berkeley, CA 94720, USA, and also
with the Department of Information Technology and Electrical Engineering at
the ETH Zurich, 8092 Zürich, Switzerland. E-mail:abbas@eecs.berkeley.edu,
abbas@ee.ethz.ch

P. Kanerva is with the Helen Wills Neuroscience Institute at the University
of California, Berkeley, CA 94720, USA. E-mail:pkanerva@berkeley.edu

L. Benini is with the Department of Information Technology and Electrical
Engineering at the ETH Zurich, 8092 Zürich, Switzerland, and also with
the Department of Electrical, Electronic and Information Engineering, Uni-
versity of Bologna, 40136 Bologna, Italy. E-mail: luca.benini@iis.ee.ethz.ch,
luca.benini@unibo.it

J. M. Rabaey is with the Department Electrical Engineering and Computer
Sciences at the University of California, Berkeley, CA 94720, USA. E-
mail:jan@eecs.berkeley.edu

Digital Object Identifier 10.1109/JPROC.2018.2871163

the world around them and with the cyberworld through
“wearable” devices. The growing sophistication of these de-
vices requires a continuous reduction in energy-per-operation.
Unfortunately, with the slowdown of traditional semiconductor
scaling, leakage and uncertainty [1] limit the amount of energy
scaling that can be reached [2]. The only viable solution is
to rethink functionality to cope with uncertainty by adopting
computational approaches that are inherently robust to un-
certainty [3]. Advances in learning-based computing for IoT
increase energy-efficiency towards TOPS/Watt [4], but further
improvement requires a novel look at data representations,
associated operations, circuits, and materials and substrates
that enable them [5]. Monolithic 3D integrated nanotechnolo-
gies [6], [7] combined with novel brain-inspired computational
paradigms that support fast learning and fault tolerance could
lead the way [5].

Emerging hyperdimensional (HD) computing [8] is based on
the understanding that brains compute with patterns of neural
activity that are not readily associated with scalar numbers.
In fact, the brain’s ability to calculate with numbers is feeble.
However, due to the very size of the brain’s circuits, we can
model neural activity patterns with points of a HD space,
that is, with HD vectors. When the dimensionality is in the
thousands, operations on HD vectors create a computational
behavior with unique features in terms of robustness and
efficiency [9], [10].

HD computing brings into play the rich and subtle mathe-
matics of HD spaces. It relates partly to the linear algebra and
probabilities of artificial neural nets, and partly to the abstract
algebra and geometry of HD spaces. Groups, rings, and fields
over HD vectors become the underlying computing struc-
tures, with permutations, mappings, and inverses as primitive
computing operations, and with randomness programmatically
inscribed in the way new objects and entities are labeled.
However, its performance depends on good design—instead
of automated training—of a network architecture that consists
entirely of the HD primitive operations [11], [12], [13].

In this article, we first focus on the key properties of HD
computing resulting from the application of a well-defined
set of arithmetic operations on HD vectors. Key properties
that are examined include: generality, scalability, analyzabil-
ity, one-shot learning, energy efficiency, natural performance
without domain expert knowledge and less preprocessing [5],
[14], [15], [16], [17], [18], [19]. These leading properties

2

take HD computing beyond the typical text and language
applications [20], [21], [22], [23], [24], [25], [26], and make
it a prime candidate for a new category of applications: inte-
grated learning-based wearable/implantable devices, for which
biosignal training data sets are small, individual variability is
significant, privacy, latency, and energy efficiency demands are
tight [27], [28], [29], [30].

More specifically, we design a full set of HD network
templates to ease constructing an efficient and complete
representational architecture for handling both learning and
classification tasks in the domain of personalized devices. The
proposed templates collectively handle various types of biosig-
nals including electromyography (EMG), electroencephalog-
raphy (EEG), and electrocorticography (ECoG)—collectively
referred to as ExG. As concrete examples, we target multiclass
learning and inference in (1) EMG-based hand gesture recog-
nition for human–machine interfaces, (2) EEG-based brain–
computer interfaces, and (3) ECoG-based seizure detection.
Our network templates encode body potentials or brain neural
activity recorded from various electrodes into a single HD
vector capturing the temporal and spatial features of the sig-
nals, without requiring any ad-hoc electrode selection process
or domain expert knowledge. The encoded HD vector is used
for fast learning and robust classification; besides, it can be
exploited to identify the most useful features. Remarkably, the
network templates are designed purely based on the native HD
operations without involving any biologically implausible or
inefficient optimization algorithm such as gradient descent and
backpropagation. Such simplicity of networks enables efficient
implementation of both learning and classification tasks with
fully binary operations leading to significant energy saving,
e.g. [16].

Further, HD learning follows the “one-shot” approach, that
is object categories are learned from one or few examples
and only in a single pass (i.e., one epoch) over the train-
ing data. We demonstrate the benefits of HD computing
by comparing it with the state-of-the-art machine learning
methods for biosignal processing including support vector
machines (SVMs) [31], [32], [33], Gaussian classifiers [34],
feedforward multilayer perceptron (MLP) [33], and convolu-
tional neural networks (CNNs) [35]. Compared to the state-
of-the-art counterparts, our experimental results show that
HD computing enables online, incremental, and fast learning
as it demands less than a third as much training data and
preprocessing. While this paper focuses on EMG, EEG, and
ECoG signals, other streaming multidimensional sensor data
such as electrocardiography (ECG), speech, or smell could
equally be applicable [36], [37], [38].

This paper is organized as follows. In Section II, we intro-
duce HD computing (with concise description in Appendix A).
In Section III, we discuss key properties of HD computing
for designing efficient biosignal processing architectures. In
Section IV, we present our main contributions by proposing a
full set of HD network templates to efficiently learn and clas-
sify various types of biosignals. Our experimental results are
described in Section V followed by discussion in Section VI.
Section VII concludes the paper.

II. BACKGROUND IN HD COMPUTING

This section provides a background in HD computing. The
brain’s circuits are massive in terms of numbers of neurons
and synapses, suggesting that large circuits are fundamental
to the brain’s function. HD computing explores this idea by
looking at computing with HD vectors as ultra-wide words.
It is rooted in the observation that key aspects of human
memory, perception, and cognition can be explained by the
mathematical properties of HD spaces, and that a powerful
system of computing can be built on the rich algebra of HD
vectors. The difference between traditional computing and HD
computing is apparent in the elements that we compute with.
In traditional computing the elements are Booleans, numbers,
and memory pointers, whereas in HD computing they are
HD vectors. HD vectors are d-dimensional (the number of
dimensions is in the thousands) and (pseudo)random with
independent and identically distributed (i.i.d.) components.
They thus conform to a holographic or holistic representation:
the encoded information is distributed equally over all the
d components such that no component is more responsi-
ble to store any piece of information than another. Such
representation maximizes robustness for the most efficient
use of redundancy [8]. Other examples of such computing
structures include Holographic Reduced Representations [39],
Semantic Pointer Architecture [40], Binary Spatter Codes [21],
Multiply–Add–Permute coding [41], Random Indexing [20],
and Vector Symbolic Architectures (VSAs) [11], with a quick
summary in [5].

The number of different, nearly orthogonal HD vectors is
very large when the dimensionality is in the thousands [9], [8].
Two such HD vectors can now be combined into a new HD
vector using simple vector-space operations, while preserving
the information of the composing HD vectors with high
probability. Computing with HD vectors begins with selecting
a set of random HD vectors to represent basic objects. These
HD vectors are also thought of as random labels. For example
in a language recognition application [23], [24], the letters of
the alphabet as the inputs can be the basic objects, and they
are assigned to random labels. In the same vein, in a biosignal
processing application each input electrode is assigned to a
random label, independently of all the other labels. They serve
as seed HD vectors, and they are used to make representations
for more complex objects. To generate seed HD vectors, we
use bipolar dense codes of equally probable +1s and −1s,
i.e., {−1,+1}d where d = 10, 000; this dimensionality works
particularly well for our applications, but it is essentially a
hyperparameter that can be tuned [42]. In the following, we
describe similarity measure and arithmetic operations using
this code.

A. Similarity Measurement of HD Vectors

An essential operation in HD computing is the computation
of the distance (or similarity) between two HD vectors. For
dense bipolar HD vectors1, we use cosine similarity as the
distance metric between two HD vectors by measuring the

1In this article, we use only capitalized italic letters to indicate HD vectors;
they may also appear with a subscript.

3

cosine of the angle between them using a dot product. It is
defined as cos(A,B) = |A′ ∗ B′|, where A′ and B′ are the
length-normalized vectors of A and B, respectively, and |C|
denotes the sum of the elements in C. It is thus a measure
of orientation and not magnitude: two HD vectors with the
same orientation have a cosine similarity of 1, two orthogonal
HD vectors have a similarity of 0, and two HD vectors
diametrically opposed have a similarity of −1.

B. Arithmetic Operations on HD Vectors

HD computing builds upon a well-defined set of arithmetic
operations with random HD vectors. These arithmetic opera-
tions are used for encoding and decoding patterns. The power
and versatility of the arithmetic derives from the fact that the
basic operations, namely addition and multiplication, form an
algebraic structure resembling a field, to which permutations
give further expressive power.

We use a variant of the Multiply–Add–Permute (MAP)
coding described in [41]. The MAP operations on HD vectors
are defined as follows. Pointwise multiplication of two HD
vectors A and B is denoted by A ∗B, and pointwise addition
is denoted by A + B. Multiplication2 takes two vectors and
yields a third, A ∗ B , that is dissimilar (approximately
orthogonal) to the two and is suited for variable binding; and
addition, or bundling, takes several vectors and yields vector
[A+B+...+X] that is maximally similar to them and is suited
for representing sets. The brackets [· · ·] mean that the sum
vector is normalized to {+1,−1}d based on the sign, with ties
broken at random. Finally, the third operation is permutation,
ρ, that rotates the coordinates of HD vector. A simple way to
implement this is as a cyclic right-shift by one position. All
these operations have a complexity of O(d) and produce a
d-dimensional vector.

The usefulness of HD computing comes from the nature
of the operations. Specifically, addition produces a vector
that is similar to the argument vectors—the inputs—whereas
multiplication and random permutation produce a dissimilar
vector; multiplication and permutation are invertible, addition
is approximately invertible; multiplication distributes over
addition; permutation distributes over both multiplication and
addition; multiplication and permutation preserve similarity,
meaning that two similar vectors are mapped to equally similar
vectors elsewhere in the space.

Operations on HD vectors can produce results that are
approximate or “noisy” and need to be associated with the
“exact” vectors. For that, a list of known (noise-free) seed
HD vectors is maintained in a so-called “item” or “clean-up”
memory. When presented with a noisy HD vector, the item
memory outputs the HD vector that is most-similar or closest.
Making this work reliably requires high-dimensionality. With
10,000-bit HD vectors, 1/3 of the bits can be flipped at random
and the resulting HD vector can still be identified with the
originally stored one with very high probability.

The operations make it possible to encode and manipulate
sets, sequences and lists—in essence, any data structure. A

2By default, we refer to the pointwise multiplication (∗) unless otherwise
mentioned.

data record consists of a set of fields (keys, variables, or
attributes) and their values (fillers). A data record consisting
of fields x, y, z with values a, b, c can be encoded into a HD
vector H as follows. First, random seed HD vectors are chosen
for the fields and the values (X,Y, Z,A,B,C), and are stored
in the item memory. We then encode the record by binding
the fields to their values with multiplication and by adding
together the bound pairs:

H = [(X ∗A) + (Y ∗B) + (Z ∗ C)]

This resulting representation is holographic because the fields
are superposed over each other—there are no spatially iden-
tifiable fields. Importantly, the value of x can be extracted
from this holographic representation by multiplying H with
the inverse of X , which for ∗ is X itself: A′ = X ∗H . The
resulting HD vector A′ is given to the item memory which
returns A as the most-similar stored HD vector. An analysis
of this example would show how the properties of addition and
multiplication come to play (see also Appendix A). A thing
to note about the operations is that addition and multiplication
approximate an algebraic structure called a field, to which
permutation gives further expressive power.

The permutation is a reversible mapping that generates a
dissimilar quasiorthogonal HD vector of its input. In geometry
sense, the permutation rotates the HD vector in the space.
The rotated HD vector is uncorrelated with all the other HD
vectors. The permutation can be used to encode a sequence of
items, e.g., a sequence of three letters abc called a trigram. We
make a trigram HD vector by permuting the first letter vector
twice, the second letter vector once, and use the third letter
vector as is, and then by multiplying the three HD vectors
component by component as:

ρ(ρA ∗B) ∗ C = ρρA ∗ ρB ∗ C

This efficiently distinguishes the sequence abc from e.g., acb
or any other trigram that may share letters or differ only in
letter order.

HD computing has been described above in terms of dense
bipolar HD vectors. The representational system is closed
under the aforementioned MAP operations. Throughout this
paper, we refer to this representational bipolar space and the
related MAP operations unless otherwise stated. Note that HD
computing supports one more operation that is rarely used:
scalar multiplication (weighting). The scalar multiplication
of an HD vector A with a scalar value v is denoted by
v · A. This results in the scaled version of A since every
component of the HD vector is multiplied with the same
scalar value. If the scalar value belongs to real numbers, the
result of scalar multiplication is in real space too, and is often
combined with addition. Sections IV-A3 and IV-B4 use the
scalar multiplication operation.

III. KEY PROPERTIES OF HD COMPUTING FOR EFFICIENT
BIOSIGNAL PROCESSING

In this section, we first present some compelling applica-
tions of biosignal processing and describe their challenges.
We then highlight how key properties of HD computing can
respond to these challenges.

4

To focus the discussion, this paper considers three types
of biosignals: (1) EMG signals as recording of the electrical
activity produced by the skeletal muscles; (2) EEG signals
as recording of the electrical activity of the brain from the
scalp; (3) ECoG, or intracranial EEG (iEEG), as a type of
recording that uses electrodes placed directly on the exposed
surface of the brain. EMG is widely used in various directions
to create a human–machine interface at the neuromuscular
level [43]. We specifically target the processing task of the
neuromuscular EMG signals; one possible outcome is the
recognition of gestures that can serve as the primary com-
mands to control a prosthetic arm [44], [45]. In contrast, brain–
computer interfaces based on EEG signals aim to provide a
communication and control channel between the human brain
and external devices. We focus on two types of brain activity
measured by the noninvasive EEG signals to recognize a user’s
intentions: error-related potentials and motor imagery. When
a user recognizes an error during monitoring of an external
agent, an error-related potential (ERP) can be measured in the
EEG signal; recognition of the ERP can be utilized to correct
and improve the behavior of the external agent [46], [47],
[34]. Alternatively, in motor imagery (MI) brain–computer
interface, a user is asked to imagine movements of different
parts of the body that arises the brain activity of the motor
cortical areas; this MI recording can be decoded to recognize
the desired movement commands [48], [32], [49], [30]. Finally,
we focus on a seizure detection task based on ECoG signals
for patients with drug-resistant epilepsy [50].

Processing and classification of these biosignals pose a
number of challenges including the following. Operating with
a variety of biosignal acquisitions ranging from a pair of differ-
ential EMG electrodes in time-domain to complex acquisitions
with more EEG electrodes in frequency-domain demands a
versatile learning and inference (classification) method. Fur-
ther, these biosignals are noisy and nonstationary—especially
the brain signals change over time—with large individual vari-
ability among subjects that demand continuous recalibration
and personalized (subject-specific) learning. Such personalized
learning should be effective with small training data, and
for on-chip operation with limited amount of resources and
energy. The on-chip learning reduces privacy and security risks
by limiting the attack surface to only the personalized device,
rather than device, gateway, and cloud, which is aligned with
the concept of federated learning [28] based on the principle
of focused collection or data minimization [29]. At the same
time, the learning should be interpretable with the goal to
understand the underlying features related to the classification
task [51]. In the following, we describe how HD computing
can address these challenges.

A. Scalable Computational Paradigm with Versatile Arith-
metic Operations

HD computing offers a simple and complete computational
paradigm based on learning, and builds upon a well-defined
and versatile set of operations with random HD vectors.
The MAP (Multiply–Add–Permute) arithmetic operations can
encode and decode patterns in a huge quasiorthogonal hyper-
space [41]. The encoding/decoding is scalable and versatile.

HD computing has been initially used to operate with a single
streaming input of characters to encode texts [23], [24]; we
have extended the encoder to operate with simultaneous analog
biosignal inputs [14], [15], [17], [16], [19]. The encoder
flexibly operates with various types of ExG biosignal acquisi-
tions, and simply scales with different numbers of electrodes
(see Table I): ranging from 36–100 ECoG electrodes with
the highest signal-to-noise ratio (SNR) [19], to EMG signals
with relatively lower SNR using few patch electrodes [14]
or denser flexible electrode array [15], and finally to 16–
64 EEG electrodes with the lowest SNR [17]. Execution of
HD computing on an 8-core parallel ultra-low-power (PULP)
accelerator shows that the EMG encoder can scale to process
up to 256 electrodes while meeting the 10 ms classification
constraint for real-time EMG tasks [16]. Besides versatile clas-
sification, which finds associations of a new item with a set of
known items associated with a label, the arithmetic operations
can be used for query processing too, which answers desired
questions about a particular stored item [22].

B. Learning Transparent Codes with Interpretable Features

Thanks to the well-defined set of arithmetic operations with
inverses, HD computing produces transparent (i.e., analyzable)
codes with interpretable features. For example, in the typical
application of EEG ERP, a domain expert carefully determines
a subset of relevant electrodes (e.g., two electrodes out of 64),
depending upon the subject; this subset of selected electrodes
is used for subsequent classification [34]. At first, HD com-
puting does not require such domain expert knowledge for the
electrode selection process, and hence operates naturally with
all the 64 electrodes at negligible loss of accuracy. Besides, the
learned HD vectors can be analyzed to identify what electrodes
provide meaningful data for the classification. It has been
shown that instead of asking for the domain expert knowledge,
HD computing can identify the same subset of electrodes
as relevant by measuring the relative distances between the
learned prototype HD vectors [18]. Producing such transparent
codes also enables verification of the learned model [52],
and is in sharp contrast to blind application of conventional
learning methods that produce a “black box.”

C. Learning Is One-shot, Fast, and Computationally Balanced
with Respect to Classification

In contrast to other neuro-inspired approaches in which
learning is computationally much more demanding than sub-
sequent classification, learning in HD computing is based on
the same algorithms as classification. The learning algorithm
works in “one-shot,” namely, object categories are learned
from one or few examples, by using only a portion of training
data, in a single pass without impacting the classification
accuracy. For instance, state-of-the-art SVM [31] for the EMG
classification task reaches to 97.8% accuracy by using the full
set of training data, while the HD algorithm achieves the same
level of accuracy by using only 1/3 of the training data in one
pass [14]. Using a larger number of 64 EMG electrodes, HD
computing demonstrates one-shot learning—in the true sense
of the word—by training from a single gesture per class [15].

5

We also observe that HD computing quickly learns from one
or two seizures and perfectly detects unseen seizures for the
majority of patients (10 out of 16) [19]. Similar benefit is
observed for the EEG ERP classification task [17], [18]: the
HD algorithm learns ≈ 3× faster by using only 34% of
training trials while maintaining an average accuracy of 70.5%,
which is higher than the state-of-the-art classifier using the full
set of training trials.

In addition, since the same algorithm is used for learning
and classification, the architecture is ideal for online and
continuous learning. The new examples can be learned by
incrementally updating the associative memory described in
Section IV-C. This enables the fast learning to be executed in
a real-time online fashion, and the classifier can be updated
(i.e., partially retrained) with new samples to address the
nonstationary nature of biosignals.

D. Less Preprocessing

Most preprocessing of the electrode signal can be eliminated
in HD computing as it can operate with noisy inputs; it is also
robust to electrodes that do not carry meaningful information.
In the EMG-based gesture recognition task, HD computing can
maintain its accuracy when the four patch electrodes are re-
placed by 64 flexible noisier electrodes with a lower SNR [15].
Similarly, HD computing can continue its natural operation
with all 64 electrodes and less preprocessing by removing a
common average reference (CAR) filter [53] from EEG signals
that results in only a slight loss of accuracy (from 74.5% to
71.7%) [17]. Overall, we have observed that HD computing
is a nice fit for fast and one-shot learning and classification
of noisy ExG signals with minimal information about the
task: e.g., in the absence of domain expert knowledge, and
by training with much less data and preprocessing.

E. Energy Efficiency

At its very core, HD computing is about manipulating and
comparing large patterns within the memory itself. The MAP
operations allow a high degree of parallelism by needing
to communicate with only a local component or its imme-
diate neighbors. Distance computation can be performed in
a distributed fashion; it is the only operator proportional to
vector dimension. An architecture based on HD computing
can be seen as an extremely wide dataflow processor with
small instruction set of bit-level operations. Further, logic can
be tightly integrated with the memory and all computations
are fully distributed that can save energy [6], [7]. This forms
a fundamental departure from the traditional von Neumann
architectures where data has to be transported to the processing
unit and back, creating the infamous memory wall.

Further, simplicity of HD computing is another important
factor for energy efficiency. HD computing requires far fewer
operations than other approaches such as SVMs, CNNs, k-
nearest neighbors (KNN), and MLP for the same functional-
ity [14], [16], [24], [19]. For instance, in the EMG classifica-
tion task, we use the SVM with fixed-point operations, instead
of floating-point, that leads to best performance preserving
the accuracy [54]. HD computing achieves the same level of

accuracy as the SVM on a commercial embedded ARM Cortex
M4 using only 1/2 as much power [16]. This is due to the fact
that HD computing mostly uses basic bitwise operations. This
simplicity allows scalable execution on the embedded 8-core
PULP accelerator with bitmanipulation instruction extensions
that achieves 10× higher energy efficiency than the ARM
Cortex M4 [16].

The same is true about memory accesses. This compensates
for the very wide words used in HD computing. The memory
requirement for HD computing scales linearly: e.g., in the
language recognition task, by moving from a trigram (n = 3)
to pentagram (n = 5), HD computing requires two more extra
HD vectors whereas the memory required by the baseline
KNN grows exponentially with n. Using pentagrams of letters,
the baseline requires 500× larger memory than HD [24], or
some hashing-based algorithm to manage the memory, yet
requiring more of it than the HD-based approach. As another
example, in the seizure detection task, the MLP demands 5×–
13× larger memory than HD computing to store its weights,
even if we optimistically assume that all its weights could be
quantized to 1 bit [19]. In the following, we describe two more
properties of HD computing that can further improve energy
efficiency:

(1) Robustness under low SNR. By its very nature, HD
computing is extremely robust in the presence of failures,
defects, variations, and noise of computing fabrics, all of
which are synonymous to ultra low energy computation. It
has been shown that HD computing degrades very gracefully
in the presence of temporary and permanent faults compared
to a baseline KNN classifier for the language recognition task:
by injecting the intermittent hardware-induced errors in both
classifiers, HD computing tolerates 8.8× higher probability
of failure per individual memory cells [24]; considering the
permanent hard errors, HD computing tolerates 60× higher
probability of failures [7]. The robust operation under low
SNR conditions and high variability perfectly matches with
emerging nanotechnologies promising to deliver substantial
energy savings [7], [5], [6].

Such robustness of HD computing is achieved by its in-
spiration from brain’s circuits: (pseudo)randomness, hyperdi-
mensionality, and fully distributed holographic representation.
Symbols represented with HD vectors begin with i.i.d. compo-
nents and when combined with the MAP operations, the com-
posite HD vectors also appear as identically distributed random
vectors, and the independence of the individual components
is mostly preserved. Specifically, the pointwise multiplication
and addition are i.i.d.-preserving; when the permutation is
combined with the multiplications to encode n-grams, we end
up with vectors whose components are identically distributed
and nearly independent. This means that a failure in a compo-
nent of a HD vectors is not “contagious”. At the same time,
failures in a subset of components are compensated for by the
holographic nature of the data representation i.e., the error-
free components can still provide a useful representation that is
similar enough to the original HD vector. This inherent robust-
ness also eliminates the need for asymmetric error protection
in memory units. This type of robustness is absolutely unique,
and enables both aggressive scaling of device dimensions and

6

Slow Execution

Massively parallel

On Demand

Only active elements
are powered up

Low SNR Computation

Robustness enables
low voltage operation

Locality of Reference

In-memory computation
minimizes data movement
and reduces load

Only few components
active at any point in time

Sparsity

E =
P

f
~α · Ctot· Vswing· VDD+ Istatic· VDD· T

Fig. 1. How properties of HD computing lead to ultra low energy computing.

integration complexity as well as SNR levels.
(2) Sparsity in time and space. Biologically plausible spar-

sity [55] is essential to the efficiency of the fully distributed
computational paradigms offered by HD computing [56],
[57], [58], [59], [60]. At any point only a fraction of the
memory/logic fabric should be active leading to a “mostly-dark
operational” model. However, it requires both representations
that are intrinsically sparse and new operations that preserve
them along with asynchronous execution. For instance, a
sparse binary representation—where the number of ones is
significantly less than zeros—along with a componentwise
context-dependent thinning operation can lower the switching
activity and hence power consumption [59]. This is applied to
various pattern recognition tasks including the EMG classifica-
tion with detail discussions about choice of density, operations,
and capacity in [59].

Overall, Fig. 1 provides a perspective on the above-
mentioned attributes of HD computing responsible for ultra
low energy computation. The equation for total energy con-
sumption (E) consists of two major components, the dynamic
and the static dissipations, where P is total power, f is
frequency, α is switching activity, Ctot is total load and short-
circuit capacitances, Vswing is voltage swing, VDD is supply
voltage, Istatic is static and leakage current, and T is time
period. Fig. 1 illustrates how these various terms of power
consumption are impacted by the properties of HD computing.
For instance, sparsity directly lowers the switching activity
factor, α, of dynamic power. Targeting VDD, robustness of
HD computing perfectly copes with the uncertainty which
is the largest hindrances to lower VDD; besides, VDD can
be further lowered by slowing down the execution enabled
by the massively parallel HD operations. These properties in
combination can significantly reduce energy consumption.

IV. HD NETWORK TEMPLATES FOR COMBINED
LEARNING AND CLASSIFICATION OF BIOSIGNALS

In this section, we present the main contributions of the
paper. Note that HD computing offers a simple and complete
computational paradigm that is easy to work with at the
level of HD vector representation and related mathematical
operations. Nevertheless, it is relatively harder to work at the
level of complete representational architectures as mentioned

Signals
Mapping to

HD Space
Encoding

Associative

Memory

Original

Representation HD Representation

Original

Representation

Labels

Fig. 2. A universal HD architecture for combined learning and classification
that is composed of: mapping, encoding, and associative memory. Proposed
HD network templates are shown in Fig. 4 and Fig. 4(d) for mapping and
encoding, an in Fig. 5 for associative memory.

by R. W. Gayler in his inspiring paper [11], p.6: “Typi-
cal connectionist architectures rely on training procedures to
achieve their effectiveness. However, VSAs [Vector Symbolic
Architectures, or HD computing architectures] provide no
opportunity for training to substitute for architectural effective-
ness. That is, good performance depends on good design rather
than automated training, and this is a harder research task.” To
address this issue for biosignal processing, we design a full
set of efficient network templates based on HD computing.
These few HD network templates ease constructing a complete
representational architecture by providing predefined options
that can be configured to meet specific goals. Each HD
network template generates HD vectors for different types of
inputs—including time-domain or frequency-domain ExG—
and chooses how to combine these symbolic level HD vectors
to create more complex representations. More importantly, the
templates are purely constructed based on the native operations
of HD computing, and do not require any inefficient or
biologically implausible algorithm, such as backpropagation
for optimizations and weight tuning. This enables efficient
implementation of the constructed architecture—to perform
combined learning and classification tasks—with fully binary
operations.

Fig. 2 illustrates a universal HD architecture, for solving
supervised classification tasks, that is uniformly composed
of three main modules: mapping, encoding, and associative
memory. For each of these modules, we design the network
templates providing predefined options and attributes for a
variety of purposes. The three modules can be then configured
and cascaded to essentially build an HD data flow processor.
The mapping module first maps the input biosignals from the
original representation to the HD vectors where they can be
manipulated by means of the versatile arithmetic operations
reside in the encoder module. The output of the encoder is
another HD vector that encloses our event of interest for
learning/classification in the HD space. Finally, the associative
memory module turns the output of the encoder to a prototype
HD vector representing a given class. During training, the
associative memory stores and updates a set of prototype HD
vectors; it finds the closest one to the output of the encoder
during testing. Following is a detailed description of the three
modules.

A. Mapping to HD Space

The fist step is to map raw inputs or features from the
original representation to the HD representation space. The
HD representation is typically produced through a mapping
aka projection. In the following, we present three projection

7

options that can be chosen based on the type of inputs
or features; we later discuss about other options, including
learning a projection in Section VI.

1) Orthogonal Mapping: When an input can be described
by a finite alphabet of independent symbols, its mapping to
the HD vectors is simple. This can be done by a class of
data-analysis methods that is referred to as symbolization [61].
Symbolization describes the process of transforming raw ex-
perimental measurements into a series of discrete symbols.
Each symbol can be simply assigned to a unique HD vector
that is chosen randomly. We can maintain all these HD vectors
in the item memory (IM). The IM here acts as a symbol
table or dictionary of all the HD vectors defined in the
system. For instance, in the European language recognition
task [23], [24], the discrete inputs (the 26 letters of the
alphabet and the space) are the initial items, and they are
assigned to random HD vectors with i.i.d. components. On
the other hand, in a biosignal processing task the electrodes
with unique names are the primary inputs, e.g., four electrodes
in the EMG task namely ‘e1’, ‘e2’, ‘e3’, and ‘e4’. Since the
name of every electrode is a unique string, it can be easily
mapped to an HD vector using the IM with four entries.
The IM, shown in Fig. 3, represents the four basic electrodes
by assigning a unique quasiorthogonal HD vector to every
electrode: E1 ⊥ E2 ⊥ E3 ⊥ E4. They stay fixed throughout
the computation, and they serve as seeds from which further
representations are made.

As another alternative, projection to the binary HD vectors
can be implemented by means of a cellular automaton [62],
[63]. The input features in the original representation can
be first binarized and then passed through several steps of
computation with a cellular automaton. A cellular automaton
consists of a regular grid of cells each in one of the binary
states. Every cell evolves in time according to a fixed rule
with a chaotic behavior that can produce a sequence of
(pseudo)random HD vectors. The state of a cell on the next
computational step depends solely on its current state and the
states of its neighbors. After several steps of computation, the
time-space state of cellular automaton is the projection to HD
space as described in [64].

One other option is to exploit the random process variations
that are naturally present in any deeply scaled and low voltage
nanotechnology process [7], [6], [38]. The application of
the use of process variations in HD mapping is reported
in [38], where groups of randomized delay lines are used to
perform random indexing. Another approach is to make use
of linear feedback shift registers (LFSR) to produce sequences
of random seeds with pseudo-i.i.d. behavior. One caveat is
that a generated seed may be close to the permuted version
of the previous seed (see Section II-B for the realization of
permutation operation), as both rely in single bit shifts. We
therefore need to use a second permutation that interferes
minimally with circular shit.

2) Continuous Mapping that Preserves Similarity: The
aforementioned orthogonal mapping is well-matched to the
output of symbolization, or to the input data and features in
the form of discrete symbolic primitives (letters or words)
that can be readily mapped to the HD vectors. However, in

Fig. 3. Comparison between cosine similarity matrices of mapped items using:
(1) Orthogonal mapping of 4 electrode names via the IM, in the left; (2)
Continuous mapping of quantized electrode signals with m=21 levels via the
CIM, in the right.

the biosignal processing applications each electrode produces
an analog time-varying signal where the signal level has an
amplitude in real values. Hence, we decouple mapping of
the name and the signal level of an electrode. The latter
one demands a different mapping method to the HD space
to preserve “similarity” between a range of real values in
the original representation to their corresponding mapped HD
vectors.

For this method of mapping, we limit our case to signal
levels that are first quantized using a quantization step with
a fixed number of levels (m). Accordingly, we have extended
the notion of IM to a continuous item memory (CIM) that can
map a range of quantized signal levels [14]. The CIM utilizes
a method [65] of mapping quantities “continuously” to the
HD vectors that is simpler than the method in [36]. In this
continuous vector space, two orthogonal endpoint HD vectors
are generated for the minimum and the maximum levels in the
range. HD vectors for intermediate levels are then generated
by linear interpolation between these two endpoints so that the
cosine similarity of HD vectors corresponds to the closeness
of levels.

For example, the quantization with 21 levels (m = 21) are
suitable for electrodes with an amplitude of 0 mV to 20 mV in
the EMG-based hand gesture recognition task. We choose a
random HD vector for the minimum level (Vmin) and randomly
flip d/2/(m− 1) of its bits for each successively higher level
(once flipped, a bit will not be flipped back). The HD vectors
for the minimum and the maximum levels will then be d/2 bits
apart or orthogonal to each other, i.e., Vmin ⊥ Vmax. These HD
vectors are stored in the CIM for reuse. Fig. 3(right) illustrates
the cosine similarity between each pair of HD vectors in
the CIM. As shown, by this mapping a linearly decreasing
similarity is preserved between the HD vectors from Vmin to
Vmax; however, it could be nonlinear based on the nature of
input data or features as described in [59].

3) Mapping with Scalar Multiplication (Weighting): For
those real valued features that is not clear how the quantization
should be done, we can use a method of mapping with
weighting. The mapping with weighting directly projects a real

8

valued feature, with full range, to the HD space; this projection
results in a HD vector whose components are real values.
The projection can be done by a pair of IM and the scalar
multiplication (·) as the basic operation in the linear algebra
described in Section II-B. The IM first assigns a random
bipolar HD vector to the entity of a feature (F1). Then, by
means of scalar multiplication F1 is multiplied by the scalar
real value of the feature (v) that produces a real valued HD
vector: v ·F1. This scalar multiplication, or weighting, scales
the initially assigned HD vector by modulating magnitude of
the vector components without changing its direction.

Although the method of mapping with weighting is simple,
normalized, and seamlessly operational with any range of
features, it requires energy-hungry floating-point operations
and storage. Hence, this style of operation should be avoided
as much as possible. During the early design phase, we can
initially use this mapping option when we have no information
about how the quantization and mapping should be performed.
Next, we can replace it by a CIM that is able to reflect well
the real valued features in the HD space; the CIM can be
evaluated by different techniques that linearly or nonlinearly
change the similarity between the mapped bipolar HD vectors.
By providing an example in Section V-D1, we show the trade-
off between these two methods of mapping.

B. Encoding

After projection to the HD space, further progressive rep-
resentations should be formulated to encode the event of
interest for learning and classification. The events of interest
in biosignals processing, e.g., the hand gestures or the mental
commands, have typically spatial and temporal components
to be captured. Following is a detailed description of such
encoding options that can be chosen as appropriate.

1) Spatial Encoder: As we described in Section IV-A, an
electrode maps its name to an HD vector (e.g., E1) via the
IM; it separately maps its signal level at a time point t to
V 1t via the CIM. This mapping is illustrated in Fig. 4(a).
The purpose of a spatial encoder is to combine these mapped
HD vectors across all the electrodes at a given time-aligned
sample (t), and represent them in a single HD vector. To do
so, we draw an analogy from [22] to generate a holistic HD
vector representing data from all the electrodes by using a set
of field–value pair. The electrode name corresponds to a field
of a traditional data record, and its signal level corresponds
to the value for the field. As shown in Section II-B, the field
and the value can be bound by the multiplication operation.
With this, for example for the first electrode, we can jointly
project its name and its signal value to a bipolar bound HD
vector: E1 ∗ V 1t. To complete the holistic record, we bundle
(via the addition) all such bound HD vectors to construct a
single spatial HD vector as shown in Fig. 4(a):

St = [(E1 ∗ V 1t) + (E2 ∗ V 2t) + (E3 ∗ V 3t) + (E4 ∗ V 4t)]

The aforementioned spatial encoder outputs a bipolar HD
vector, and works well when the number of electrodes is odd.
However, when the number of electrodes is even (as well
as small), pointwise addition of the bipolar HD vectors may

produce 0s, so we end up with a ternary system unless we
break the ties. The ties should be broken randomly and repro-
ducibly. It can be done for example by adding an additional
random HD vector to the record; however it makes the encoder
noncausal: two equal sets of input data in the original space
become slightly dissimilar in the projected HD space [63].
Alternatively, using a constant HD vector would lead to all
output HD vectors being slightly similar to each other even
if they are supposed to be orthogonal. To address this issue,
instead of choosing a random/constant HD vector we compute
an augmented HD vector [63] that is reproducible with the
same set of input data, e.g., by further binding two already
bound HD vectors: (E1 ∗ V 1t) ∗ (E2 ∗ V 2t). We add this
augmented HD vector to the record, for example:

St = [(E1 ∗ V 1t) + (E2 ∗ V 2t) + (E3 ∗ V 3t) + (E4 ∗ V 4t)

+ ((E1 ∗ V 1t) ∗ (E2 ∗ V 2t))]

2) Temporal Encoder: The spatial encoder captures a ver-
tical slicing of signals among all the electrodes at a given
time. However, the events of interest for learning and clas-
sification have time-dependent components, e.g., a series of
samples over time. We can temporally encode a sequence of
symbols by using the permutation operation, ρ. As described
in Section II-B, the permutation can encode a sequence of n
letters to form an n-gram HD vector. By analogy, a sequence
of three spatial HD vectors with consecutive time stamps
(St−2, St−1, and St) is encoded as follows: the first HD vector
St−2 is permuted twice ρ2St−2, the second HD vector St−1 is
permuted once ρSt−1, and finally there is no permutation for
the last HD vector St. These three new HD vectors are then
combined with the pointwise multiplication into a trigram HD
vector: T = ρ2St−2 ∗ ρSt−1 ∗ St. For n-grams at large this
becomes:

T =
n−1∏
i=0

ρiSt−i

Fig. 4(a) shows the temporal encoder that computes the n-
gram recursively where a single sample delay is denoted by
z−1. This eases the implementation of the temporal encoder
by using the distributivity of the permutation over the multi-
plication as described in Section II-B. The temporal encoder is
applied in cascade after the spatial encoder. Hence, HD vector
T is the output of spatial-temporal encoding for representing
the EMG hand gestures. T can be seen as the outcome of
encoding module for the associative memory (referring to
Fig. 2).

With the temporal encoding, one important step is to deter-
mine the proper size of an n-gram to be able to capture the
entire event of interest. It has been done by downsampling the
signal and statistically measuring the number of downsamples
available in a hand gesture, or in a mental command. For
instance, the EMG hand gestures can be represented by n-
grams where n ∈ {3, 4, 5} [14] whereas the ERP EEG
decoding require larger n-gram sizes where n ∈ {16, . . . , 29}.
With this larger n-gram size, we choose to change the order
of encoders for the ERP EEG task as shown in Fig. 4(b): first
doing the temporal encoding of every electrode, and then doing
the addition to compute the spatial HD vector (S) as the output

9

[+]

IM

∗
‘e1’

1st elec.

CIMPreprocessing

E1

V1t

St

IM

∗
‘e2’

2nd elec.

CIMPreprocessing

E2

V2t

IM

∗
‘e3’

3rd elec.

CIMPreprocessing

E3

V3t

IM
∗

‘e4’
4th elec.

CIMPreprocessing

E4

V4t

∗

ρ

z-1

Original Representation Mapping to HD Spatial Encoder Temporal Encoder

T Q

(a) Template for the EMG task.

Original Representation Mapping to HD Temporal Encoder Spatial Encoder

∗

ρ

∗ z-1 T1

IM‘e1’
1st elec.

CIMPreprocessing

E1

V1t

∗

ρ

∗ z-1 T64

IM‘e64’
64th elec.

CIMPreprocessing

E64

V64t

…… … [+] S Q

(b) Template for the ERP EEG task.

[+]

IM

∗
‘e100’

100th elec.

IMSymbolization

E100

C100t

St

IM
∗

‘e1’
1st elec.

IMSymbolization

E1

C1t

+ H

Original Representation Mapping to HD Spatial Encoder Followed by Histogram Generation

H Q[]……

(c) Template for the ECoG task.

Original Representation Mapping to HD and Spatial Encoder

…
+

IM ·‘f1’

1st

Feature

Values in

Range [-1,+1]

F1

v1

IM ·‘f9’

9th

Feature

Values in

Range [-1,+1]

F9

v9

P
o

w
e

r
S

p
e
c

tr
a

l
D

e
n

s
it

ie
s
 (

4
s
)

F
is

h
e

r
S

c
o

re

(S
e

le
c

ti
n

g
 T

o
p

 9
 F

e
a

tu
re

s
)

S
c

a
li

n
g

 a
n

d
 N

o
rm

a
li

z
a

ti
o

n

Feature Extraction

…

1st elec.

16th elec.

S Q

(d) Template for the MI EEG task.

Fig. 4. HD network templates to encode time-domain EMG (a), ERP EEG (b), and ECoG (c) signals: (1) preprocessing or symbolization in the original
representation space; (2) mapping to the HD space; (3) spatial (S), temporal (T), and histogram (H) encoders. HD network template to encode frequency-
domain features for the MI EEG task (d): (1) preprocessing and feature extraction in frequency-domain of original representation; (2) mapping selected
features to the HD space with weighting methods; (3) spatial encoder. The output of encoding (Q) is used in the associative memory (Fig. 5) for learning
and inference.

of encoding. First doing the temporal encoding allows us to
analyze the n-gram HD vector produced from each electrode
to distinguish meaningful electrodes from irrelevant electrodes
in Section V-B3.

3) Spatial Encoder and Histogram Generation: Here, we
describe a version of spatial encoder that is followed by a
histogram generation to reflect the distribution of symbols over
a specific window of time. This encoding is useful for ECoG
signals that are directly transformed to symbols via symboliza-
tion (see Fig. 4(c)). Symbolization may be efficiently achieved
by mapping a sequence of ECoG samples into an l-bit code,
i.e. a one-dimensional local binary pattern (LBP) [66]. A LBP
code reflects the relational aspects between consecutive values
of the ECoG signals, i.e., whether their amplitudes increase
or decrease. Our symbolization considers 6 consecutive ECoG
samples to compute a 6-bit (l=6) LBP code, and moves by one
sample [19]. These LBP codes generate 2l different symbols
that are fed into the IM for mapping to the HD space. The
IM assigns a quasiorthogonal HD vector to every LBP code
(totally, 64 different LBP codes). To combine these HD vectors

across all the electrodes, the encoder generates a spatial record
(S), in which an electrode name is treated as a field, and
its LBP code as the value of this field. Hence, the IM also
maps the name of electrodes to quasiorthogonal HD vectors,
E1⊥E2 . . .⊥E100, for a patient with the maximum number
of 100 electrodes (see Fig. 4(c)). This allows, for example, to
bind the name of the first electrode (E1) to its corresponding
LBP code at time t (C1t). This binding (E1 ∗C1t) generates
a new set of quasiorthogonal HD vectors to represent LBP
codes per electrode that effectively reduces the size of IM from
64×100 HD vectors to 64+100 HD vectors. The spatial record
(S) is then constructed by bundling the bound HD vectors of
all electrodes:

St = [E1 ∗ C1t + E2 ∗ C2t + ...+ E100 ∗ C100t]

The HD vector St is computed for every new sample, and
holographically represents the spatial information about the
LBP codes of all electrodes. The next step is to compute
the histogram of LBP codes inside a moving window that
should be wide enough to theoretically permit at least a single

10

occurrence of all possible LBP codes [67]. Considering a
sampling frequency of 512 Hz, a window of 0.5 s contains
256 LBP codes that provides a high probability for every
code to occur inside this window because 256 > 2l+1. The
histogram computed from this window can be used as a
signature for seizures: interictal (between seizures) and ictal
(during seizures) states show different distributions of LBP
codes [66], [67]. This shows that the distribution of LBP
codes, not necessarily their sequence, is an important indicator
to distinguish between ictal and interictal state. To estimate
the histogram of LBP codes inside the window, a multiset of
temporally generated St vectors is computed as:

H = [S1 + S2 + ...+ S256]

The bundling is applied in the temporal domain through
accumulation of St vectors t ∈ {1, ..., 256}, that are produced
within the window, and then thresholding at half (i.e, normal-
ization).

4) Spatial Encoder with Weighting: When we are given
a set of extracted features that are not from the time-domain,
and collectively capture the entire event of interest, we can use
the spatial encoder to combine all of them into a spatial HD
vector. Since these features are often complicated and mixed
(e.g., multiscale), the weighting method (in Section IV-A3)
can be used as an option to map them. Hence, we propose to
construct a spatial encoder with weighting that is well-suited to
holistically map a feature set without quantization. Examples
include the frequency-domain features for the MI EEG task,
in which we extract power spectral density (PSD) for different
frequency bands, and finally select 9 top features among all
the electrodes as shown in Fig. 4(d).

The mapping requires an IM to assign a unique set of or-
thogonal HD vectors to the feature set, i.e., F1 ⊥ F2... ⊥ F9.
The extracted features have scalar values, e.g., v1 for the first
feature. To represent this feature in the HD space, we perform
a scalar multiplication between the value of feature and its
corresponding HD vector: v1 · F1. These scaled HD vectors
are added across all the features to compute the real valued
spatial HD vector:

S = v1 · F1 + v2 · F2 + ...+ v9 · F9

This new spatial encoder computes the pointwise sum of the
feature HD vectors weighted by the scalers. This encoder is a
perfect match to automatically map any given feature set when
there is no scheme for the feature quantization and mapping.
This is done by working with real instead of bipolar vector
components. The cost of this is so large that it should be used
only when necessary (see Section VI).

C. Associative Memory

In the proposed HD architecture (see Fig. 2), the last module
is the associative memory (AM) that directly operates with
the output of encoding (Q). This output HD vector can come
from any previously proposed encoders, for instance from
the spatial-temporal encoding (Fig. 4(a)) that makes Q = T ,
likewise from the temporal-spatial encoding (Fig. 4(b)) and the
spatial encoding with weighting (Fig. 4(d)) by Q = S. The

+ P1

+ Pk

Cosine

Similarity

Search

Training

Labels
Train / Test

Train

Labelk

Test

Label1

Q

Testing

Labels

…

Q

Q

Q

Q

(a) AM with multiple prototypes.

+

P

IM

Training

LabelsTrain / Test

TrainTest

Q

∗

∗

QQ
L L’

Testing

Labels

(b) AM with unified prototype.

Fig. 5. Two compatible associative memory (AM) architectures. Both support
different number of classes, and two modes of operations: train and test.

AM completes the supervised learning method by assigning a
label to the output of encoding module. The method is based
on the notion of a class prototype. The class prototype is an
HD vector (P) representing all items from the entire class
aligned with the notion of prototypical networks [68].

The AM initially allocates a set of class prototypes whose
number (k) is equal to the number of classes in the task.
As shown in Fig. 5(a), during training, for every trial, the
AM selects a related class prototype HD vector based on
the provided label, and updates it by adding the HD vector
produced from the output of encoding (Q). For learning from
the current training trial with a label of e.g., ‘Label1’, the AM
selects the corresponding class prototype HD vector (P1) and
bundles it via the addition operation to the output of encoding:
P1 += Q. This ensures that a single prototype representation
emerges for each class. Such accumulative updates continue
until the end of training. Simplicity of this update operation
enables incremental learning from different examples during
the course of online functioning. By the end of training,

11

the AM contains all the class prototype HD vectors—as
the learned distributed patterns—that are organized based on
their labels. The class prototype vectors can be normalized
to {+1,−1}d based on the sign of components. Note the
difference between the associative memory (AM) and the item
memory (IM): the IM holds seed HD vectors that are assigned
constants and stand for electrodes/letters/signal levels, while
the AM holds prototype HD vectors that are learned and stand
for classes.

The same mapping and encoding are used for both learning
(training) and classification (inference, or testing); however,
the AM has a train vs. test mode. When testing, we call
the output of the encoder a query HD vector since its class
label is unknown. The query HD vector of the test trial is
then sent to the AM to identify its source class. The AM
in the test mode determines the class of the test trial by
comparing its query HD vector to all the learned prototype HD
vectors using the cosine similarity. The cosine similarity search
computes k similarity scores among which the AM selects the
highest one and returns its associated label as the class that the
query HD vector has been generated from. Efficient solutions
are required to search through a large AM [69]. The initial
implementation of the AM on the PULP accelerator with 8
cores and specialized bitwise instructions shows 10× faster
execution compared to a single core without optimized bitwise
instructions [16].

1) Associative Memory with a Unified Prototype: Fig. 5(b)
illustrates another version of the AM that requires only one
unified prototype HD vector (P). This AM, instead of storing
the prototype HD vectors separately per class, computes a
single prototype HD vector as a record where the “fields”
are the prototype HD vectors and the values are their mapped
class labels in the HD space. To map the class labels to the
HD space, we pair the AM to the IM that assigns a set of
orthogonal HD vectors to the label set. For every training trial,
its associated label is mapped to an HD vector (L) which
is bound to the output of encoding, L ∗ Q; this bound pair
is added to the unified prototype HD vector: P += L ∗ Q.
During testing, we retrieve the label of test trial by unbinding
the query HD vector from the unified prototype HD vector,
L′ = Q ∗P , that results in the noisy HD vector of label (L′).
To do the clean-up we use the IM that returns L based on
similarity search.

V. EXPERIMENTAL RESULTS

In this section, we present our experimental results for the
proposed HD network templates developed in Matlab3. We
show how they can be configured to be used in different biosig-
nal processing applications, compare them with the state-of-
the-art counterparts, and highlight their benefits. Table I gives
an overview of these configured HD network templates—
simply referred to as HD classifiers from here on—and their
assigned biosignal processing tasks. We start from the simple
task of multiclass EMG hand gesture recognition from few
time-domain inputs, and move, step by step, to other tasks

3A collection of projects and codes based on HD computing is available
at:https://github.com/HyperdimensionalComputing/collection

10 15 20 25 30 35 40 45 50 55 60 65 70 75 80

A
c
c
u

ra
c
y
 (

%
)

50

55

60

65

70

75

80

85

90

95

100

SVM

HD

Fig. 6. Learning curve in the EMG task: the HD classifier learns 3.2× faster
than the SVM to reach to the maximum accuracy of 97.8%.

with increased complexity. Next, we consider the EEG ERP
binary classification task with 64 time-domain inputs. We then
consider the ECoG-based seizure detection task that demands
a universal encoder to operate with different patients having
36 to 100 electrodes implanted. Finally, we consider two
challenging tasks for the MI EEG: (1) a task of classifying
three classes with frequency-domain features extracted from
16 electrodes; (2) a task of four-class classification from a large
number of multiscales features extracted from 22 electrodes.
In the following subsections, we describe each of these tasks in
detail and present our findings. The accuracy term throughout
this paper is referred as macroaveraging test accuracy that
computes a simple average over classes for the test set.

A. EMG-based Hand Gesture Recognition

The EMG data acquisition is based on four sensors that
cover the muscles involved in the hand movement from a
physiological point of view. The dataset [14] for five subjects
is based on the recording of the EMG signals of the common
hand gestures in a daily life. The selected gestures are:
closed hand, open hand, 2-finger pinch, point index, and rest
position, forming five classes. For every gesture, the recording
is composed of 10 repetitions of the gesture, each with 3
seconds (3 s) of the muscular contraction. Every contraction
is followed by 3 s rest position.

The gestures are sampled at 500 Hz, and for the prepro-
cessing a low pass filter extracts the envelope of the signal,
and a notch filter removes the residual power-line interference.
The preprocessed signals from the four electrodes are down-
sampled by 250. These four preprocessed and downsampled
values are used as the input features. The SVM, as the state-
of-the-art method [31], learns and classifies with these four
time-aligned features. However a gesture is spanned over time
for 3 s, and generates up to 6 sequences of such time-aligned
features that makes a linear growth in the number of features
from 4 to 24. The SVM cannot efficiently classify with this
linearly increased number of features and its accuracy drops
significantly [14]. On the other hand, the configured HD

https://github.com/HyperdimensionalComputing/collection

12

TABLE I
OVERVIEW OF VARIOUS BIOSIGNAL PROCESSING APPLICATIONS AND THEIR RELATED HD COMPUTING ARCHITECTURE.

Task Complexity Configured HD Network Template (HD Classifier)
Recording No. Elec. No. Classes No. Subjects Classifier’s Inputs Mapping Encoder Associative Memory
EMG 4 5 5 Time series IM+CIM (m=21, linear) Spatial-temporal 5 prototypes
EEG ERP 64 2 6 Time series IM+CIM (m=100, linear) Temporal-spatial 2 prototypes
ECoG 36–100 2 16 Symbols (LBP) IM Spatial-histogram 2 prototypes
EEG MI 16 3 5 Features Weighting Spatial 3 prototypes
EEG MI 22 4 9 Features Weighting Spatial 4 prototypes
EEG MI 22 4 9 Features IM+CIM (m=100, logarithmic) Spatial 4 prototypes

classifier for the EMG task, shown in the first row of Table I
and Fig. 4(a), can capture the temporal component of gestures.
This is accomplished by the spatial-temporal encoding that
uses an n-gram where n ∈ {3, 4, 5}; the size of n-gram is set
per subject.

Fig. 6 compares the learning curves of HD classifier and
the SVM: plotting the classification vs. the number of training
trials. The bars show the average accuracy, and the errors are
the standard deviation across five subjects. The HD classifier
shows an average accuracy of 86.8% (7% higher than the
SVM) when only 10% of the total dataset is used for training.
Although the classification accuracy is improved by increasing
the training trials for both of them, the learning slope of HD
is superior to the SVM. By increasing the training trials to
25%, the HD classifier reaches to 97.8% which is 8.1% higher
than the SVM. After this learning point, increasing the number
of training trials is not useful for the HD classifier as it has
already learned and is able to generalize very well. However,
this is not the case for the SVM since it requires 3.2× as
much training data (i.e., 80% of total trials) to reach the level
of accuracy as the HD classifier with 25% of trials.

HD classifier shows further advantages using 64 high-
density flexible EMG electrodes [15]: It achieves an average
classification accuracy of 96.64% for five gestures, with only
7% degradation when training and testing across different
days—a large improvement over degradations of more than
30% using the SVM. Moreover, HD maintains this accuracy
when trained with only three trials of gestures; it also demon-
strates comparable accuracy with the SVM when trained with
one trial per gesture—one-shot learning.

B. Single-trial Binary Classification of EEG ERPs

We consider a dataset of EEG ERPs for six subjects [70].
The subjects are seated in front of a computer screen where
a cursor moves horizontally (to left or right) in order to
reach a target. The subject has no control over the cursor’s
movement and is asked only to observe the performance of
an autonomous agent that controls the cursor, knowing that
the goal is to reach the target. To study the EEG ERPs
generated by observing an erroneous movement of the cursor,
there is a probability of ≈ 0.20 in every trial for the cursor
to move in the wrong direction (i.e., opposite to the target
location). A trial is labeled as “correct” if the cursor moves
toward the target; otherwise it is labeled as “error”. Trials
have an approximate duration of 2 s. There are two recording
sessions, the first one for training and the second for testing.
Each experimental session consists of ≈ 640 trials. Full

details of the experimental protocol are provided in [34]. In
the following, we explain their method for the EEG signal
acquisition, preprocessing, and classification. We refer to it as
the baseline for comparing with our HD classifier.

The EEG signals are recorded at a sampling rate of 512 Hz
using 64 electrodes according to the standard 10/20 interna-
tional system. For the preprocessing, the signals are spatially
filtered using common average reference (CAR) [53]. By
applying the CAR filter to an electrode, the average signal
level of the entire electrode array is subtracted from that of the
electrode of interest. If the entire head is covered by equally
spaced electrodes and the potential on the head is generated by
point sources, the CAR results in a spatial voltage distribution
with a mean of zero [71]. We will demonstrate later that
this spatial filter can be eliminated from the preprocessing
with negligible effect on our classification accuracy as the
HD classifier can work on raw data. Then, a 1–10 Hz band-
pass filter (BPF) is applied to remove the unwanted frequency
components. For every subject, a time window corresponding
to the erroneous and the correct cursor movements is extracted
for further analysis and classification.

As the state-of-the-art, a Gaussian statistical classifier is
used for binary classification of a single trial [34]. The
Gaussian classifier estimates the posterior probability of a
given trial corresponding to one of the two classes. Following
domain expert knowledge [47], specific electrodes (FCz, Cz,
or both, based on the sensitivity of subjects) are chosen to be
used as the inputs to the classifier. The classifier parameters
are then tuned using a stochastic gradient descent on the mean
square error [46]. Our aim is to replace the aforementioned
baseline preprocessing and classification by an efficient and
fast HD classifier that enables a natural operation with all the
64 electrodes, and with less training and preprocessed data. For
this task, the HD classifier is configured with the IM and the
CIM for mapping, the temporal-spatial encoder (Fig 4(b)), and
two prototypes in the associative memory for the two classes
(P1 for the correct and P2 for the error) as summarized in
Table I.

1) Fast Learning: We assess how fast the training of
HD classifier can be done while maintaining a classification
accuracy as high as the baseline. We have observed that only
some of the training trials can produce a nonredundant HD
vector to be added to the class prototype [18]. Hence, during
the training session, every time a new nonredundant trial
is encountered, the associative memory is updated and the
classification accuracy is measured for the entire test set. For
the very first trials, the associative memory is almost empty,

13

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

50%

55%

60%

65%

70%

75%

80%

85%

90%

S1 S2 S3 S4 S5 S6 Mean

N
o

n
-r

e
d

u
n

d
a
n

t
tr

a
in

in
g

 t
ri

a
ls

 (
%

)

T
e
s
t

A
c
c
u

ra
c

y
 (

%
)

Classification accuracy (macroaveraged)

Percentage of trials used in HD training

(a) The HD classifier on average learns ≈3× faster while meeting the target
accuracy of the baseline Gaussian classifier (70.5%).

8
1

.0
%

6
9

.8
%

7
5

.9
%

6
4
.5

%

6
6

.3
%

5
9
.6

%

6
9
.5

%

8
1

.2
%

7
5

.1
%

8
2
.7

%

6
7

.9
% 7
2

.6
%

6
7
.7

%

7
4

.5
%

7
8

.1
%

6
9

.9
%

7
9

.1
%

6
2

.3
%

7
3

.9
%

6
7

.2
% 7
1

.7
%

50%

55%

60%

65%

70%

75%

80%

85%

90%

S 1 S 2 S 3 S 4 S 5 S 6 M e a n

T
e
s
t

A
c
c
u

ra
c

y
 (

%
)

Subjects

Gaussian: 1-2 electrode(s) + CAR filter
HD: 1-2 electrode(s) + CAR filter

HD: 64 electrodes - CAR filter

(b) Accuracy of the baseline Gaussian classifier vs two instances of the HD
classifier: (1) Using the selected electrodes and the CAR preprocessing as in
the baseline; (2) Using all the 64 electrodes without the CAR preprocessing.

Fig. 7. Comparison of the HD classifier with the baseline Gaussian classifier
in the EEG ERP task.

but as new trials are encountered it will be lightly populated
leading to an increase in the accuracy.

We target the classification accuracy of the baseline that is
achieved by using all available trials in the training session,
working with the one or two selected electrode(s), and with
the CAR preprocessing method. We provide the same setup for
the HD classifier, but with fewer training trials, to assess how
fast the target baseline accuracy can be reached. As shown in
Fig. 7(a), the HD classifier is able to learn faster with some
variation across subjects reflecting the significant individual
variability: it requires only 0.3% of the nonredundant training
trials for S6, and up to 96% for S1. On average, across
all the subjects, the HD classifier reaches the target baseline
classification accuracy of 70.5% when trained with only 34%
of nonredundant training trials. This translates directly to ≈
3× faster learning.

2) No Electrode Selection and Less Preprocessing: We
assess the ability of the HD classifier to operate with noisy
inputs and electrodes that do not carry meaningful information.
Fig 7(b) compares the classification accuracy of the baseline
method with two instances of our HD classifier. The first one
has a setup equivalent of the baseline as aforesaid: uses one
or two electrode(s) depending on the subjects, applies the
CAR preprocessing filter on every electrode before the BPF
step, and uses all training trials. As shown in Fig 7(b), this
instance of the HD classifier surpasses the baseline accuracy

FCz Cz FC1 C2 C1 CPzFC2 P9 CP1 C3 F1 O1 Fz F3 CP2FC3 Iz F2 F4 P10 FC4PO8 C4 P7 F5 F8 FC5 Oz FC6 AFz AF4 F6

S1

S2

S3

S4

S5

S6
0.05

0.1

0.15

0.2

0.25

Fig. 8. Analyzability of the learned HD code that identifies the most useful
electrodes (FCz, Cz). X-axis shows the sorted electrodes (the top 32 out of
64) based on the average score across the 6 subjects.

across the six subjects. The HD classifier exhibits 67.7–82.7%
classification accuracy, with an average of 74.5%, which is 5%
higher than the baseline with the same conditions.

The second instance of the HD classifier operates with all
the 64 electrodes and without the CAR preprocessing filter.
There is no CAR filter in the chain of preprocessing: every
electrode signal is immediately passed through a BPF followed
by the scaling and quantization step before mapping to the
HD space by the CIM. Note that the simple BPF cannot be
removed since the EEG ERPs are in the frequency range of
1–10 Hz.

Despite using the 64 electrodes without any electrode selec-
tion and no CAR filtering, the HD classifier maintains almost
the same range of classification accuracy (i.e., 62.3–79.1%)
across the six subjects as shown in Fig 7(b). This HD classifier
shows on average 2.2% higher classification accuracy com-
pared to the baseline. Note that the HD classifier achieves this
by naturally using largely meaningless electrodes regardless
of the subjects, while the baseline carefully selects a subset of
electrodes per individual subject that can provide meaningful
information for the Gaussian classifier. This also confirms the
amenability of HD classifier to operate with less preprocessed
data. In HD computing, the input data is naturally clustered
in the HD space, and the noise generated by meaningless
electrodes tends to cancel out. This desirable property makes
it possible to apply HD computing for clustering data with
minimal knowledge about the nature of the data.

3) Learning Transparent Codes with Interpretable Fea-
tures: Apart from the excellent performance of HD classifier
with all the 64 electrodes, its learned code is transparent and
can be analyzed to find out the important features related to the
ERP task. More specifically, rather than asking for information
from the domain expert, the learned HD vectors can be used
to identify what electrodes provide meaningful data for the
classification. Using the domain expert knowledge, authors
in [34] identify FCz, Cz, or both electrodes as the most useful
electrodes for their baseline classifier. We observe that the
same subset of electrodes can be identified as useful by the
following HD algorithm.

The algorithm is inspired by the distribution of distances in
the HD space. For each electrode, we compute a score that
measures the distance between two class prototypes that are
generated solely by the electrode. This is supplied by first
doing the temporal encoding in Fig. 4(b); note that in this
encoder if two electrodes i and j receive an identical input
stimuli, their encoded n-gram HD vectors become identical
(Ti = Tj). Before computing the scores for electrodes,

14

we need to compute a set of HD vectors P1i where i ∈
{1, . . . , 64}. P1i is computed for every electrode i by adding
its related n-gram HD vector (Ti) over all the trials belonging
to the correct class. Similarly, P2i HD vectors are computed
from the trials related to the error class:

P1i += Ti ∀ Correct trial

P2i += Ti ∀ Error trial

For every electrode i, we can then assign a score by measuring
the distance between their P1i and P2i:

scorei = 1− cos(P1i, P2i)

In other words, this score reflects how well a given electrode
discriminates between the two class prototypes: the larger, the
better.

Fig. 8 shows the computed scores for each electrode and
across the subjects. The electrodes are sorted in the x-axis
according to their average score over the subjects; only the
top 32 electrodes out of 64 are shown. As shown, the FCz
and Cz electrodes are on top of the sorted list and have the
highest discriminative scores for the six subjects, on average.
However, all subjects do not exhibit the same sensitivity to
these two electrodes. For example, S4 does not show a clear
distinction between electrodes.

C. ECoG-based Seizure Detection

We consider an anonymized dataset of 16 patients of the
epilepsy surgery program of the Inselspital Bern for a total
of 99 recordings. Each recording consists of 3 minutes of
interictal segments (immediately preceding the seizure), and
the ictal segment (ranging from 10 s to 1002 s), followed by 3
minutes of postictal time; see [19] for more details. Two recent
state-of-the-art methods use local pattern transformation [33]
for seizure detection: 1) A method uses histograms of LBPs
(2l integer features per electrode) that performs best with a
linear SVM classifier; 2) Akin to LBP, a local gradient pattern
(LGP) is further proposed that with an MLP neural network
outperforms LBP+SVM. We compare the performance of our
HD classifier (see Fig. 4(c) and Table I) with the LBP+SVM
and the LGP+MLP methods by measuring specificity and
sensitivity using a few seizures for training.

For the majority of the patients (10 out of 16), our HD
classifier quickly learns from one or two seizures, and achieves
perfect (100%) specificity and sensitivity with k-fold cross-
validation, where k is the total number of seizures minus the
number of trained seizures. For the remaining minority of 6
patients, our HD classifier requires more seizures (3–6) for
training. For these patients we use 22 seizures for training and
test with the remaining unseen 38 seizures. The HD classifier
almost maintains its top performance with 100% sensitivity
for 5 of 6 patients. In an identical setup, our HD classifier,
on average, achieves higher specificity and sensitivity than the
other methods. Moreover, the low specificity of LBP+SVM
and LGB+MLP clearly limits their usefulness for long-time
recordings [19].

6
8

.9
%

8
0

.6
%

7
8

.9
%

9
3

.3
%

5
5

.3
%

7
5

.4
%

7
4

.4
% 7
8

.6
%

8
0
.3

%

9
4

.7
%

5
6
.9

%

7
7

.0
%

50%

55%

60%

65%

70%

75%

80%

85%

90%

95%

100%

S 1 S 2 S 3 S 4 S 5 M e a n

T
e
s
t

A
c
c
u

ra
c

y
 (

%
)

Subjects

SVM

HD

(a) The MI EEG task with three classes.

7
8

.8
%

5
3

.5
%

8
2

.6
%

6
0

.7
%

5
9

.0
%

4
3

.8
%

8
2

.6
%

8
3

.7
%

8
1

.3
%

6
9

.6
%

8
3

.3
%

5
4
.8

%

7
9

.9
%

6
8

.4
%

5
7

.3
%

5
0

.2
%

8
4

.8
%

8
1

.2
%

7
9

.9
%

7
1

.1
%

40%

45%

50%

55%

60%

65%

70%

75%

80%

85%

90%

95%

100%

S 1 S 2 S 3 S 4 S 5 S 6 S 7 S 8 S 9 M ean

T
e
s
t

A
c
c
u

ra
c

y
 (

%
)

Subjects

CNN

HD

(b) The MI EEG task with four classes.

Fig. 9. Comparison of the HD classifier with the SVM and CNN in two MI
tasks.

D. Multiclass Classification of MI EEG

To increase the complexity of classification task, we move
to multiclass brain–computer interfaces based on the MI
recordings. The classifiers for the MI-based recordings face
particular challenges to operate with complicated frequency-
domain features, and with few training trials (≈15 per class
per run) since the subjects quickly become exhausted. We first
consider a dataset [49] with five subjects that are asked to
imagine three tasks: imagination of left hand, or right hand, or
feet movements. Every subject participates in four runs, each
with 45 trials. The MI-based brain–computer interfaces use
the power of EEG oscillations in different frequency bands
to decode the subject’s intention. Hence, the power spectral
densities (PSD) are extracted as features for the classification.
They are extracted for the frequency bands of 4–48 Hz from
4 s of the MI command recorded from 16 electrodes. After
a normalization and scaling step, the real valued features
are sorted based on a Fisher scoring algorithm as shown in
Fig. 4(d). Fisher score, as a filter-based approach, assesses the
correlations between features and the class labels to find out
features that are efficient for discrimination [72]. It assigns
the highest score to the feature on which the data points of
different classes are far from each other while requiring data
points of the same class to be close to each other. The nine
highest-ranking features are selected to serve as inputs to the

15

classifier.
For the baseline classification, we first use a Gaussian classi-

fier [49]. However, the Gaussian classifier fails to achieve high
accuracy with simultaneous classification into three classes,
hence we instead choose the SVM [32] with parameters opti-
mized for larger margin and regularization. We reuse the same
feature extractor for the HD classifier which is configured with
the weighting method for mapping the nine features, the spatial
encoder (Fig 4(d)), and three prototypes in the associative
memory (one for each class), as summarized in Table I. To
evaluate the performance with fewer training trials, one run
(out of four) is used for the training, one for the evaluation (i.e,
model selection), and two for the testing. Fig. 9(a) compares
the average test accuracy of the HD classifier versus the SVM
measured through 4-fold cross validation with two folds for
testing. The HD classifier shows 53–98% accuracy across all
the subjects (77% on average). Compared to the optimized
SVM, the HD classifier improves the minimum, maximum,
and average accuracy by 6%, 4%, and 2%. These accuracy
benefits are achieved by a simpler algorithm that is trained in
a single pass over the training data.

1) MI Classification with Four Classes: Finally, we con-
sider another dataset for the MI-based brain–computer in-
terfaces: the BCI competition IV-2a [73]. This challenging
dataset contains 9 subjects, with four classes (right hand,
left hand, feet, and tongue imaginations) recorded from 22
EEG electrodes. It has two separate sessions for train and
test each with 48 trials. For the preprocessing and feature
extraction, a filter bank (9 filters from 4 to 40 Hz) with
common spatial pattern (CSP) is used [48]. The CSP is a
linear transformation that projects the data into a space where
data variance is maximized for one class relatively to another
one. In addition to these static energy features, dynamic
energy features are computed along with a CNN to improve
classification accuracy [35]. The CNN surpasses the SVM and
achieves an average classification accuracy of 69.6% across the
9 subjects as the state-of-the-art for this dataset [35].

For the HD classifier, we scale the same architecture used
in the previous MI task (Fig. 4(d)), by increasing the number
of input features and the class prototypes (Table I, the forth
row). As shown in Fig. 9(b), the HD classifier achieves a
higher classification accuracy compared to the CNN (71.1%
vs. 69.6%). This confirms the superiority of the proposed HD
templates and their scalability to handle complicated tasks with
a larger number of features and classes. Nevertheless, this HD
classifier uses the spatial encoder with the weighing method
that generates an HD vector with real valued components
requiring floating-point hardware and storage. To reduce the
hardware complexity of the classifier, we substitute its weight-
ing method with a pair of IM and CIM similar to the spatial
encoder in Section IV-B1. We evaluate the linear and nonlinear
quantization and similarity-preserving techniques in the CIM,
and find out that a CIM hard-coded by 100 levels (m = 100)
with logarithmically changing the similarity is a good match
with the features. The configuration of the HD classifier is
shown in the last row in Table I. The HD classifier maps
the real valued input features to the bipolar HD vectors, as
opposed to the HD vectors with real components, and performs

the classification with 1% average accuracy loss (70.1% vs.
71.1%).

VI. DISCUSSION

There are good reasons to prefer to use vectors as a means
of representing items in memory: vector representation allows
items to be treated as complex entities, and also allows for
fuzzy composites of items to be constructed; furthermore,
vectors are amenable to implementation in neural models [13],
[11], [40], [8]. In HD computing, or VSAs, the fixed-size
HD vectors represent symbolic information. These symbols, or
HD vectors, can be combined using a small set of arithmetic
operations (e.g., MAP). At the symbolic level, we should
choose how to map items to the HD vectors, and how to
combine them to create more complex representations. These
choices greatly influence the performance. Text and language
applications are well-matched to this computing framework
because the data already comes in the form of symbolic
primitives (letters or words), which are readily mapped to HD
vectors. However, it is challenging for other types of data such
as time series from multiple sensors.

To address this issue, we provide a small set of network
templates that easily map analog multi-sensory inputs to HD
vectors and construct a complete representational architecture
by careful use of MAP operations. These initial solutions can
be improved in different aspects. Examples includes the use
of thermometer codes (see Appendix A-I), or locality-sensitive
hashing (LSH) for mapping continuous quantities into the HD
vectors. The distance-preserving bit sampling LSH can convert
`1 norm to Hamming distance with successful applications
in arterial blood pressure time series [74], [75]. All these
methods—without learning—come under umbrella of random
projection (see [76] for a review). Nevertheless, a hybrid
approach combining deep learning and HD computing can be
taken where deep learning (either supervised or unsupervised)
is used to learn natural features of the data that allow for
its mapping into an HD vector. These vectors may then be
combined and manipulated within the HD framework for high-
level reasoning tasks.

VII. CONCLUSIONS AND FUTURE WORK

In this paper, we propose a full set of HD network templates
for multiclass learning and inference in various biosignal
processing applications. These templates facilitate designing
versatile, fast, robust, and extremely energy-efficient classifiers
by solely using simple native operations of brain-inspired
HD computing without involving any biologically implausi-
ble or inefficient algorithms. Experimental results with the
EMG-based hand gesture recognition, the EEG-based brain–
computer interfaces (both ERP and MI), and the ECoG-based
seizure detection demonstrate that the HD classifier usually
reaches higher classification accuracy (or, at least equal)
compared to the state-of-the-art counterpart. More importantly,
this is accomplished by little or no prior knowledge about the
task: (1) The HD classifier demands much less training data
thanks to its simple and one-shot learning; (2) It also naturally
operates with noisy and less preprocessed inputs; (3) There is

16

no need for domain expert knowledge or electrode selection
process. Last but not least, the produced HD code is analyzable
and interpretable.

Future work is focused on efficient hardware implementa-
tion of HD computing for brain–computer interfaces, epileptic
seizure onset detection, and identification of ictogenic brain
regions.

ACKNOWLEDGMENT

This work was supported by the ETH Zurich Postdoctoral
Fellowship program, and the Marie Curie Actions for People
COFUND Program; and by the EU H2020 project OPRE-
COMP under grant agreement #732631; and by Intel Strategic
Research Alliance program on Neuromorphic Architectures
for Mainstream Computing; and by NSF 16-526: Energy-
Efficient Computing: from Devices to Architectures (E2CDA),
a Joint Initiative between NSF and SRC.

REFERENCES

[1] A. Rahimi, L. Benini, and R. K. Gupta, “Variability mitigation in
nanometer cmos integrated systems: A survey of techniques from circuits
to software,” Proceedings of the IEEE, vol. 104, no. 7, pp. 1410–1448,
July 2016.

[2] J. M. Rabaey, “A roadmap to lower supply voltages—a system per-
spective,” in IEEE International Solid-State Circuits Conference, ISSCC,
2015.

[3] A. Rahimi, L. Benini, and R. K. Gupta, From Variability Tolerance
to Approximate Computing in Parallel Integrated Architectures and
Accelerators. Springer, 2017.

[4] B. Moons, R. Uytterhoeven, W. Dehaene, and M. Verhelst, “14.5 en-
vision: A 0.26-to-10tops/w subword-parallel dynamic-voltage-accuracy-
frequency-scalable convolutional neural network processor in 28nm
fdsoi,” in 2017 IEEE International Solid-State Circuits Conference
(ISSCC), Feb 2017, pp. 246–247.

[5] A. Rahimi, S. Datta, D. Kleyko, E. P. Frady, B. Olshausen, P. Kanerva,
and J. M. Rabaey, “High-dimensional computing as a nanoscalable
paradigm,” IEEE Transactions on Circuits and Systems I: Regular
Papers, vol. 64, no. 9, pp. 2508–2521, Sept 2017.

[6] T. F. Wu, H. Li, P. C. Huang, A. Rahimi, J. M. Rabaey, H. S. P. Wong,
M. M. Shulaker, and S. Mitra, “Brain-inspired computing exploiting
carbon nanotube fets and resistive ram: Hyperdimensional computing
case study,” in 2018 IEEE International Solid - State Circuits Conference
- (ISSCC), Feb 2018, pp. 492–494.

[7] H. Li, T. F. Wu, A. Rahimi, K. S. Li, M. Rusch, C. H. Lin, J. L.
Hsu, M. M. Sabry, S. B. Eryilmaz, J. Sohn, W. C. Chiu, M. C. Chen,
T. T. Wu, J. M. Shieh, W. K. Yeh, J. M. Rabaey, S. Mitra, and H. S. P.
Wong, “Hyperdimensional computing with 3D VRRAM in-memory ker-
nels: Device-architecture co-design for energy-efficient, error-resilient
language recognition,” in 2016 IEEE International Electron Devices
Meeting (IEDM), Dec 2016, pp. 16.1.1–16.1.4.

[8] P. Kanerva, “Hyperdimensional computing: An introduction to
computing in distributed representation with high-dimensional random
vectors,” Cognitive Computation, vol. 1, no. 2, pp. 139–159, 2009.
[Online]. Available: http://dx.doi.org/10.1007/s12559-009-9009-8

[9] ——, Sparse Distributed Memory. MIT Press Cambridge, 1988.
[10] ——, “Computing with 10,000-bit words,” in Proc. 52nd Annual Aller-

ton Conference on Communication, Control, and Computing, 2014.
[11] R. W. Gayler, “Vector symbolic architectures answer Jackendoff’s

challenges for cognitive neuroscience,” in Proceedings of the Joint
International Conference on Cognitive Science. ICCS/ASCS, 2003, pp.
133–138.

[12] B. Emruli, R. W. Gayler, and F. Sandin, “Analogical mapping and
inference with binary spatter codes and sparse distributed memory,” in
The 2013 International Joint Conference on Neural Networks (IJCNN),
Aug 2013, pp. 1–8.

[13] M. Kelly and R. West, “A Framework for Computational Models of
Human Memory,” AAAI Fall Symposium Series: Technical Reports, pp.
376–381, 2017.

[14] A. Rahimi, S. Benatti, P. Kanerva, L. Benini, and J. M. Rabaey, “Hy-
perdimensional biosignal processing: A case study for EMG-based hand
gesture recognition,” in IEEE International Conference on Rebooting
Computing, October 2016.

[15] A. Moin, A. Zhou, A. Rahimi, S. Benatti, A. Menon, S. Tamakloe,
J. Ting, N. Yamamoto, Y. Khan, F. Burghardt, L. Benini, A. C. Arias,
and J. M. Rabaey, “An emg gesture recognition system with flexible
high-density sensors and brain-inspired high-dimensional classifier,” in
2018 IEEE International Symposium on Circuits and Systems (ISCAS),
May 2018, pp. 1–5.

[16] F. Montagna, A. Rahimi, S. Benatti, D. Rossi, and L. Benini,
“Pulp-hd: Accelerating brain-inspired high-dimensional computing
on a parallel ultra-low power platform,” in Proceedings of the
55th Annual Design Automation Conference, ser. DAC ’18. New
York, NY, USA: ACM, 2018, pp. 111:1–111:6. [Online]. Available:
http://doi.acm.org/10.1145/3195970.3196096

[17] A. Rahimi, P. Kanerva, J. del R Millán, and J. M. Rabaey, “Hy-
perdimensional computing for noninvasive brain–computer interfaces:
Blind and one-shot classification of EEG error-related potentials,” 10th
ACM/EAI International Conference on Bio-inspired Information and
Communications Technologies (BICT), 2017.

[18] A. Rahimi, A. Tchouprina, P. Kanerva, J. d. R. Millán, and J. M. Rabaey,
“Hyperdimensional computing for blind and one-shot classification of
EEG error-related potentials,” Mobile Networks and Applications, Oct
2017. [Online]. Available: https://doi.org/10.1007/s11036-017-0942-6

[19] A. Burrello, K. Schindler, L. Benini, and A. Rahimi, “One-shot learning
for iEEG seizure detection using end-to-end binary operations: Local bi-
nary patterns with hyperdimensional computing,” in Biomedical Circuits
and Systems Conference (BioCAS), 2018 IEEE, 2018, pp. 1–4.

[20] P. Kanerva, J. Kristoferson, and A. Holst, “Random indexing of text
samples for latent semantic analysis,” in Proceedings of the 22nd Annual
Conference of the Cognitive Science Society. Erlbaum, 2000, p. 1036.
[Online]. Available: http://www.rni.org/kanerva/cogsci2k-poster.txt

[21] P. Kanerva, “Binary spatter-coding of ordered k-tuples,” in ICANN’96,
Proceedings of the International Conference on Artificial Neural Net-
works, ser. Lecture Notes in Computer Science, , Ed., vol. 1112.
Springer, 1996, pp. 869–873.

[22] ——, “What we mean when we say “what’s the dollar of mexico?”:
Prototypes and mapping in concept space,” in AAAI Fall Symposium:
Quantum Informatics for Cognitive, Social, and Semantic Processes,
2010, pp. 2–6.

[23] A. Joshi, J. T. Halseth, and P. Kanerva, “Language geometry
using random indexing,” in Quantum Interaction: 10th International
Conference, QI 2016, San Francisco, CA, USA, July 20-22, 2016,
Revised Selected Papers, J. A. de Barros, B. Coecke, and E. Pothos,
Eds. Cham: Springer International Publishing, 2017, pp. 265–274.
[Online]. Available: http://dx.doi.org/10.1007/978-3-319-52289-0 21

[24] A. Rahimi, P. Kanerva, and J. M. Rabaey, “A robust and energy efficient
classifier using brain-inspired hyperdimensional computing,” in Low
Power Electronics and Design (ISLPED), 2016 IEEE/ACM International
Symposium on, August 2016.

[25] F. R. Najafabadi, A. Rahimi, P. Kanerva, and J. M.
Rabaey, “Hyperdimensional computing for text classification,”
Design, Automation Test in Europe Conference Exhibition
(DATE), University Booth, 2016. [Online]. Available: https:
//www.date-conference.com/system/files/file/date16/ubooth/37923.pdf

[26] M. Imani, T. Nassar, A. Rahimi, and T. Rosing, “Hdna: Energy-
efficient DNA sequencing using hyperdimensional computing,” in 2018
IEEE EMBS International Conference on Biomedical Health Informatics
(BHI), March 2018, pp. 271–274.

[27] W. Shi, J. Cao, Q. Zhang, Y. Li, and L. Xu, “Edge computing: Vision
and challenges,” IEEE Internet of Things Journal, vol. 3, no. 5, pp.
637–646, Oct 2016.

[28] B. McMahan, E. Moore, D. Ramage, S. Hampson, and B. A.
y Arcas, “Communication-Efficient Learning of Deep Networks
from Decentralized Data,” in Proceedings of the 20th International
Conference on Artificial Intelligence and Statistics, ser. Proceedings
of Machine Learning Research, A. Singh and J. Zhu, Eds., vol. 54.
Fort Lauderdale, FL, USA: PMLR, 20–22 Apr 2017, pp. 1273–1282.
[Online]. Available: http://proceedings.mlr.press/v54/mcmahan17a.html

[29] White House Report, “Consumer data privacy in a networked world: A
framework for protecting privacy and promoting innovation in the global
digital economy,” in Journal of Privacy and Confidentiality, 2013.

[30] B. Blankertz, C. Sannelli, S. Halder, E. M. Hammer, A. Kübler, K.-R.
Müller, G. Curio, and T. Dickhaus, “Neurophysiological predictor
of smr-based bci performance,” NeuroImage, vol. 51, no. 4, pp.

http://dx.doi.org/10.1007/s12559-009-9009-8
http://doi.acm.org/10.1145/3195970.3196096
https://doi.org/10.1007/s11036-017-0942-6
http://www.rni.org/kanerva/cogsci2k-poster.txt
http://dx.doi.org/10.1007/978-3-319-52289-0_21
https://www.date-conference.com/system/files/file/date16/ubooth/37923.pdf
https://www.date-conference.com/system/files/file/date16/ubooth/37923.pdf
http://proceedings.mlr.press/v54/mcmahan17a.html

17

1303–1309, 2010. [Online]. Available: http://www.sciencedirect.com/
science/article/pii/S1053811910002922

[31] S. Benatti, F. Casamassima, B. Milosevic, E. Farella, P. Schönle,
S. Fateh, T. Burger, Q. Huang, and L. Benini, “A versatile embedded
platform for EMG acquisition and gesture recognition,” IEEE Transac-
tions on Biomedical Circuits and Systems, vol. 9, no. 5, pp. 620–630,
Oct 2015.

[32] D. Wang, D. Miao, and G. Blohm, “Multi-class motor imagery EEG
decoding for brain-computer interfaces,” Frontiers in Neuroscience,
vol. 6, p. 151, 2012. [Online]. Available: https://www.frontiersin.org/
article/10.3389/fnins.2012.00151

[33] A. K. Jaiswal and H. Banka, “Local pattern transformation based
feature extraction techniques for classification of epileptic eeg signals,”
Biomedical Signal Processing and Control, vol. 34, pp. 81–92,
2017. [Online]. Available: http://www.sciencedirect.com/science/article/
pii/S174680941730006X

[34] R. Chavarriaga and J. d. R. Millán, “Learning from EEG error-related
potentials in noninvasive brain-computer interfaces,” IEEE Transactions
on Neural Systems and Rehabilitation Engineering, vol. 18, no. 4, pp.
381–388, Aug 2010.

[35] S. Sakhavi, C. Guan, and S. Yan, “Parallel convolutional-linear neural
network for motor imagery classification,” in 2015 23rd European Signal
Processing Conference (EUSIPCO), Aug 2015, pp. 2736–2740.

[36] O. Räsänen, “Generating Hyperdimensional Distributed Representations
from Continuous Valued Multivariate Sensory Input,” in Proceedings of
the 37th Annual Meeting of the Cognitive Science Society, 2015, pp.
1943–1948.

[37] M. Imani, D. Kong, A. Rahimi, and T. Rosing, “Voicehd: Hyperdi-
mensional computing for efficient speech recognition,” in 2017 IEEE
International Conference on Rebooting Computing (ICRC), Nov 2017,
pp. 1–8.

[38] P. C. Huang and J. M. Rabaey, “A bio-inspired analog gas sensing front
end,” IEEE Transactions on Circuits and Systems I: Regular Papers,
vol. 64, no. 9, pp. 2611–2623, Sept 2017.

[39] T. Plate, Holographic Reduced Representations. CLSI Publications,
2003.

[40] C. Eliasmith, How to Build a Brain: A Neural Architecture for Biological
Cognition. Oxford Series on Cognitive Models and Architectures, 2013.

[41] R. W. Gayler, “Multiplicative binding, representation operators &
analogy,” in Gentner, D., Holyoak, K. J., Kokinov, B. N. (Eds.),
Advances in analogy research: Integration of theory and data from
the cognitive, computational, and neural sciences, New Bulgarian
University, Sofia, Bulgaria, 1998, pp. 1–4. [Online]. Available:
http://cogprints.org/502/

[42] E. P. Frady, D. Kleyko, and F. T. Sommer, “A theory of sequence
indexing and working memory in recurrent neural networks,” Neural
Computation, vol. 30, no. 6, pp. 1449–1513, 2018, pMID: 29652585.
[Online]. Available: https://doi.org/10.1162/neco a 01084

[43] M. R. Ahsan, M. Ibrahimy, and O. Khalifa, “EMG signal classification
for human computer interaction a review,” European Journal of Scientific
Research, vol. 33, pp. 480–501, 01 2009.

[44] J. Rosen, M. Brand, M. B. Fuchs, and M. Arcan, “A myosignal-based
powered exoskeleton system,” IEEE Transactions on Systems, Man, and
Cybernetics - Part A: Systems and Humans, vol. 31, no. 3, pp. 210–222,
May 2001.

[45] D. Yang, L. Jiang, Q. Huang, R. Liu, and H. Liu, “Experimental
study of an EMG-controlled 5-dof anthropomorphic prosthetic hand
for motion restoration,” Journal of Intelligent & Robotic Systems,
vol. 76, no. 3, pp. 427–441, Dec 2014. [Online]. Available:
https://doi.org/10.1007/s10846-014-0037-6

[46] P. W. Ferrez and J. D. R. Millán, “You are wrong!—automatic detection
of interaction errors from brain waves,” in In Proceedings of the 19th
International Joint Conference on Artificial Intelligence, 2005.

[47] P. Ferrez and J. d. R. Millán, “Error-related EEG potentials in brain-
computer interfaces,” Ph.D. dissertation, STI, Lausanne, 2007.

[48] K. K. Ang, Z. Y. Chin, C. Wang, C. Guan, and H. Zhang, “Filter
bank common spatial pattern algorithm on bci competition iv datasets
2a and 2b,” Frontiers in Neuroscience, vol. 6, p. 39, 2012. [Online].
Available: https://www.frontiersin.org/article/10.3389/fnins.2012.00039

[49] S. Saeedi, R. Chavarriaga, R. Leeb, and J. del R. Millán, “Adaptive as-
sistance for brain-computer interfaces by online prediction of command
reliability,” IEEE Computational Intelligence Magazine, vol. 11, no. 1,
pp. 32–39, Feb 2016.

[50] D. Schmidt and M. Sillanpää, “Evidence-based review on the natural
history of the epilepsies.” Current opinion in neurology, vol. 25 2, pp.
159–63, 2012.

[51] Y. Li, m. Murias, s. Major, g. Dawson, K. Dzirasa, L. Carin,
and D. E. Carlson, “Targeting EEG/LFP synchrony with neural
nets,” in Advances in Neural Information Processing Systems 30,
I. Guyon, U. V. Luxburg, S. Bengio, H. Wallach, R. Fergus,
S. Vishwanathan, and R. Garnett, Eds. Curran Associates, Inc.,
2017, pp. 4623–4633. [Online]. Available: http://papers.nips.cc/paper/
7048-targeting-eeglfp-synchrony-with-neural-nets.pdf

[52] E. Osipov, D. Kleyko, and A. Legalov, “Associative synthesis of finite
state automata model of a controlled object with hyperdimensional
computing,” in IECON 2017 - 43rd Annual Conference of the IEEE
Industrial Electronics Society, Oct 2017, pp. 3276–3281.

[53] D. J. McFarland, L. M. McCane, S. V. David, and J. R.
Wolpaw, “Spatial filter selection for EEG-based communication,”
Electroencephalography and Clinical Neurophysiology, vol. 103, no. 3,
pp. 386–394, 1997. [Online]. Available: http://www.sciencedirect.com/
science/article/pii/S0013469497000222

[54] F. Montagna, S. Benatti, and D. Rossi, “Flexible, scalable and
energy efficient bio-signals processing on the pulp platform: A
case study on seizure detection,” Journal of Low Power Electronics
and Applications, vol. 7, no. 2, 2017. [Online]. Available: http:
//www.mdpi.com/2079-9268/7/2/16

[55] A. Litwin-Kumar, K. D. Harris, R. Axel, H. Sompolinsky, and
L. F. Abbott, “Optimal degrees of synaptic connectivity,” Neuron,
vol. 93, no. 5, pp. 1153–1164, March 2017. [Online]. Available:
http://dx.doi.org/10.1016/j.neuron.2017.01.030

[56] D. A. Rachkovskij, “Representation and Processing of Structures with
Binary Sparse Distributed Codes,” IEEE Transactions on Knowledge
and Data Engineering, vol. 3, no. 2, pp. 261–276, 2001.

[57] O. Räsänen and J. Saarinen, “Sequence prediction with sparse distributed
hyperdimensional coding applied to the analysis of mobile phone use
patterns,” IEEE Transactions on Neural Networks and Learning Systems,
vol. PP, no. 99, pp. 1–12, 2015.

[58] M. Laiho, J. H. Poikonen, P. Kanerva, and E. Lehtonen, “High-
dimensional computing with sparse vectors,” in Biomedical Circuits and
Systems Conference (BioCAS), 2015 IEEE, Oct 2015, pp. 1–4.

[59] D. Kleyko, A. Rahimi, D. A. Rachkovskij, E. Osipov, and J. M. Rabaey,
“Classification and recall with binary hyperdimensional computing:
Tradeoffs in choice of density and mapping characteristics,” IEEE
Transactions on Neural Networks and Learning Systems, pp. 1–19, 2018.

[60] M. Imani, J. Hwang, T. Rosing, A. Rahimi, and J. M. Rabaey, “Low-
power sparse hyperdimensional encoder for language recognition,” IEEE
Design Test, vol. 34, no. 6, pp. 94–101, Dec 2017.

[61] C. S. Daw, C. E. A. Finney, and E. R. Tracy, “A review
of symbolic analysis of experimental data,” Review of Scientific
Instruments, vol. 74, no. 2, pp. 915–930, 2003. [Online]. Available:
https://doi.org/10.1063/1.1531823

[62] O. Yilmaz, “Symbolic computation using cellular automata-based
hyperdimensional computing,” Neural Computation, vol. 27, no. 12,
pp. 2661–2692, 2015, pMID: 26496041. [Online]. Available: https:
//doi.org/10.1162/NECO a 00787

[63] M. Schmuck, L. Benini, and A. Rahimi, “Hardware Optimizations of
Dense Binary Hyperdimensional Computing: Rematerialization of Hy-
pervectors, Binarized Bundling, and Combinational Associative Mem-
ory,” ArXiv e-prints, Jul. 2018.

[64] D. Kleyko, S. Khan, E. Osipov, and S. P. Yong, “Modality classification
of medical images with distributed representations based on cellular
automata reservoir computing,” in 2017 IEEE 14th International Sym-
posium on Biomedical Imaging (ISBI 2017), April 2017, pp. 1053–1056.

[65] D. Widdows and T. Cohen, “Reasoning with vectors: a continuous model
for fast robust inference,” in Logic Journal of the IGPL, 2014.

[66] T. S. Kumar, V. Kanhangad, and R. B. Pachori, “Classification of
seizure and seizure-free EEG signals using local binary patterns,”
Biomedical Signal Processing and Control, vol. 15, pp. 33–40,
2015. [Online]. Available: http://www.sciencedirect.com/science/article/
pii/S1746809414001384

[67] K. Schindler, H. Gast, M. Goodfellow, and C. Rummel, “On seeing the
trees and the forest: Single-signal and multisignal analysis of periictal
intracranial eeg,” Epilepsia, vol. 53, no. 9, pp. 1658–1668.

[68] J. Snell, K. Swersky, and R. S. Zemel, “Prototypical Networks for Few-
shot Learning,” ArXiv e-prints, Mar. 2017.

[69] M. Imani, A. Rahimi, D. Kong, T. Rosing, and J. M. Rabaey, “Exploring
hyperdimensional associative memory,” in 2017 IEEE International
Symposium on High Performance Computer Architecture (HPCA), Feb
2017, pp. 445–456.

[70] “Monitoring error-related potentials,” http://bnci-horizon-2020.eu/
database/data-sets.

http://www.sciencedirect.com/science/article/pii/S1053811910002922
http://www.sciencedirect.com/science/article/pii/S1053811910002922
https://www.frontiersin.org/article/10.3389/fnins.2012.00151
https://www.frontiersin.org/article/10.3389/fnins.2012.00151
http://www.sciencedirect.com/science/article/pii/S174680941730006X
http://www.sciencedirect.com/science/article/pii/S174680941730006X
http://cogprints.org/502/
https://doi.org/10.1162/neco_a_01084
https://doi.org/10.1007/s10846-014-0037-6
https://www.frontiersin.org/article/10.3389/fnins.2012.00039
http://papers.nips.cc/paper/7048-targeting-eeglfp-synchrony-with-neural-nets.pdf
http://papers.nips.cc/paper/7048-targeting-eeglfp-synchrony-with-neural-nets.pdf
http://www.sciencedirect.com/science/article/pii/S0013469497000222
http://www.sciencedirect.com/science/article/pii/S0013469497000222
http://www.mdpi.com/2079-9268/7/2/16
http://www.mdpi.com/2079-9268/7/2/16
http://dx.doi.org/10.1016/j.neuron.2017.01.030
https://doi.org/10.1063/1.1531823
https://doi.org/10.1162/NECO_a_00787
https://doi.org/10.1162/NECO_a_00787
http://www.sciencedirect.com/science/article/pii/S1746809414001384
http://www.sciencedirect.com/science/article/pii/S1746809414001384
http://bnci-horizon-2020.eu/database/data-sets
http://bnci-horizon-2020.eu/database/data-sets

18

[71] O. Bertrand, F. Perrin, and J. Pernier, “A theoretical justification
of the average reference in topographic evoked potential
studies,” Electroencephalography and Clinical Neurophysiology/Evoked
Potentials Section, vol. 62, no. 6, pp. 462–464, 1985. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/0168559785900589

[72] X. He, D. Cai, and P. Niyogi, “Laplacian score for feature
selection,” in Proceedings of the 18th International Conference on
Neural Information Processing Systems, ser. NIPS’05. Cambridge,
MA, USA: MIT Press, 2005, pp. 507–514. [Online]. Available:
http://dl.acm.org/citation.cfm?id=2976248.2976312

[73] “BCI Competition IV-2a (Four class motor imagery),” http://
bnci-horizon-2020.eu/database/data-sets.

[74] Y. B. Kim and U. M. O’Reilly, “Large-scale physiological waveform re-
trieval via locality-sensitive hashing,” in 2015 37th Annual International
Conference of the IEEE Engineering in Medicine and Biology Society
(EMBC), Aug 2015, pp. 5829–5833.

[75] ——, “Analysis of locality-sensitive hashing for fast critical event pre-
diction on physiological time series,” in 2016 38th Annual International
Conference of the IEEE Engineering in Medicine and Biology Society
(EMBC), Aug 2016, pp. 783–787.

[76] D. A. Rachkovskij, “Binary vectors for fast distance and similarity
estimation,” Cybernetics and Systems Analysis, vol. 53, no. 1,
pp. 138–156, Jan 2017. [Online]. Available: https://doi.org/10.1007/
s10559-017-9914-x

Abbas Rahimi received his B.S. in computer en-
gineering from the University of Tehran, Tehran,
Iran (2010) and his M.S. and Ph.D. in computer
science and engineering from the University of Cal-
ifornia San Diego, CA, USA (2015), followed by
two years postdoctoral research in the Department
of Electrical Engineering and Computer Sciences
at the University of California Berkeley, Berkeley,
CA, USA. Dr. Rahimi has been awarded an ETH
Zurich Postdoctoral Fellowship, and subsequently
joined the Department of Information Technology

and Electrical Engineering at the ETHZ in June 2017. He is also affiliated
with the Berkeley Wireless Research Center.

His research interests include brain-inspired computing, approximate com-
puting, massively parallel integrated architectures, embedded systems and
software with an emphasis on improving energy efficiency and robustness. His
doctoral dissertation has received the 2015 Outstanding Dissertation Award
in the area of “New Directions in Embedded System Design and Embedded
Software” from the European Design and Automation Association (EDAA).
He has also received the Best Paper at BioCAS (2018), BICT (2017), and the
Best Paper Candidate at DAC (2013).

Pentti Kanerva worked 20 years designing and
building computer systems, followed by a PhD in
Philosophy from Stanford and 30+ years of research
into understanding brains in computing terms. His
thesis was published in the book Sparse Distributed
Memory by MIT Press and his subsequent research
includes Binary Spatter Code, Random Indexing,
and Hyperdimensional Computing. He has held re-
search positions at NASA Ames Research Center,
Swedish Institute of Computer Science, and the Red-
wood Neuroscience Institute, and is now a researcher

at UC Berkeley’s Redwood Center for Theoretical Neuroscience.

Luca Benini is professor of Digital Circuits and
Systems at ETH Zurich, Switzerland, and is also
professor at University of Bologna, Italy. His re-
search interests are in energy-efficient system design
and multicore SoC design. He is also active in the
area of energy-efficient smart sensors and sensor
networks. He is a fellow of the IEEE and the ACM
and Member of the Academia Europea. He received
the IEEE CAS Mac Van Valkenburg Award.

Jan M. Rabaey holds the Donald O. Pederson
Distinguished Professorship at the University of Cal-
ifornia at Berkeley. He is a founding director of the
Berkeley Wireless Research Center (BWRC) and the
Berkeley Ubiquitous SwarmLab.

Prof. Rabaey has made high-impact contributions
to a number of fields, including advanced wireless
systems, low power integrated circuits, sensor net-
works, and ubiquitous computing. His current inter-
ests include the conception of the next-generation
integrated wireless systems over a broad range of

applications, as well as exploring the interaction between the cyber and the
biological world.

He is the recipient of major awards, amongst which the IEEE Mac Van
Valkenburg Award, the European Design Automation Association (EDAA)
Lifetime Achievement award, and the Semiconductor Industry Association
(SIA) University Researcher Award. He is an IEEE Fellow and a member of
the Royal Flemish Academy of Sciences and Arts of Belgium. He has been
involved in a broad variety of start-up ventures.

APPENDIX A
HYPERDIMENSIONAL COMPUTING CONCEPTS

A. Hyperdimensional Space

Dimensionality d = 10,000 is high-dimensional, 10 or 100
are not. Small demonstrations can be made with d = 1,000,
and even very large tasks (e.g., modeling of networks with
billions of nodes) can be managed with d less than a 100,000.

High-dimensionality together with operations of the right
kind are more important than the nature of the dimensions.
Operations and properties that have proven useful are listed
below.

B. Elements/Points of the Space

• HD vectors or, more generally, the elements of a space
of (vector-like) points.

• Similarity metric: based on distance, dot product, cosine,
correlation.

• Orthogonality: Randomly chosen vectors are dissimilar,
unrelated, uncorrelated, quasiorthogonal. Most of the
space is dissimilar—nearly orthogonal—to any given
point. The number of mutually dissimilar vectors far
exceeds dimensionality, and finding one more such vector
is easy.

http://www.sciencedirect.com/science/article/pii/0168559785900589
http://dl.acm.org/citation.cfm?id=2976248.2976312
http://bnci-horizon-2020.eu/database/data-sets
http://bnci-horizon-2020.eu/database/data-sets
https://doi.org/10.1007/s10559-017-9914-x
https://doi.org/10.1007/s10559-017-9914-x

19

C. Operations

Note: The terms “addition,” “multiplication” and “permu-
tation” are meant to be understood in a more general (mod-
ern/abstract algebra) sense.
• Addition is an operation on two or more vectors that

yields a vector.
• Multiplication is an operation on two or more vectors that

yields a vector.
• Permutation is a unary operation on a vector that yields

a vector.
– The number of possible permutations is very large (d!),
but permutations themselves are not elements of the space
of representations.
– Permutation is an example of a more general unary
operation on vectors, namely, multiplication by a matrix.
However, reducing it to a circular shift operation reduces
the complexity of permutation as well as its inverse to
O(d) rather than O(d2).

• Normalization converts an intermediate results of an
operation into an element of the space over which the
operations are defined. For example, if the elements of
the space are binary vectors, the arithmetic sum-vector of
two or more vectors has to be normalized by a threshold
function to make it binary.

• Scalar product or dot product provides a measure of
similarity between two vectors.

D. Properties

Note: The properties refer to (pseudo)random vectors with
i.i.d. components. Thanks to high dimensionality, the condi-
tions listed below need only be satisfied approximately or with
high probability. Notice also that the algebra of addition and
multiplication approximates a field over the vector space.
• Multiplication and permutation are invertible.
• Multiplication distributes over addition.
• Permutation distributes over both addition and multipli-

cation.
• The sum vector is similar to each of its argument vectors.
• The product vector is dissimilar to each of its argument

vectors.
• The result of a (random) permutation is dissimilar to the

argument vector.
• Multiplication and permutation are “randomizing” oper-

ations that preserve similarity.
• Addition and multiplication are associative.
• Addition is commutative.
By the Law of Large Numbers, the reliability/predictability

of the computations is directly related to vector dimensionality.

E. Examples of HD Spaces and Operations

• Real Vectors. Holographic Reduced Representation
(HRR) was the first among these systems. It uses d-
dimensional real vectors whose components are i.i.d.
normal with zero mean and 1/d variance. Addition is by
normalized vector sum, and multiplication is by circular
convolution.

• Complex Vectors. Vector components are random phase
angles, addition is by componentwise complex addition
followed by normalization, and multiplication is by com-
ponentwise complex multiplication (addition of phase
angles).

• 50–50 Binary Vectors. Addition is by componentwise
majority rule followed by tie-breaking, and multiplication
is by componentwise XOR.

• Bipolar (±1) Vectors. The MAP (Multiply–Add–
Permute) architecture uses componentwise addition and
multiplication, followed by normalization and is equiva-
lent to the binary.

An operation can have a property that is useful in some
contexts but needs a work-around in others. An example of
such is the self-inverse property of multiplication of binary
vectors with componentwise XOR. It may work well for
undirected graphs but poorly for directed graphs.

F. Mapping with Vectors

A key notion of HD computing is that a vector can represent
a mapping and that a mapping-vector can be computed from
examples in a single pass using the vector operations. Sim-
ilarly, vectors for composed entities such as a network, are
computed from vectors for the constituents (i.e., the nodes)
with the HD operations in a single pass. This is much like
traditional computing and very different from standard neural
nets that compute mappings with gradient descent (back-
propagation) in multiple passes over a set of examples. To
apply a vector-map to another vector, we simply multiply
with the mapping-vector and possibly follow it with a memory
retrieval.

G. HD Memory

The long-term memory function of standard neural nets
is encoded into—and is confounded with—the same set of
weights that perform mappings between vectors. In HD com-
puting the two are separate. The memory corresponds to
a computer RAM and it stores vectors made with the HD
vector operations. Memory retrieval means finding the best-
matching vector (or vectors, i.e., nearest neighbors) in the set
of vectors stored in the memory, which also yields a measure
of confidence in the retrieved vectors.

H. Generality

The HD operations and memory are sufficient for general
computing. For example, the Lisp programming language
could be implemented with them.

Some computing operations that are native to HD have no
simple counterpart in traditional computing. They include vec-
tors as mappings and as semantic pointers. However, operating
with numbers is awkward and inefficient. Thus traditional
computing can be deemed quantitative and HD computing
qualitative.

20

I. Theory on Coding Continuous Values in HD Vectors

Using the 50–50 Binary Vectors (Binary Spatter Codes) we
describe a method to encode graded values (quantities) into
binary HD vectors via the thermometer code (unary coding). A
thermometer code has a number of 1s to represent the quantity,
followed by 0s:

111...111000...000

Assume that x in the range [0,1] is represented by a d-bit
thermometer code, with the number of 1s proportional to x.
If we want the ends of the range have orthogonal HD vectors,
the thermometer code for 0 has no 1s and the thermometer
code for 1 has d/2 1s. For example, 1,000 1s followed by
9,000 0s represents 0.2.

Take the thermometer code for x, T (x), multiply (XOR) it
with a random label, L, and permute the result with a random
permutation (not rotate), ρ. Then the value x is encoded by
the HD vector:

X = ρ(L ∗ T (x))

Multiplying by L makes temperature look random, and per-
muting with ρ scrambles the coordinates. We can then read the
thermometer by counting the number of 1s in L∗(qX), where
q is the inverse permutation of ρ and L is its own inverse. We
can do the same for the y coordinate but need a random label
L′ and a random permutation ρ′ that are unique to the y-axis.
The position (x,y) can then be labeled with X ∗ Y . If we are
given x and the vector X ∗ Y , we can compute y.

The coding maintains temperature differences because nei-
ther XOR nor permutation affects Hamming distance h (both
operations preserve similarity):

h(X1, X2) = h(ρ(L ∗ T (x1)), ρ(L ∗ T (x2)))
= h(L ∗ T (x1), L ∗ T (x2))

= h(T (x1), T (x2))

	Frontpage_Benini_IEEE_Rahimi.pdf
	Efficient Biosignal Processing Using_Postprint.pdf
	Introduction
	Background in HD Computing
	Similarity Measurement of HD Vectors
	Arithmetic Operations on HD Vectors

	Key Properties of HD Computing for Efficient Biosignal Processing
	Scalable Computational Paradigm with Versatile Arithmetic Operations
	Learning Transparent Codes with Interpretable Features
	Learning Is One-shot, Fast, and Computationally Balanced with Respect to Classification
	Less Preprocessing
	Energy Efficiency

	HD Network Templates for Combined Learning and Classification of Biosignals
	Mapping to HD Space
	Orthogonal Mapping
	Continuous Mapping that Preserves Similarity
	Mapping with Scalar Multiplication (Weighting)

	Encoding
	Spatial Encoder
	Temporal Encoder
	Spatial Encoder and Histogram Generation
	Spatial Encoder with Weighting

	Associative Memory
	Associative Memory with a Unified Prototype

	Experimental Results
	EMG-based Hand Gesture Recognition
	Single-trial Binary Classification of EEG ERPs
	Fast Learning
	No Electrode Selection and Less Preprocessing
	Learning Transparent Codes with Interpretable Features

	ECoG-based Seizure Detection
	Multiclass Classification of MI EEG
	MI Classification with Four Classes

	Discussion
	Conclusions and Future Work
	References
	Biographies
	Abbas Rahimi
	Pentti Kanerva
	Luca Benini
	Jan M. Rabaey

	Appendix A: Hyperdimensional Computing Concepts
	Hyperdimensional Space
	Elements/Points of the Space
	Operations
	Properties
	Examples of HD Spaces and Operations
	Mapping with Vectors
	HD Memory
	Generality
	Theory on Coding Continuous Values in HD Vectors

